You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1026 lines
42KB

  1. /*
  2. * On2 Audio for Video Codec decoder
  3. *
  4. * Copyright (c) 2013 Konstantin Shishkov
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "libavutil/channel_layout.h"
  23. #include "libavutil/float_dsp.h"
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "bytestream.h"
  27. #include "fft.h"
  28. #include "internal.h"
  29. #include "vlc.h"
  30. #include "on2avcdata.h"
  31. #define ON2AVC_SUBFRAME_SIZE 1024
  32. enum WindowTypes {
  33. WINDOW_TYPE_LONG = 0,
  34. WINDOW_TYPE_LONG_STOP,
  35. WINDOW_TYPE_LONG_START,
  36. WINDOW_TYPE_8SHORT = 3,
  37. WINDOW_TYPE_EXT4,
  38. WINDOW_TYPE_EXT5,
  39. WINDOW_TYPE_EXT6,
  40. WINDOW_TYPE_EXT7,
  41. };
  42. typedef struct On2AVCContext {
  43. AVCodecContext *avctx;
  44. AVFloatDSPContext fdsp;
  45. FFTContext mdct, mdct_half, mdct_small;
  46. FFTContext fft128, fft256, fft512, fft1024;
  47. void (*wtf)(struct On2AVCContext *ctx, float *out, float *in, int size);
  48. int is_av500;
  49. const On2AVCMode *modes;
  50. int window_type, prev_window_type;
  51. int num_windows, num_bands;
  52. int bits_per_section;
  53. const int *band_start;
  54. int grouping[8];
  55. int ms_present;
  56. int ms_info[ON2AVC_MAX_BANDS];
  57. int is_long;
  58. uint8_t band_type[ON2AVC_MAX_BANDS];
  59. uint8_t band_run_end[ON2AVC_MAX_BANDS];
  60. int num_sections;
  61. float band_scales[ON2AVC_MAX_BANDS];
  62. VLC scale_diff;
  63. VLC cb_vlc[16];
  64. float scale_tab[128];
  65. DECLARE_ALIGNED(32, float, coeffs)[2][ON2AVC_SUBFRAME_SIZE];
  66. DECLARE_ALIGNED(32, float, delay) [2][ON2AVC_SUBFRAME_SIZE];
  67. DECLARE_ALIGNED(32, float, temp) [ON2AVC_SUBFRAME_SIZE * 2];
  68. DECLARE_ALIGNED(32, float, mdct_buf) [ON2AVC_SUBFRAME_SIZE];
  69. DECLARE_ALIGNED(32, float, long_win) [ON2AVC_SUBFRAME_SIZE];
  70. DECLARE_ALIGNED(32, float, short_win)[ON2AVC_SUBFRAME_SIZE / 8];
  71. } On2AVCContext;
  72. static void on2avc_read_ms_info(On2AVCContext *c, BitstreamContext *bc)
  73. {
  74. int w, b, band_off = 0;
  75. c->ms_present = bitstream_read_bit(bc);
  76. if (!c->ms_present)
  77. return;
  78. for (w = 0; w < c->num_windows; w++) {
  79. if (!c->grouping[w]) {
  80. memcpy(c->ms_info + band_off,
  81. c->ms_info + band_off - c->num_bands,
  82. c->num_bands * sizeof(*c->ms_info));
  83. band_off += c->num_bands;
  84. continue;
  85. }
  86. for (b = 0; b < c->num_bands; b++)
  87. c->ms_info[band_off++] = bitstream_read_bit(bc);
  88. }
  89. }
  90. // do not see Table 17 in ISO/IEC 13818-7
  91. static int on2avc_decode_band_types(On2AVCContext *c, BitstreamContext *bc)
  92. {
  93. int bits_per_sect = c->is_long ? 5 : 3;
  94. int esc_val = (1 << bits_per_sect) - 1;
  95. int num_bands = c->num_bands * c->num_windows;
  96. int band = 0, i, band_type, run_len, run;
  97. while (band < num_bands) {
  98. band_type = bitstream_read(bc, 4);
  99. run_len = 1;
  100. do {
  101. run = bitstream_read(bc, bits_per_sect);
  102. run_len += run;
  103. } while (run == esc_val);
  104. if (band + run_len > num_bands) {
  105. av_log(c->avctx, AV_LOG_ERROR, "Invalid band type run\n");
  106. return AVERROR_INVALIDDATA;
  107. }
  108. for (i = band; i < band + run_len; i++) {
  109. c->band_type[i] = band_type;
  110. c->band_run_end[i] = band + run_len;
  111. }
  112. band += run_len;
  113. }
  114. return 0;
  115. }
  116. // completely not like Table 18 in ISO/IEC 13818-7
  117. // (no intensity stereo, different coding for the first coefficient)
  118. static int on2avc_decode_band_scales(On2AVCContext *c, BitstreamContext *bc)
  119. {
  120. int w, w2, b, scale, first = 1;
  121. int band_off = 0;
  122. for (w = 0; w < c->num_windows; w++) {
  123. if (!c->grouping[w]) {
  124. memcpy(c->band_scales + band_off,
  125. c->band_scales + band_off - c->num_bands,
  126. c->num_bands * sizeof(*c->band_scales));
  127. band_off += c->num_bands;
  128. continue;
  129. }
  130. for (b = 0; b < c->num_bands; b++) {
  131. if (!c->band_type[band_off]) {
  132. int all_zero = 1;
  133. for (w2 = w + 1; w2 < c->num_windows; w2++) {
  134. if (c->grouping[w2])
  135. break;
  136. if (c->band_type[w2 * c->num_bands + b]) {
  137. all_zero = 0;
  138. break;
  139. }
  140. }
  141. if (all_zero) {
  142. c->band_scales[band_off++] = 0;
  143. continue;
  144. }
  145. }
  146. if (first) {
  147. scale = bitstream_read(bc, 7);
  148. first = 0;
  149. } else {
  150. scale += bitstream_read_vlc(bc, c->scale_diff.table, 9, 3) - 60;
  151. }
  152. if (scale < 0 || scale > 127) {
  153. av_log(c->avctx, AV_LOG_ERROR, "Invalid scale value %d\n",
  154. scale);
  155. return AVERROR_INVALIDDATA;
  156. }
  157. c->band_scales[band_off++] = c->scale_tab[scale];
  158. }
  159. }
  160. return 0;
  161. }
  162. static inline float on2avc_scale(int v, float scale)
  163. {
  164. return v * sqrtf(abs(v)) * scale;
