You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

422 lines
14KB

  1. /*
  2. * Nellymoser encoder
  3. * This code is developed as part of Google Summer of Code 2008 Program.
  4. *
  5. * Copyright (c) 2008 Bartlomiej Wolowiec
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * Nellymoser encoder
  26. * by Bartlomiej Wolowiec
  27. *
  28. * Generic codec information: libavcodec/nellymoserdec.c
  29. *
  30. * Some information also from: http://samples.libav.org/A-codecs/Nelly_Moser/ASAO/ASAO.zip
  31. * (Copyright Joseph Artsimovich and UAB "DKD")
  32. *
  33. * for more information about nellymoser format, visit:
  34. * http://wiki.multimedia.cx/index.php?title=Nellymoser
  35. */
  36. #include "libavutil/common.h"
  37. #include "libavutil/float_dsp.h"
  38. #include "libavutil/mathematics.h"
  39. #include "audio_frame_queue.h"
  40. #include "avcodec.h"
  41. #include "fft.h"
  42. #include "internal.h"
  43. #include "nellymoser.h"
  44. #include "sinewin.h"
  45. #define BITSTREAM_WRITER_LE
  46. #include "put_bits.h"
  47. #define POW_TABLE_SIZE (1<<11)
  48. #define POW_TABLE_OFFSET 3
  49. #define OPT_SIZE ((1<<15) + 3000)
  50. typedef struct NellyMoserEncodeContext {
  51. AVCodecContext *avctx;
  52. int last_frame;
  53. AVFloatDSPContext fdsp;
  54. FFTContext mdct_ctx;
  55. AudioFrameQueue afq;
  56. DECLARE_ALIGNED(32, float, mdct_out)[NELLY_SAMPLES];
  57. DECLARE_ALIGNED(32, float, in_buff)[NELLY_SAMPLES];
  58. DECLARE_ALIGNED(32, float, buf)[3 * NELLY_BUF_LEN]; ///< sample buffer
  59. float (*opt )[OPT_SIZE];
  60. uint8_t (*path)[OPT_SIZE];
  61. } NellyMoserEncodeContext;
  62. static float pow_table[POW_TABLE_SIZE]; ///< -pow(2, -i / 2048.0 - 3.0);
  63. static const uint8_t sf_lut[96] = {
  64. 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4,
  65. 5, 5, 5, 6, 7, 7, 8, 8, 9, 10, 11, 11, 12, 13, 13, 14,
  66. 15, 15, 16, 17, 17, 18, 19, 19, 20, 21, 22, 22, 23, 24, 25, 26,
  67. 27, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40,
  68. 41, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 52, 52, 53,
  69. 54, 55, 55, 56, 57, 57, 58, 59, 59, 60, 60, 60, 61, 61, 61, 62,
  70. };
  71. static const uint8_t sf_delta_lut[78] = {
  72. 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4,
  73. 4, 5, 5, 5, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12,
  74. 13, 13, 14, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23,
  75. 23, 24, 24, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27, 27, 28,
  76. 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 30,
  77. };
  78. static const uint8_t quant_lut[230] = {
  79. 0,
  80. 0, 1, 2,
  81. 0, 1, 2, 3, 4, 5, 6,
  82. 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11,
  83. 12, 13, 13, 13, 14,
  84. 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8,
  85. 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
  86. 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 29,
  87. 30,
  88. 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3,
  89. 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9,
  90. 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15,
  91. 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20,
  92. 21, 21, 22, 22, 23, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 32,
  93. 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 42, 43, 44, 44, 45, 45,
  94. 46, 47, 47, 48, 48, 49, 49, 50, 50, 50, 51, 51, 51, 52, 52, 52,
