You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

768 lines
23KB

  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000, 2001 Fabrice Bellard
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * The simplest mpeg audio layer 2 encoder.
  24. */
  25. #include "libavutil/channel_layout.h"
  26. #include "avcodec.h"
  27. #include "internal.h"
  28. #include "put_bits.h"
  29. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  30. #define WFRAC_BITS 14 /* fractional bits for window */
  31. #include "mpegaudio.h"
  32. #include "mpegaudiodsp.h"
  33. #include "mpegaudiodata.h"
  34. #include "mpegaudiotab.h"
  35. /* currently, cannot change these constants (need to modify
  36. quantization stage) */
  37. #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  38. #define SAMPLES_BUF_SIZE 4096
  39. typedef struct MpegAudioContext {
  40. PutBitContext pb;
  41. int nb_channels;
  42. int lsf; /* 1 if mpeg2 low bitrate selected */
  43. int bitrate_index; /* bit rate */
  44. int freq_index;
  45. int frame_size; /* frame size, in bits, without padding */
  46. /* padding computation */
  47. int frame_frac, frame_frac_incr, do_padding;
  48. short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
  49. int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
  50. int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
  51. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
  52. /* code to group 3 scale factors */
  53. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  54. int sblimit; /* number of used subbands */
  55. const unsigned char *alloc_table;
  56. int16_t filter_bank[512];
  57. int scale_factor_table[64];
  58. unsigned char scale_diff_table[128];
  59. float scale_factor_inv_table[64];
  60. unsigned short total_quant_bits[17]; /* total number of bits per allocation group */
  61. } MpegAudioContext;
  62. static av_cold int MPA_encode_init(AVCodecContext *avctx)
  63. {
  64. MpegAudioContext *s = avctx->priv_data;
  65. int freq = avctx->sample_rate;
  66. int bitrate = avctx->bit_rate;
  67. int channels = avctx->channels;
  68. int i, v, table;
  69. float a;
  70. if (channels <= 0 || channels > 2){
  71. av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
  72. return AVERROR(EINVAL);
  73. }
  74. bitrate = bitrate / 1000;
  75. s->nb_channels = channels;
  76. avctx->frame_size = MPA_FRAME_SIZE;
  77. avctx->initial_padding = 512 - 32 + 1;
  78. /* encoding freq */
  79. s->lsf = 0;
  80. for(i=0;i<3;i++) {
  81. if (avpriv_mpa_freq_tab[i] == freq)
  82. break;
  83. if ((avpriv_mpa_freq_tab[i] / 2) == freq) {
  84. s->lsf = 1;
  85. break;
  86. }
  87. }
  88. if (i == 3){
  89. av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
  90. return AVERROR(EINVAL);
  91. }
  92. s->freq_index = i;
  93. /* encoding bitrate & frequency */
  94. for(i=0;i<15;i++) {
  95. if (avpriv_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
  96. break;
  97. }
  98. if (i == 15){
  99. av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
  100. return AVERROR(EINVAL);
  101. }
  102. s->bitrate_index = i;
  103. /* compute total header size & pad bit */
  104. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  105. s->frame_size = ((int)a) * 8;
  106. /* frame fractional size to compute padding */
  107. s->frame_frac = 0;
  108. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  109. /* select the right allocation table */
  110. table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