  165. }
  166. // spectral data is coded completely differently - there are no unsigned codebooks
  167. static int on2avc_decode_quads(On2AVCContext *c, BitstreamContext *bc, float *dst,
  168. int dst_size, int type, float band_scale)
  169. {
  170. int i, j, val, val1;
  171. for (i = 0; i < dst_size; i += 4) {
  172. val = bitstream_read_vlc(bc, c->cb_vlc[type].table, 9, 3);
  173. for (j = 0; j < 4; j++) {
  174. val1 = sign_extend((val >> (12 - j * 4)) & 0xF, 4);
  175. *dst++ = on2avc_scale(val1, band_scale);
  176. }
  177. }
  178. return 0;
  179. }
  180. static inline int get_egolomb(BitstreamContext *bc)
  181. {
  182. int v = 4;
  183. while (bitstream_read_bit(bc)) {
  184. v++;
  185. if (v > 30) {
  186. av_log(NULL, AV_LOG_WARNING, "Too large golomb code in get_egolomb.\n");
  187. v = 30;
  188. break;
  189. }
  190. }
  191. return (1 << v) + bitstream_read(bc, v);
  192. }
  193. static int on2avc_decode_pairs(On2AVCContext *c, BitstreamContext *bc, float *dst,
  194. int dst_size, int type, float band_scale)
  195. {
  196. int i, val, val1, val2, sign;
  197. for (i = 0; i < dst_size; i += 2) {
  198. val = bitstream_read_vlc(bc, c->cb_vlc[type].table, 9, 3);
  199. val1 = sign_extend(val >> 8, 8);
  200. val2 = sign_extend(val & 0xFF, 8);
  201. if (type == ON2AVC_ESC_CB) {
  202. if (val1 <= -16 || val1 >= 16) {
  203. sign = 1 - (val1 < 0) * 2;
  204. val1 = sign * get_egolomb(bc);
  205. }
  206. if (val2 <= -16 || val2 >= 16) {
  207. sign = 1 - (val2 < 0) * 2;
  208. val2 = sign * get_egolomb(bc);
  209. }
  210. }
  211. *dst++ = on2avc_scale(val1, band_scale);
  212. *dst++ = on2avc_scale(val2, band_scale);
  213. }
  214. return 0;
  215. }
  216. static int on2avc_read_channel_data(On2AVCContext *c, BitstreamContext *bc, int ch)
  217. {
  218. int ret;
  219. int w, b, band_idx;
  220. float *coeff_ptr;
  221. if ((ret = on2avc_decode_band_types(c, bc)) < 0)
  222. return ret;
  223. if ((ret = on2avc_decode_band_scales(c, bc)) < 0)
  224. return ret;
  225. coeff_ptr = c->coeffs[ch];
  226. band_idx = 0;
  227. memset(coeff_ptr, 0, ON2AVC_SUBFRAME_SIZE * sizeof(*coeff_ptr));
  228. for (w = 0; w < c->num_windows; w++) {
  229. for (b = 0; b < c->num_bands; b++) {
  230. int band_size = c->band_start[b + 1] - c->band_start[b];
  231. int band_type = c->band_type[band_idx + b];
  232. if (!band_type) {
  233. coeff_ptr += band_size;
  234. continue;
  235. }
  236. if (band_type < 9)
  237. on2avc_decode_quads(c, bc, coeff_ptr, band_size, band_type,
  238. c->band_scales[band_idx + b]);
  239. else
  240. on2avc_decode_pairs(c, bc, coeff_ptr, band_size, band_type,
  241. c->band_scales[band_idx + b]);
  242. coeff_ptr += band_size;
  243. }
  244. band_idx += c->num_bands;
  245. }
  246. return 0;
  247. }
  248. static int on2avc_apply_ms(On2AVCContext *c)
  249. {
  250. int w, b, i;
  251. int band_off = 0;
  252. float *ch0 = c->coeffs[0];
  253. float *ch1 = c->coeffs[1];
  254. for (w = 0; w < c->num_windows; w++) {
  255. for (b = 0; b < c->num_bands; b++) {
  256. if (c->ms_info[band_off + b]) {
  257. for (i = c->band_start[b]; i < c->band_start[b + 1]; i++) {
  258. float l = *ch0, r = *ch1;
  259. *ch0++ = l + r;
  260. *ch1++ = l - r;
  261. }
  262. } else {
  263. ch0 += c->band_start[b + 1] - c->band_start[b];
  264. ch1 += c->band_start[b + 1] - c->band_start[b];
  265. }
  266. }
  267. band_off += c->num_bands;
  268. }
  269. return 0;
  270. }
  271. static void zero_head_and_tail(float *src, int len, int order0, int order1)
  272. {
  273. memset(src, 0, sizeof(*src) * order0);
  274. memset(src + len - order1, 0, sizeof(*src) * order1);
  275. }
  276. static void pretwiddle(float *src, float *dst, int dst_len, int tab_step,
  277. int step, int order0, int order1, const double * const *tabs)
  278. {
  279. float *src2, *out;
  280. const double *tab;
  281. int i, j;
  282. out = dst;
  283. tab = tabs[0];
  284. for (i = 0; i < tab_step; i++) {
  285. double sum = 0;
  286. for (j = 0; j < order0; j++)
  287. sum += src[j] * tab[j * tab_step + i];
  288. out[i] += sum;
  289. }
  290. out = dst + dst_len - tab_step;
  291. tab = tabs[order0];
  292. src2 = src + (dst_len - tab_step) / step + 1 + order0;
  293. for (i = 0; i < tab_step; i++) {
  294. double sum = 0;
  295. for (j = 0; j < order1; j++)
  296. sum += src2[j] * tab[j * tab_step + i];
  297. out[i] += sum;
  298. }
  299. }
  300. static void twiddle(float *src1, float *src2, int src2_len,
  301. const double *tab, int tab_len, int step,
  302. int order0, int order1, const double * const *tabs)
  303. {
  304. int steps;
  305. int mask;
  306. int i, j;
  307. steps = (src2_len - tab_len) / step + 1;
  308. pretwiddle(src1, src2, src2_len, tab_len, step, order0, order1, tabs);
  309. mask = tab_len - 1;
  310. for (i = 0; i < steps; i++) {
  311. float in0 = src1[order0 + i];
  312. int pos = (src2_len - 1) & mask;