  95. 53, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56, 56, 57, 57, 57, 57,
  96. 58, 58, 58, 58, 59, 59, 59, 59, 60, 60, 60, 60, 60, 61, 61, 61,
  97. 61, 61, 61, 61, 62,
  98. };
  99. static const float quant_lut_mul[7] = { 0.0, 0.0, 2.0, 2.0, 5.0, 12.0, 36.6 };
  100. static const float quant_lut_add[7] = { 0.0, 0.0, 2.0, 7.0, 21.0, 56.0, 157.0 };
  101. static const uint8_t quant_lut_offset[8] = { 0, 0, 1, 4, 11, 32, 81, 230 };
  102. static void apply_mdct(NellyMoserEncodeContext *s)
  103. {
  104. float *in0 = s->buf;
  105. float *in1 = s->buf + NELLY_BUF_LEN;
  106. float *in2 = s->buf + 2 * NELLY_BUF_LEN;
  107. s->fdsp.vector_fmul (s->in_buff, in0, ff_sine_128, NELLY_BUF_LEN);
  108. s->fdsp.vector_fmul_reverse(s->in_buff + NELLY_BUF_LEN, in1, ff_sine_128, NELLY_BUF_LEN);
  109. s->mdct_ctx.mdct_calc(&s->mdct_ctx, s->mdct_out, s->in_buff);
  110. s->fdsp.vector_fmul (s->in_buff, in1, ff_sine_128, NELLY_BUF_LEN);
  111. s->fdsp.vector_fmul_reverse(s->in_buff + NELLY_BUF_LEN, in2, ff_sine_128, NELLY_BUF_LEN);
  112. s->mdct_ctx.mdct_calc(&s->mdct_ctx, s->mdct_out + NELLY_BUF_LEN, s->in_buff);
  113. }
  114. static av_cold int encode_end(AVCodecContext *avctx)
  115. {
  116. NellyMoserEncodeContext *s = avctx->priv_data;
  117. ff_mdct_end(&s->mdct_ctx);
  118. if (s->avctx->trellis) {
  119. av_free(s->opt);
  120. av_free(s->path);
  121. }
  122. ff_af_queue_close(&s->afq);
  123. return 0;
  124. }
  125. static av_cold int encode_init(AVCodecContext *avctx)
  126. {
  127. NellyMoserEncodeContext *s = avctx->priv_data;
  128. int i, ret;
  129. if (avctx->channels != 1) {
  130. av_log(avctx, AV_LOG_ERROR, "Nellymoser supports only 1 channel\n");
  131. return AVERROR(EINVAL);
  132. }
  133. if (avctx->sample_rate != 8000 && avctx->sample_rate != 16000 &&
  134. avctx->sample_rate != 11025 &&
  135. avctx->sample_rate != 22050 && avctx->sample_rate != 44100 &&
  136. avctx->strict_std_compliance >= FF_COMPLIANCE_NORMAL) {
  137. av_log(avctx, AV_LOG_ERROR, "Nellymoser works only with 8000, 16000, 11025, 22050 and 44100 sample rate\n");
  138. return AVERROR(EINVAL);
  139. }
  140. avctx->frame_size = NELLY_SAMPLES;
  141. avctx->initial_padding = NELLY_BUF_LEN;
  142. ff_af_queue_init(avctx, &s->afq);
  143. s->avctx = avctx;
  144. if ((ret = ff_mdct_init(&s->mdct_ctx, 8, 0, 32768.0)) < 0)
  145. goto error;
  146. avpriv_float_dsp_init(&s->fdsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
  147. /* Generate overlap window */
  148. ff_sine_window_init(ff_sine_128, 128);
  149. for (i = 0; i < POW_TABLE_SIZE; i++)
  150. pow_table[i] = -pow(2, -i / 2048.0 - 3.0 + POW_TABLE_OFFSET);
  151. if (s->avctx->trellis) {
  152. s->opt = av_malloc(NELLY_BANDS * OPT_SIZE * sizeof(float ));
  153. s->path = av_malloc(NELLY_BANDS * OPT_SIZE * sizeof(uint8_t));
  154. if (!s->opt || !s->path) {
  155. ret = AVERROR(ENOMEM);
  156. goto error;
  157. }
  158. }
  159. return 0;
  160. error:
  161. encode_end(avctx);
  162. return ret;
  163. }
  164. #define find_best(val, table, LUT, LUT_add, LUT_size) \
  165. best_idx = \
  166. LUT[av_clip ((lrintf(val) >> 8) + LUT_add, 0, LUT_size - 1)]; \
  167. if (fabs(val - table[best_idx]) > fabs(val - table[best_idx + 1])) \
  168. best_idx++;
  169. static void get_exponent_greedy(NellyMoserEncodeContext *s, float *cand, int *idx_table)
  170. {
  171. int band, best_idx, power_idx = 0;
  172. float power_candidate;
  173. //base exponent
