You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

156 lines
5.0KB

  1. /*
  2. * FFT/IFFT transforms
  3. * AltiVec-enabled
  4. * Copyright (c) 2009 Loren Merritt
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "config.h"
  23. #include "libavutil/cpu.h"
  24. #include "libavutil/ppc/cpu.h"
  25. #include "libavutil/ppc/util_altivec.h"
  26. #include "libavcodec/fft.h"
  27. /**
  28. * Do a complex FFT with the parameters defined in ff_fft_init().
  29. * The input data must be permuted before with s->revtab table.
  30. * No 1.0 / sqrt(n) normalization is done.
  31. * AltiVec-enabled:
  32. * This code assumes that the 'z' pointer is 16 bytes-aligned.
  33. * It also assumes all FFTComplex are 8 bytes-aligned pairs of floats.
  34. */
  35. void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z);
  36. #if HAVE_GNU_AS && HAVE_ALTIVEC && HAVE_BIGENDIAN
  37. static void imdct_half_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
  38. {
  39. int j, k;
  40. int n = 1 << s->mdct_bits;
  41. int n4 = n >> 2;
  42. int n8 = n >> 3;
  43. int n32 = n >> 5;
  44. const uint16_t *revtabj = s->revtab;
  45. const uint16_t *revtabk = s->revtab+n4;
  46. const vec_f *tcos = (const vec_f*)(s->tcos+n8);
  47. const vec_f *tsin = (const vec_f*)(s->tsin+n8);
  48. const vec_f *pin = (const vec_f*)(input+n4);
  49. vec_f *pout = (vec_f*)(output+n4);
  50. /* pre rotation */
  51. k = n32-1;
  52. do {
  53. vec_f cos,sin,cos0,sin0,cos1,sin1,re,im,r0,i0,r1,i1,a,b,c,d;
  54. #define CMULA(p,o0,o1,o2,o3)\
  55. a = pin[ k*2+p]; /* { z[k].re, z[k].im, z[k+1].re, z[k+1].im } */\
  56. b = pin[-k*2-p-1]; /* { z[-k-2].re, z[-k-2].im, z[-k-1].re, z[-k-1].im } */\
  57. re = vec_perm(a, b, vcprm(0,2,s0,s2)); /* { z[k].re, z[k+1].re, z[-k-2].re, z[-k-1].re } */\
  58. im = vec_perm(a, b, vcprm(s3,s1,3,1)); /* { z[-k-1].im, z[-k-2].im, z[k+1].im, z[k].im } */\
  59. cos = vec_perm(cos0, cos1, vcprm(o0,o1,s##o2,s##o3)); /* { cos[k], cos[k+1], cos[-k-2], cos[-k-1] } */\
  60. sin = vec_perm(sin0, sin1, vcprm(o0,o1,s##o2,s##o3));\
  61. r##p = im*cos - re*sin;\
  62. i##p = re*cos + im*sin;
  63. #define STORE2(v,dst)\
  64. j = dst;\
  65. vec_ste(v, 0, output+j*2);\
  66. vec_ste(v, 4, output+j*2);
  67. #define STORE8(p)\
  68. a = vec_perm(r##p, i##p, vcprm(0,s0,0,s0));\
  69. b = vec_perm(r##p, i##p, vcprm(1,s1,1,s1));\
  70. c = vec_perm(r##p, i##p, vcprm(2,s2,2,s2));\
  71. d = vec_perm(r##p, i##p, vcprm(3,s3,3,s3));\
  72. STORE2(a, revtabk[ p*2-4]);\
  73. STORE2(b, revtabk[ p*2-3]);\
  74. STORE2(c, revtabj[-p*2+2]);\
  75. STORE2(d, revtabj[-p*2+3]);
  76. cos0 = tcos[k];
  77. sin0 = tsin[k];
  78. cos1 = tcos[-k-1];
  79. sin1 = tsin[-k-1];
  80. CMULA(0, 0,1,2,3);
  81. CMULA(1, 2,3,0,1);
  82. STORE8(0);
  83. STORE8(1);
  84. revtabj += 4;
  85. revtabk -= 4;
  86. k--;
  87. } while(k >= 0);
  88. ff_fft_calc_altivec(s, (FFTComplex*)output);
  89. /* post rotation + reordering */
  90. j = -n32;
  91. k = n32-1;
  92. do {
  93. vec_f cos,sin,re,im,a,b,c,d;
  94. #define CMULB(d0,d1,o)\
  95. re = pout[o*2];\
  96. im = pout[o*2+1];\
  97. cos = tcos[o];\
  98. sin = tsin[o];\
  99. d0 = im*sin - re*cos;\
  100. d1 = re*sin + im*cos;
  101. CMULB(a,b,j);
  102. CMULB(c,d,k);
  103. pout[2*j] = vec_perm(a, d, vcprm(0,s3,1,s2));
  104. pout[2*j+1] = vec_perm(a, d, vcprm(2,s1,3,s0));
  105. pout[2*k] = vec_perm(c, b, vcprm(0,s3,1,s2));
  106. pout[2*k+1] = vec_perm(c, b, vcprm(2,s1,3,s0));
  107. j++;
  108. k--;
  109. } while(k >= 0);
  110. }
  111. static void imdct_calc_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
  112. {
  113. int k;
  114. int n = 1 << s->mdct_bits;
  115. int n4 = n >> 2;
  116. int n16 = n >> 4;
  117. vec_u32 sign = {1U<<31,1U<<31,1U<<31,1U<<31};
  118. vec_u32 *p0 = (vec_u32*)(output+n4);
  119. vec_u32 *p1 = (vec_u32*)(output+n4*3);
  120. imdct_half_altivec(s, output + n4, input);
  121. for (k = 0; k < n16; k++) {
  122. vec_u32 a = p0[k] ^ sign;
  123. vec_u32 b = p1[-k-1];
  124. p0[-k-1] = vec_perm(a, a, vcprm(3,2,1,0));
  125. p1[k] = vec_perm(b, b, vcprm(3,2,1,0));
  126. }
  127. }
  128. #endif /* HAVE_GNU_AS && HAVE_ALTIVEC && HAVE_BIGENDIAN */
  129. av_cold void ff_mdct_init_ppc(FFTContext *s)
  130. {
  131. #if HAVE_GNU_AS && HAVE_ALTIVEC && HAVE_BIGENDIAN
  132. if (!PPC_ALTIVEC(av_get_cpu_flags()))
  133. return;
  134. if (s->mdct_bits >= 5) {
  135. s->imdct_calc = imdct_calc_altivec;
  136. s->imdct_half = imdct_half_altivec;
  137. }
  138. #endif /* HAVE_GNU_AS && HAVE_ALTIVEC && HAVE_BIGENDIAN */
  139. }