  313. if (pos < tab_len) {
  314. const double *t = tab;
  315. for (j = pos; j >= 0; j--)
  316. src2[j] += in0 * *t++;
  317. for (j = 0; j < tab_len - pos - 1; j++)
  318. src2[src2_len - j - 1] += in0 * tab[pos + 1 + j];
  319. } else {
  320. for (j = 0; j < tab_len; j++)
  321. src2[pos - j] += in0 * tab[j];
  322. }
  323. mask = pos + step;
  324. }
  325. }
  326. #define CMUL1_R(s, t, is, it) \
  327. s[is + 0] * t[it + 0] - s[is + 1] * t[it + 1]
  328. #define CMUL1_I(s, t, is, it) \
  329. s[is + 0] * t[it + 1] + s[is + 1] * t[it + 0]
  330. #define CMUL2_R(s, t, is, it) \
  331. s[is + 0] * t[it + 0] + s[is + 1] * t[it + 1]
  332. #define CMUL2_I(s, t, is, it) \
  333. s[is + 0] * t[it + 1] - s[is + 1] * t[it + 0]
  334. #define CMUL0(dst, id, s0, s1, s2, s3, t0, t1, t2, t3, is, it) \
  335. dst[id] = s0[is] * t0[it] + s1[is] * t1[it] \
  336. + s2[is] * t2[it] + s3[is] * t3[it]; \
  337. dst[id + 1] = s0[is] * t0[it + 1] + s1[is] * t1[it + 1] \
  338. + s2[is] * t2[it + 1] + s3[is] * t3[it + 1];
  339. #define CMUL1(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it) \
  340. *dst++ = CMUL1_R(s0, t0, is, it) \
  341. + CMUL1_R(s1, t1, is, it) \
  342. + CMUL1_R(s2, t2, is, it) \
  343. + CMUL1_R(s3, t3, is, it); \
  344. *dst++ = CMUL1_I(s0, t0, is, it) \
  345. + CMUL1_I(s1, t1, is, it) \
  346. + CMUL1_I(s2, t2, is, it) \
  347. + CMUL1_I(s3, t3, is, it);
  348. #define CMUL2(dst, s0, s1, s2, s3, t0, t1, t2, t3, is, it) \
  349. *dst++ = CMUL2_R(s0, t0, is, it) \
  350. + CMUL2_R(s1, t1, is, it) \
  351. + CMUL2_R(s2, t2, is, it) \
  352. + CMUL2_R(s3, t3, is, it); \
  353. *dst++ = CMUL2_I(s0, t0, is, it) \
  354. + CMUL2_I(s1, t1, is, it) \
  355. + CMUL2_I(s2, t2, is, it) \
  356. + CMUL2_I(s3, t3, is, it);
  357. static void combine_fft(float *s0, float *s1, float *s2, float *s3, float *dst,
  358. const float *t0, const float *t1,
  359. const float *t2, const float *t3, int len, int step)
  360. {
  361. const float *h0, *h1, *h2, *h3;
  362. float *d1, *d2;
  363. int tmp, half;
  364. int len2 = len >> 1, len4 = len >> 2;
  365. int hoff;
  366. int i, j, k;
  367. tmp = step;
  368. for (half = len2; tmp > 1; half <<= 1, tmp >>= 1);
  369. h0 = t0 + half;
  370. h1 = t1 + half;
  371. h2 = t2 + half;
  372. h3 = t3 + half;
  373. CMUL0(dst, 0, s0, s1, s2, s3, t0, t1, t2, t3, 0, 0);
  374. hoff = 2 * step * (len4 >> 1);
  375. j = 2;
  376. k = 2 * step;
  377. d1 = dst + 2;
  378. d2 = dst + 2 + (len >> 1);
  379. for (i = 0; i < (len4 - 1) >> 1; i++) {
  380. CMUL1(d1, s0, s1, s2, s3, t0, t1, t2, t3, j, k);
  381. CMUL1(d2, s0, s1, s2, s3, h0, h1, h2, h3, j, k);
  382. j += 2;
  383. k += 2 * step;
  384. }
  385. CMUL0(dst, len4, s0, s1, s2, s3, t0, t1, t2, t3, 1, hoff);
  386. CMUL0(dst, len4 + len2, s0, s1, s2, s3, h0, h1, h2, h3, 1, hoff);
  387. j = len4;
  388. k = hoff + 2 * step * len4;
  389. d1 = dst + len4 + 2;
  390. d2 = dst + len4 + 2 + len2;
  391. for (i = 0; i < (len4 - 2) >> 1; i++) {
  392. CMUL2(d1, s0, s1, s2, s3, t0, t1, t2, t3, j, k);
  393. CMUL2(d2, s0, s1, s2, s3, h0, h1, h2, h3, j, k);
  394. j -= 2;
  395. k += 2 * step;
  396. }
  397. CMUL0(dst, len2 + 4, s0, s1, s2, s3, t0, t1, t2, t3, 0, k);
  398. }
  399. static void wtf_end_512(On2AVCContext *c, float *out, float *src,
  400. float *tmp0, float *tmp1)
  401. {
  402. memcpy(src, tmp0, 384 * sizeof(*tmp0));
  403. memcpy(tmp0 + 384, src + 384, 128 * sizeof(*tmp0));
  404. zero_head_and_tail(src, 128, 16, 4);
  405. zero_head_and_tail(src + 128, 128, 16, 4);
  406. zero_head_and_tail(src + 256, 128, 13, 7);
  407. zero_head_and_tail(src + 384, 128, 15, 5);
  408. c->fft128.fft_permute(&c->fft128, (FFTComplex*)src);
  409. c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 128));
  410. c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 256));
  411. c->fft128.fft_permute(&c->fft128, (FFTComplex*)(src + 384));
  412. c->fft128.fft_calc(&c->fft128, (FFTComplex*)src);
  413. c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 128));
  414. c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 256));
  415. c->fft128.fft_calc(&c->fft128, (FFTComplex*)(src + 384));
  416. combine_fft(src, src + 128, src + 256, src + 384, tmp1,
  417. ff_on2avc_ctab_1, ff_on2avc_ctab_2,
  418. ff_on2avc_ctab_3, ff_on2avc_ctab_4, 512, 2);
  419. c->fft512.fft_permute(&c->fft512, (FFTComplex*)tmp1);
  420. c->fft512.fft_calc(&c->fft512, (FFTComplex*)tmp1);
  421. pretwiddle(&tmp0[ 0], tmp1, 512, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  422. pretwiddle(&tmp0[128], tmp1, 512, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  423. pretwiddle(&tmp0[256], tmp1, 512, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  424. pretwiddle(&tmp0[384], tmp1, 512, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  425. memcpy(src, tmp1, 512 * sizeof(float));
  426. }
  427. static void wtf_end_1024(On2AVCContext *c, float *out, float *src,