  174. find_best(cand[0], ff_nelly_init_table, sf_lut, -20, 96);
  175. idx_table[0] = best_idx;
  176. power_idx = ff_nelly_init_table[best_idx];
  177. for (band = 1; band < NELLY_BANDS; band++) {
  178. power_candidate = cand[band] - power_idx;
  179. find_best(power_candidate, ff_nelly_delta_table, sf_delta_lut, 37, 78);
  180. idx_table[band] = best_idx;
  181. power_idx += ff_nelly_delta_table[best_idx];
  182. }
  183. }
  184. static inline float distance(float x, float y, int band)
  185. {
  186. //return pow(fabs(x-y), 2.0);
  187. float tmp = x - y;
  188. return tmp * tmp;
  189. }
  190. static void get_exponent_dynamic(NellyMoserEncodeContext *s, float *cand, int *idx_table)
  191. {
  192. int i, j, band, best_idx;
  193. float power_candidate, best_val;
  194. float (*opt )[OPT_SIZE] = s->opt ;
  195. uint8_t(*path)[OPT_SIZE] = s->path;
  196. for (i = 0; i < OPT_SIZE; i++) {
  197. opt[0][i] = INFINITY;
  198. }
  199. for (i = 0; i < 64; i++) {
  200. opt[0][ff_nelly_init_table[i]] = distance(cand[0], ff_nelly_init_table[i], 0);
  201. path[0][ff_nelly_init_table[i]] = i;
  202. }
  203. for (band = 1; band < NELLY_BANDS; band++) {
  204. int q, c = 0;
  205. float tmp;
  206. int idx_min, idx_max, idx;
  207. power_candidate = cand[band];
  208. for (q = 1000; !c && q < OPT_SIZE; q <<= 2) {
  209. idx_min = FFMAX(0, cand[band] - q);
  210. idx_max = FFMIN(OPT_SIZE, cand[band - 1] + q);
  211. for (i = FFMAX(0, cand[band - 1] - q); i < FFMIN(OPT_SIZE, cand[band - 1] + q); i++) {
  212. if ( isinf(opt[band - 1][i]) )
  213. continue;
  214. for (j = 0; j < 32; j++) {
  215. idx = i + ff_nelly_delta_table[j];
  216. if (idx > idx_max)
  217. break;
  218. if (idx >= idx_min) {
  219. tmp = opt[band - 1][i] + distance(idx, power_candidate, band);
  220. if (opt[band][idx] > tmp) {
  221. opt[band][idx] = tmp;
  222. path[band][idx] = j;
  223. c = 1;
  224. }
  225. }
  226. }
  227. }
  228. }
  229. assert(c); //FIXME
  230. }
  231. best_val = INFINITY;
  232. best_idx = -1;
  233. band = NELLY_BANDS - 1;
  234. for (i = 0; i < OPT_SIZE; i++) {
  235. if (best_val > opt[band][i]) {
  236. best_val = opt[band][i];
  237. best_idx = i;
  238. }
  239. }
  240. for (band = NELLY_BANDS - 1; band >= 0; band--) {
  241. idx_table[band] = path[band][best_idx];
  242. if (band) {
  243. best_idx -= ff_nelly_delta_table[path[band][best_idx]];
  244. }
  245. }
  246. }
  247. /**
  248. * Encode NELLY_SAMPLES samples. It assumes, that samples contains 3 * NELLY_BUF_LEN values
  249. * @param s encoder context
  250. * @param output output buffer
  251. * @param output_size size of output buffer
  252. */
  253. static void encode_block(NellyMoserEncodeContext *s, unsigned char *output, int output_size)
  254. {
  255. PutBitContext pb;
  256. int i, j, band, block, best_idx, power_idx = 0;
  257. float power_val, coeff, coeff_sum;
  258. float pows[NELLY_FILL_LEN];
  259. int bits[NELLY_BUF_LEN], idx_table[NELLY_BANDS];
  260. float cand[NELLY_BANDS];
  261. apply_mdct(s);
  262. init_put_bits(&pb, output, output_size * 8);
  263. i = 0;
  264. for (band = 0; band < NELLY_BANDS; band++) {
  265. coeff_sum = 0;
  266. for (j = 0; j < ff_nelly_band_sizes_table[band]; i++, j++) {
  267. coeff_sum += s->mdct_out[i ] * s->mdct_out[i ]
  268. + s->mdct_out[i + NELLY_BUF_LEN] * s->mdct_out[i + NELLY_BUF_LEN];
  269. }
  270. cand[band] =
  271. log(FFMAX(1.0, coeff_sum / (ff_nelly_band_sizes_table[band] << 7))) * 1024.0 / M_LN2;