  428. float *tmp0, float *tmp1)
  429. {
  430. memcpy(src, tmp0, 768 * sizeof(*tmp0));
  431. memcpy(tmp0 + 768, src + 768, 256 * sizeof(*tmp0));
  432. zero_head_and_tail(src, 256, 16, 4);
  433. zero_head_and_tail(src + 256, 256, 16, 4);
  434. zero_head_and_tail(src + 512, 256, 13, 7);
  435. zero_head_and_tail(src + 768, 256, 15, 5);
  436. c->fft256.fft_permute(&c->fft256, (FFTComplex*)src);
  437. c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 256));
  438. c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 512));
  439. c->fft256.fft_permute(&c->fft256, (FFTComplex*)(src + 768));
  440. c->fft256.fft_calc(&c->fft256, (FFTComplex*)src);
  441. c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 256));
  442. c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 512));
  443. c->fft256.fft_calc(&c->fft256, (FFTComplex*)(src + 768));
  444. combine_fft(src, src + 256, src + 512, src + 768, tmp1,
  445. ff_on2avc_ctab_1, ff_on2avc_ctab_2,
  446. ff_on2avc_ctab_3, ff_on2avc_ctab_4, 1024, 1);
  447. c->fft1024.fft_permute(&c->fft1024, (FFTComplex*)tmp1);
  448. c->fft1024.fft_calc(&c->fft1024, (FFTComplex*)tmp1);
  449. pretwiddle(&tmp0[ 0], tmp1, 1024, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  450. pretwiddle(&tmp0[256], tmp1, 1024, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  451. pretwiddle(&tmp0[512], tmp1, 1024, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  452. pretwiddle(&tmp0[768], tmp1, 1024, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  453. memcpy(src, tmp1, 1024 * sizeof(float));
  454. }
  455. static void wtf_40(On2AVCContext *c, float *out, float *src, int size)
  456. {
  457. float *tmp0 = c->temp, *tmp1 = c->temp + 1024;
  458. memset(tmp0, 0, sizeof(*tmp0) * 1024);
  459. memset(tmp1, 0, sizeof(*tmp1) * 1024);
  460. if (size == 512) {
  461. twiddle(src, &tmp0[ 0], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  462. twiddle(src + 8, &tmp0[ 0], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  463. twiddle(src + 16, &tmp0[ 16], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  464. twiddle(src + 24, &tmp0[ 16], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  465. twiddle(src + 32, &tmp0[ 32], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  466. twiddle(src + 40, &tmp0[ 32], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  467. twiddle(src + 48, &tmp0[ 48], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  468. twiddle(src + 56, &tmp0[ 48], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  469. twiddle(&tmp0[ 0], &tmp1[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  470. twiddle(&tmp0[16], &tmp1[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  471. twiddle(&tmp0[32], &tmp1[ 32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  472. twiddle(&tmp0[48], &tmp1[ 32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  473. twiddle(src + 64, &tmp1[ 64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  474. twiddle(src + 80, &tmp1[ 64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  475. twiddle(src + 96, &tmp1[ 96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  476. twiddle(src + 112, &tmp1[ 96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  477. twiddle(src + 128, &tmp1[128], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  478. twiddle(src + 144, &tmp1[128], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  479. twiddle(src + 160, &tmp1[160], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  480. twiddle(src + 176, &tmp1[160], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  481. memset(tmp0, 0, 64 * sizeof(*tmp0));
  482. twiddle(&tmp1[ 0], &tmp0[ 0], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  483. twiddle(&tmp1[ 32], &tmp0[ 0], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  484. twiddle(&tmp1[ 64], &tmp0[ 0], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  485. twiddle(&tmp1[ 96], &tmp0[ 0], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  486. twiddle(&tmp1[128], &tmp0[128], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  487. twiddle(&tmp1[160], &tmp0[128], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  488. twiddle(src + 192, &tmp0[128], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  489. twiddle(src + 224, &tmp0[128], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  490. twiddle(src + 256, &tmp0[256], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  491. twiddle(src + 288, &tmp0[256], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  492. twiddle(src + 320, &tmp0[256], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  493. twiddle(src + 352, &tmp0[256], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  494. wtf_end_512(c, out, src, tmp0, tmp1);
  495. } else {
  496. twiddle(src, &tmp0[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  497. twiddle(src + 16, &tmp0[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  498. twiddle(src + 32, &tmp0[ 32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  499. twiddle(src + 48, &tmp0[ 32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  500. twiddle(src + 64, &tmp0[ 64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  501. twiddle(src + 80, &tmp0[ 64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  502. twiddle(src + 96, &tmp0[ 96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  503. twiddle(src + 112, &tmp0[ 96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  504. twiddle(&tmp0[ 0], &tmp1[ 0], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  505. twiddle(&tmp0[32], &tmp1[ 0], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  506. twiddle(&tmp0[64], &tmp1[ 64], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  507. twiddle(&tmp0[96], &tmp1[ 64], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  508. twiddle(src + 128, &tmp1[128], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  509. twiddle(src + 160, &tmp1[128], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  510. twiddle(src + 192, &tmp1[192], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  511. twiddle(src + 224, &tmp1[192], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  512. twiddle(src + 256, &tmp1[256], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  513. twiddle(src + 288, &tmp1[256], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  514. twiddle(src + 320, &tmp1[320], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  515. twiddle(src + 352, &tmp1[320], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  516. memset(tmp0, 0, 128 * sizeof(*tmp0));
  517. twiddle(&tmp1[ 0], &tmp0[ 0], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  518. twiddle(&tmp1[ 64], &tmp0[ 0], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  519. twiddle(&tmp1[128], &tmp0[ 0], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  520. twiddle(&tmp1[192], &tmp0[ 0], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  521. twiddle(&tmp1[256], &tmp0[256], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  522. twiddle(&tmp1[320], &tmp0[256], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  523. twiddle(src + 384, &tmp0[256], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  524. twiddle(src + 448, &tmp0[256], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  525. twiddle(src + 512, &tmp0[512], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  526. twiddle(src + 576, &tmp0[512], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  527. twiddle(src + 640, &tmp0[512], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  528. twiddle(src + 704, &tmp0[512], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  529. wtf_end_1024(c, out, src, tmp0, tmp1);
  530. }
  531. }
  532. static void wtf_44(On2AVCContext *c, float *out, float *src, int size)
  533. {
  534. float *tmp0 = c->temp, *tmp1 = c->temp + 1024;
  535. memset(tmp0, 0, sizeof(*tmp0) * 1024);
  536. memset(tmp1, 0, sizeof(*tmp1) * 1024);
  537. if (size == 512) {
  538. twiddle(src, &tmp0[ 0], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  539. twiddle(src + 8, &tmp0[ 0], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  540. twiddle(src + 16, &tmp0[16], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  541. twiddle(src + 24, &tmp0[16], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  542. twiddle(src + 32, &tmp0[32], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  543. twiddle(src + 40, &tmp0[32], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  544. twiddle(src + 48, &tmp0[48], 16, ff_on2avc_tab_10_2, 10, 2, 3, 1, ff_on2avc_tabs_4_10_2);
  545. twiddle(src + 56, &tmp0[48], 16, ff_on2avc_tab_10_1, 10, 2, 1, 3, ff_on2avc_tabs_4_10_1);
  546. twiddle(&tmp0[ 0], &tmp1[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  547. twiddle(&tmp0[16], &tmp1[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  548. twiddle(&tmp0[32], &tmp1[32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  549. twiddle(&tmp0[48], &tmp1[32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  550. twiddle(src + 64, &tmp1[64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  551. twiddle(src + 80, &tmp1[64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  552. twiddle(src + 96, &tmp1[96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  553. twiddle(src + 112, &tmp1[96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  554. memset(tmp0, 0, 64 * sizeof(*tmp0));