  272. }
  273. if (s->avctx->trellis) {
  274. get_exponent_dynamic(s, cand, idx_table);
  275. } else {
  276. get_exponent_greedy(s, cand, idx_table);
  277. }
  278. i = 0;
  279. for (band = 0; band < NELLY_BANDS; band++) {
  280. if (band) {
  281. power_idx += ff_nelly_delta_table[idx_table[band]];
  282. put_bits(&pb, 5, idx_table[band]);
  283. } else {
  284. power_idx = ff_nelly_init_table[idx_table[0]];
  285. put_bits(&pb, 6, idx_table[0]);
  286. }
  287. power_val = pow_table[power_idx & 0x7FF] / (1 << ((power_idx >> 11) + POW_TABLE_OFFSET));
  288. for (j = 0; j < ff_nelly_band_sizes_table[band]; i++, j++) {
  289. s->mdct_out[i] *= power_val;
  290. s->mdct_out[i + NELLY_BUF_LEN] *= power_val;
  291. pows[i] = power_idx;
  292. }
  293. }
  294. ff_nelly_get_sample_bits(pows, bits);
  295. for (block = 0; block < 2; block++) {
  296. for (i = 0; i < NELLY_FILL_LEN; i++) {
  297. if (bits[i] > 0) {
  298. const float *table = ff_nelly_dequantization_table + (1 << bits[i]) - 1;
  299. coeff = s->mdct_out[block * NELLY_BUF_LEN + i];
  300. best_idx =
  301. quant_lut[av_clip (
  302. coeff * quant_lut_mul[bits[i]] + quant_lut_add[bits[i]],
  303. quant_lut_offset[bits[i]],
  304. quant_lut_offset[bits[i]+1] - 1
  305. )];
  306. if (fabs(coeff - table[best_idx]) > fabs(coeff - table[best_idx + 1]))
  307. best_idx++;
  308. put_bits(&pb, bits[i], best_idx);
  309. }
  310. }
  311. if (!block)
  312. put_bits(&pb, NELLY_HEADER_BITS + NELLY_DETAIL_BITS - put_bits_count(&pb), 0);
  313. }
  314. flush_put_bits(&pb);
  315. memset(put_bits_ptr(&pb), 0, output + output_size - put_bits_ptr(&pb));
  316. }
  317. static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  318. const AVFrame *frame, int *got_packet_ptr)
  319. {
  320. NellyMoserEncodeContext *s = avctx->priv_data;
  321. int ret;
  322. if (s->last_frame)
  323. return 0;
  324. memcpy(s->buf, s->buf + NELLY_SAMPLES, NELLY_BUF_LEN * sizeof(*s->buf));
  325. if (frame) {
  326. memcpy(s->buf + NELLY_BUF_LEN, frame->data[0],
  327. frame->nb_samples * sizeof(*s->buf));
  328. if (frame->nb_samples < NELLY_SAMPLES) {
  329. memset(s->buf + NELLY_BUF_LEN + frame->nb_samples, 0,
  330. (NELLY_SAMPLES - frame->nb_samples) * sizeof(*s->buf));
  331. if (frame->nb_samples >= NELLY_BUF_LEN)
  332. s->last_frame = 1;
  333. }
  334. if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
  335. return ret;
  336. } else {
  337. memset(s->buf + NELLY_BUF_LEN, 0, NELLY_SAMPLES * sizeof(*s->buf));
  338. s->last_frame = 1;
  339. }
  340. if ((ret = ff_alloc_packet(avpkt, NELLY_BLOCK_LEN))) {
  341. av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
  342. return ret;
  343. }
  344. encode_block(s, avpkt->data, avpkt->size);
  345. /* Get the next frame pts/duration */
  346. ff_af_queue_remove(&s->afq, avctx->frame_size, &avpkt->pts,
  347. &avpkt->duration);
  348. *got_packet_ptr = 1;
  349. return 0;
  350. }
  351. AVCodec ff_nellymoser_encoder = {
  352. .name = "nellymoser",
  353. .long_name = NULL_IF_CONFIG_SMALL("Nellymoser Asao"),
  354. .type = AVMEDIA_TYPE_AUDIO,
  355. .id = AV_CODEC_ID_NELLYMOSER,
  356. .priv_data_size = sizeof(NellyMoserEncodeContext),
  357. .init = encode_init,
  358. .encode2 = encode_frame,
  359. .close = encode_end,
  360. .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY,
  361. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  362. AV_SAMPLE_FMT_NONE },
  363. };