  555. twiddle(&tmp1[ 0], &tmp0[ 0], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  556. twiddle(&tmp1[32], &tmp0[ 0], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  557. twiddle(&tmp1[64], &tmp0[ 0], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  558. twiddle(&tmp1[96], &tmp0[ 0], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  559. twiddle(src + 128, &tmp0[128], 128, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  560. twiddle(src + 160, &tmp0[128], 128, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  561. twiddle(src + 192, &tmp0[128], 128, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  562. twiddle(src + 224, &tmp0[128], 128, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  563. twiddle(src + 256, &tmp0[256], 128, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  564. twiddle(src + 320, &tmp0[256], 128, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  565. wtf_end_512(c, out, src, tmp0, tmp1);
  566. } else {
  567. twiddle(src, &tmp0[ 0], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  568. twiddle(src + 16, &tmp0[ 0], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  569. twiddle(src + 32, &tmp0[ 32], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  570. twiddle(src + 48, &tmp0[ 32], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  571. twiddle(src + 64, &tmp0[ 64], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  572. twiddle(src + 80, &tmp0[ 64], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  573. twiddle(src + 96, &tmp0[ 96], 32, ff_on2avc_tab_20_2, 20, 2, 4, 5, ff_on2avc_tabs_9_20_2);
  574. twiddle(src + 112, &tmp0[ 96], 32, ff_on2avc_tab_20_1, 20, 2, 5, 4, ff_on2avc_tabs_9_20_1);
  575. twiddle(&tmp0[ 0], &tmp1[ 0], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  576. twiddle(&tmp0[32], &tmp1[ 0], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  577. twiddle(&tmp0[64], &tmp1[ 64], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  578. twiddle(&tmp0[96], &tmp1[ 64], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  579. twiddle(src + 128, &tmp1[128], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  580. twiddle(src + 160, &tmp1[128], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  581. twiddle(src + 192, &tmp1[192], 64, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  582. twiddle(src + 224, &tmp1[192], 64, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  583. memset(tmp0, 0, 128 * sizeof(*tmp0));
  584. twiddle(&tmp1[ 0], &tmp0[ 0], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  585. twiddle(&tmp1[ 64], &tmp0[ 0], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  586. twiddle(&tmp1[128], &tmp0[ 0], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  587. twiddle(&tmp1[192], &tmp0[ 0], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  588. twiddle(src + 256, &tmp0[256], 256, ff_on2avc_tab_84_4, 84, 4, 15, 5, ff_on2avc_tabs_20_84_4);
  589. twiddle(src + 320, &tmp0[256], 256, ff_on2avc_tab_84_3, 84, 4, 13, 7, ff_on2avc_tabs_20_84_3);
  590. twiddle(src + 384, &tmp0[256], 256, ff_on2avc_tab_84_2, 84, 4, 16, 4, ff_on2avc_tabs_20_84_2);
  591. twiddle(src + 448, &tmp0[256], 256, ff_on2avc_tab_84_1, 84, 4, 16, 4, ff_on2avc_tabs_20_84_1);
  592. twiddle(src + 512, &tmp0[512], 256, ff_on2avc_tab_40_1, 40, 2, 11, 8, ff_on2avc_tabs_19_40_1);
  593. twiddle(src + 640, &tmp0[512], 256, ff_on2avc_tab_40_2, 40, 2, 8, 11, ff_on2avc_tabs_19_40_2);
  594. wtf_end_1024(c, out, src, tmp0, tmp1);
  595. }
  596. }
  597. static int on2avc_reconstruct_stereo(On2AVCContext *c, AVFrame *dst, int offset)
  598. {
  599. int ch, i;
  600. for (ch = 0; ch < 2; ch++) {
  601. float *out = (float*)dst->extended_data[ch] + offset;
  602. float *in = c->coeffs[ch];
  603. float *saved = c->delay[ch];
  604. float *buf = c->mdct_buf;
  605. float *wout = out + 448;
  606. switch (c->window_type) {
  607. case WINDOW_TYPE_EXT7:
  608. c->mdct.imdct_half(&c->mdct, buf, in);
  609. break;
  610. case WINDOW_TYPE_EXT4:
  611. c->wtf(c, buf, in, 1024);
  612. break;
  613. case WINDOW_TYPE_EXT5:
  614. c->wtf(c, buf, in, 512);
  615. c->mdct.imdct_half(&c->mdct_half, buf + 512, in + 512);
  616. for (i = 0; i < 256; i++) {
  617. FFSWAP(float, buf[i + 512], buf[1023 - i]);
  618. }
  619. break;
  620. case WINDOW_TYPE_EXT6:
  621. c->mdct.imdct_half(&c->mdct_half, buf, in);
  622. for (i = 0; i < 256; i++) {
  623. FFSWAP(float, buf[i], buf[511 - i]);
  624. }
  625. c->wtf(c, buf + 512, in + 512, 512);
  626. break;
  627. }
  628. memcpy(out, saved, 448 * sizeof(float));
  629. c->fdsp.vector_fmul_window(wout, saved + 448, buf, c->short_win, 64);
  630. memcpy(wout + 128, buf + 64, 448 * sizeof(float));
  631. memcpy(saved, buf + 512, 448 * sizeof(float));
  632. memcpy(saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  633. }
  634. return 0;
  635. }
  636. // not borrowed from aacdec.c - the codec has original design after all
  637. static int on2avc_reconstruct_channel(On2AVCContext *c, int channel,
  638. AVFrame *dst, int offset)
  639. {
  640. int i;
  641. float *out = (float*)dst->extended_data[channel] + offset;
  642. float *in = c->coeffs[channel];
  643. float *saved = c->delay[channel];
  644. float *buf = c->mdct_buf;
  645. float *temp = c->temp;
  646. switch (c->window_type) {
  647. case WINDOW_TYPE_LONG_START:
  648. case WINDOW_TYPE_LONG_STOP:
  649. case WINDOW_TYPE_LONG:
  650. c->mdct.imdct_half(&c->mdct, buf, in);
  651. break;
  652. case WINDOW_TYPE_8SHORT:
  653. for (i = 0; i < ON2AVC_SUBFRAME_SIZE; i += ON2AVC_SUBFRAME_SIZE / 8)
  654. c->mdct_small.imdct_half(&c->mdct_small, buf + i, in + i);
  655. break;
  656. }
  657. if ((c->prev_window_type == WINDOW_TYPE_LONG ||
  658. c->prev_window_type == WINDOW_TYPE_LONG_STOP) &&
  659. (c->window_type == WINDOW_TYPE_LONG ||
  660. c->window_type == WINDOW_TYPE_LONG_START)) {
  661. c->fdsp.vector_fmul_window(out, saved, buf, c->long_win, 512);
  662. } else {
  663. float *wout = out + 448;
  664. memcpy(out, saved, 448 * sizeof(float));
  665. if (c->window_type == WINDOW_TYPE_8SHORT) {
  666. c->fdsp.vector_fmul_window(wout + 0*128, saved + 448, buf + 0*128, c->short_win, 64);
  667. c->fdsp.vector_fmul_window(wout + 1*128, buf + 0*128 + 64, buf + 1*128, c->short_win, 64);
  668. c->fdsp.vector_fmul_window(wout + 2*128, buf + 1*128 + 64, buf + 2*128, c->short_win, 64);
  669. c->fdsp.vector_fmul_window(wout + 3*128, buf + 2*128 + 64, buf + 3*128, c->short_win, 64);
  670. c->fdsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, c->short_win, 64);
  671. memcpy(wout + 4*128, temp, 64 * sizeof(float));
  672. } else {
  673. c->fdsp.vector_fmul_window(wout, saved + 448, buf, c->short_win, 64);
  674. memcpy(wout + 128, buf + 64, 448 * sizeof(float));
  675. }
  676. }
  677. // buffer update
  678. switch (c->window_type) {
  679. case WINDOW_TYPE_8SHORT:
  680. memcpy(saved, temp + 64, 64 * sizeof(float));
  681. c->fdsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, c->short_win, 64);
  682. c->fdsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, c->short_win, 64);
  683. c->fdsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, c->short_win, 64);
  684. memcpy(saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  685. break;
  686. case WINDOW_TYPE_LONG_START:
  687. memcpy(saved, buf + 512, 448 * sizeof(float));
  688. memcpy(saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  689. break;
  690. case WINDOW_TYPE_LONG_STOP:
  691. case WINDOW_TYPE_LONG:
  692. memcpy(saved, buf + 512, 512 * sizeof(float));
  693. break;
  694. }
  695. return 0;
  696. }
  697. static int on2avc_decode_subframe(On2AVCContext *c, const uint8_t *buf,
  698. int buf_size, AVFrame *dst, int offset)
  699. {
  700. BitstreamContext bc;
  701. int i, ret;
  702. bitstream_init8(&bc, buf, buf_size);
  703. if (bitstream_read_bit(&bc)) {
  704. av_log(c->avctx, AV_LOG_ERROR, "enh bit set\n");
  705. return AVERROR_INVALIDDATA;
  706. }
  707. c->prev_window_type = c->window_type;
  708. c->window_type = bitstream_read(&bc, 3);
  709. if (c->window_type >= WINDOW_TYPE_EXT4 && c->avctx->channels == 1) {
  710. av_log(c->avctx, AV_LOG_ERROR, "stereo mode window for mono audio\n");
  711. return AVERROR_INVALIDDATA;
  712. }
  713. c->band_start = c->modes[c->window_type].band_start;
  714. c->num_windows = c->modes[c->window_type].num_windows;
  715. c->num_bands = c->modes[c->window_type].num_bands;
  716. c->is_long = (c->window_type != WINDOW_TYPE_8SHORT);
  717. c->grouping[0] = 1;
  718. for (i = 1; i < c->num_windows; i++)
  719. c->grouping[i] = !bitstream_read_bit(&bc);
  720. on2avc_read_ms_info(c, &bc);
  721. for (i = 0; i < c->avctx->channels; i++)
  722. if ((ret = on2avc_read_channel_data(c, &bc, i)) < 0)
  723. return AVERROR_INVALIDDATA;
  724. if (c->avctx->channels == 2 && c->ms_present)
  725. on2avc_apply_ms(c);
  726. if (c->window_type < WINDOW_TYPE_EXT4) {
  727. for (i = 0; i < c->avctx->channels; i++)
  728. on2avc_reconstruct_channel(c, i, dst, offset);
  729. } else {
  730. on2avc_reconstruct_stereo(c, dst, offset);
  731. }
  732. return 0;
  733. }
  734. static int on2avc_decode_frame(AVCodecContext * avctx, void *data,
  735. int *got_frame_ptr, AVPacket *avpkt)
  736. {
  737. AVFrame *frame = data;
  738. const uint8_t *buf = avpkt->data;
  739. int buf_size = avpkt->size;
  740. On2AVCContext *c = avctx->priv_data;
  741. GetByteContext gb;
  742. int num_frames = 0, frame_size, audio_off;
  743. int ret;
  744. if (c->is_av500) {
  745. /* get output buffer */
  746. frame->nb_samples = ON2AVC_SUBFRAME_SIZE;
  747. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  748. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  749. return ret;
  750. }
  751. if ((ret = on2avc_decode_subframe(c, buf, buf_size, frame, 0)) < 0)
  752. return ret;
  753. } else {
  754. bytestream2_init(&gb, buf, buf_size);
  755. while (bytestream2_get_bytes_left(&gb) > 2) {
  756. frame_size = bytestream2_get_le16(&gb);
  757. if (!frame_size || frame_size > bytestream2_get_bytes_left(&gb)) {
  758. av_log(avctx, AV_LOG_ERROR, "Invalid subframe size %d\n",
  759. frame_size);
  760. return AVERROR_INVALIDDATA;
  761. }
  762. num_frames++;
  763. bytestream2_skip(&gb, frame_size);
  764. }
  765. if (!num_frames) {
  766. av_log(avctx, AV_LOG_ERROR, "No subframes present\n");
  767. return AVERROR_INVALIDDATA;
  768. }
  769. /* get output buffer */
  770. frame->nb_samples = ON2AVC_SUBFRAME_SIZE * num_frames;
  771. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  772. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  773. return ret;
  774. }
  775. audio_off = 0;
  776. bytestream2_init(&gb, buf, buf_size);
  777. while (bytestream2_get_bytes_left(&gb) > 2) {
  778. frame_size = bytestream2_get_le16(&gb);
  779. if ((ret = on2avc_decode_subframe(c, gb.buffer, frame_size,
  780. frame, audio_off)) < 0)
  781. return ret;
  782. audio_off += ON2AVC_SUBFRAME_SIZE;
  783. bytestream2_skip(&gb, frame_size);
  784. }
  785. }
  786. *got_frame_ptr = 1;
  787. return buf_size;
  788. }
  789. static av_cold void on2avc_free_vlcs(On2AVCContext *c)
  790. {
  791. int i;
  792. ff_free_vlc(&c->scale_diff);
  793. for (i = 1; i < 16; i++)
  794. ff_free_vlc(&c->cb_vlc[i]);
  795. }
  796. static av_cold int on2avc_decode_init(AVCodecContext *avctx)
  797. {
  798. On2AVCContext *c = avctx->priv_data;
  799. int i;
  800. c->avctx = avctx;
  801. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  802. avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO
  803. : AV_CH_LAYOUT_MONO;
  804. c->is_av500 = (avctx->codec_tag == 0x500);
  805. if (c->is_av500 && avctx->channels == 2) {
  806. av_log(avctx, AV_LOG_ERROR, "0x500 version should be mono\n");
  807. return AVERROR_INVALIDDATA;
  808. }
  809. if (avctx->channels > 2) {
  810. av_log(avctx, AV_LOG_ERROR, "Only 1 or 2 channels are supported.\n");
  811. return AVERROR(EINVAL);
  812. }
  813. if (avctx->channels == 2)
  814. av_log(avctx, AV_LOG_WARNING,
  815. "Stereo mode support is not good, patch is welcome\n");
  816. for (i = 0; i < 20; i++)
  817. c->scale_tab[i] = ceil(pow(10.0, i * 0.1) * 16) / 32;
  818. for (; i < 128; i++)
  819. c->scale_tab[i] = ceil(pow(10.0, i * 0.1) * 0.5);
  820. if (avctx->sample_rate < 32000 || avctx->channels == 1)
  821. memcpy(c->long_win, ff_on2avc_window_long_24000,
  822. 1024 * sizeof(*c->long_win));
  823. else
  824. memcpy(c->long_win, ff_on2avc_window_long_32000,
  825. 1024 * sizeof(*c->long_win));
  826. memcpy(c->short_win, ff_on2avc_window_short, 128 * sizeof(*c->short_win));
  827. c->modes = (avctx->sample_rate <= 40000) ? ff_on2avc_modes_40
  828. : ff_on2avc_modes_44;
  829. c->wtf = (avctx->sample_rate <= 40000) ? wtf_40
  830. : wtf_44;
  831. ff_mdct_init(&c->mdct, 11, 1, 1.0 / (32768.0 * 1024.0));
  832. ff_mdct_init(&c->mdct_half, 10, 1, 1.0 / (32768.0 * 512.0));
  833. ff_mdct_init(&c->mdct_small, 8, 1, 1.0 / (32768.0 * 128.0));
  834. ff_fft_init(&c->fft128, 6, 0);
  835. ff_fft_init(&c->fft256, 7, 0);
  836. ff_fft_init(&c->fft512, 8, 1);
  837. ff_fft_init(&c->fft1024, 9, 1);
  838. avpriv_float_dsp_init(&c->fdsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
  839. if (init_vlc(&c->scale_diff, 9, ON2AVC_SCALE_DIFFS,
  840. ff_on2avc_scale_diff_bits, 1, 1,
  841. ff_on2avc_scale_diff_codes, 4, 4, 0)) {
  842. av_log(avctx, AV_LOG_ERROR, "Cannot init VLC\n");
  843. return AVERROR(ENOMEM);
  844. }
  845. for (i = 1; i < 9; i++) {
  846. int idx = i - 1;
  847. if (ff_init_vlc_sparse(&c->cb_vlc[i], 9, ff_on2avc_quad_cb_elems[idx],
  848. ff_on2avc_quad_cb_bits[idx], 1, 1,
  849. ff_on2avc_quad_cb_codes[idx], 4, 4,
  850. ff_on2avc_quad_cb_syms[idx], 2, 2, 0)) {
  851. av_log(avctx, AV_LOG_ERROR, "Cannot init VLC\n");
  852. on2avc_free_vlcs(c);
  853. return AVERROR(ENOMEM);
  854. }
  855. }
  856. for (i = 9; i < 16; i++) {
  857. int idx = i - 9;
  858. if (ff_init_vlc_sparse(&c->cb_vlc[i], 9, ff_on2avc_pair_cb_elems[idx],
  859. ff_on2avc_pair_cb_bits[idx], 1, 1,
  860. ff_on2avc_pair_cb_codes[idx], 2, 2,
  861. ff_on2avc_pair_cb_syms[idx], 2, 2, 0)) {
  862. av_log(avctx, AV_LOG_ERROR, "Cannot init VLC\n");
  863. on2avc_free_vlcs(c);
  864. return AVERROR(ENOMEM);
  865. }
  866. }
  867. return 0;
  868. }
  869. static av_cold int on2avc_decode_close(AVCodecContext *avctx)
  870. {
  871. On2AVCContext *c = avctx->priv_data;
  872. ff_mdct_end(&c->mdct);
  873. ff_mdct_end(&c->mdct_half);
  874. ff_mdct_end(&c->mdct_small);
  875. ff_fft_end(&c->fft128);
  876. ff_fft_end(&c->fft256);
  877. ff_fft_end(&c->fft512);
  878. ff_fft_end(&c->fft1024);
  879. on2avc_free_vlcs(c);
  880. return 0;
  881. }
  882. AVCodec ff_on2avc_decoder = {
  883. .name = "on2avc",
  884. .long_name = NULL_IF_CONFIG_SMALL("On2 Audio for Video Codec"),
  885. .type = AVMEDIA_TYPE_AUDIO,
  886. .id = AV_CODEC_ID_ON2AVC,
  887. .priv_data_size = sizeof(On2AVCContext),
  888. .init = on2avc_decode_init,
  889. .decode = on2avc_decode_frame,
  890. .close = on2avc_decode_close,
  891. .capabilities = AV_CODEC_CAP_DR1,
  892. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  893. AV_SAMPLE_FMT_NONE },
  894. };