  111. /* number of used subbands */
  112. s->sblimit = ff_mpa_sblimit_table[table];
  113. s->alloc_table = ff_mpa_alloc_tables[table];
  114. ff_dlog(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  115. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  116. for(i=0;i<s->nb_channels;i++)
  117. s->samples_offset[i] = 0;
  118. for(i=0;i<257;i++) {
  119. int v;
  120. v = ff_mpa_enwindow[i];
  121. #if WFRAC_BITS != 16
  122. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  123. #endif
  124. s->filter_bank[i] = v;
  125. if ((i & 63) != 0)
  126. v = -v;
  127. if (i != 0)
  128. s->filter_bank[512 - i] = v;
  129. }
  130. for(i=0;i<64;i++) {
  131. v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
  132. if (v <= 0)
  133. v = 1;
  134. s->scale_factor_table[i] = v;
  135. s->scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
  136. }
  137. for(i=0;i<128;i++) {
  138. v = i - 64;
  139. if (v <= -3)
  140. v = 0;
  141. else if (v < 0)
  142. v = 1;
  143. else if (v == 0)
  144. v = 2;
  145. else if (v < 3)
  146. v = 3;
  147. else
  148. v = 4;
  149. s->scale_diff_table[i] = v;
  150. }
  151. for(i=0;i<17;i++) {
  152. v = ff_mpa_quant_bits[i];
  153. if (v < 0)
  154. v = -v;
  155. else
  156. v = v * 3;
  157. s->total_quant_bits[i] = 12 * v;
  158. }
  159. return 0;
  160. }
  161. /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
  162. static void idct32(int *out, int *tab)
  163. {
  164. int i, j;
  165. int *t, *t1, xr;
  166. const int *xp = costab32;
  167. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  168. t = tab + 30;
  169. t1 = tab + 2;
  170. do {
  171. t[0] += t[-4];
  172. t[1] += t[1 - 4];
  173. t -= 4;
  174. } while (t != t1);
  175. t = tab + 28;
  176. t1 = tab + 4;
  177. do {
  178. t[0] += t[-8];
  179. t[1] += t[1-8];
  180. t[2] += t[2-8];
  181. t[3] += t[3-8];
  182. t -= 8;
  183. } while (t != t1);
  184. t = tab;
  185. t1 = tab + 32;
  186. do {
  187. t[ 3] = -t[ 3];
  188. t[ 6] = -t[ 6];
  189. t[11] = -t[11];
  190. t[12] = -t[12];
  191. t[13] = -t[13];
  192. t[15] = -t[15];
  193. t += 16;
  194. } while (t != t1);
  195. t = tab;
  196. t1 = tab + 8;
  197. do {
  198. int x1, x2, x3, x4;
  199. x3 = MUL(t[16], FIX(SQRT2*0.5));
  200. x4 = t[0] - x3;
  201. x3 = t[0] + x3;
  202. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  203. x1 = MUL((t[8] - x2), xp[0]);
  204. x2 = MUL((t[8] + x2), xp[1]);
  205. t[ 0] = x3 + x1;
  206. t[ 8] = x4 - x2;
  207. t[16] = x4 + x2;
  208. t[24] = x3 - x1;
  209. t++;
  210. } while (t != t1);
  211. xp += 2;
  212. t = tab;
  213. t1 = tab + 4;
  214. do {
  215. xr = MUL(t[28],xp[0]);
  216. t[28] = (t[0] - xr);
  217. t[0] = (t[0] + xr);
  218. xr = MUL(t[4],xp[1]);
  219. t[ 4] = (t[24] - xr);
  220. t[24] = (t[24] + xr);
  221. xr = MUL(t[20],xp[2]);
  222. t[20] = (t[8] - xr);
  223. t[ 8] = (t[8] + xr);
  224. xr = MUL(t[12],xp[3]);
  225. t[12] = (t[16] - xr);
  226. t[16] = (t[16] + xr);
  227. t++;
  228. } while (t != t1);
  229. xp += 4;
  230. for (i = 0; i < 4; i++) {
  231. xr = MUL(tab[30-i*4],xp[0]);
  232. tab[30-i*4] = (tab[i*4] - xr);
  233. tab[ i*4] = (tab[i*4] + xr);
  234. xr = MUL(tab[ 2+i*4],xp[1]);
  235. tab[ 2+i*4] = (tab[28-i*4] - xr);
  236. tab[28-i*4] = (tab[28-i*4] + xr);
  237. xr = MUL(tab[31-i*4],xp[0]);
  238. tab[31-i*4] = (tab[1+i*4] - xr);
  239. tab[ 1+i*4] = (tab[1+i*4] + xr);
  240. xr = MUL(tab[ 3+i*4],xp[1]);
  241. tab[ 3+i*4] = (tab[29-i*4] - xr);
  242. tab[29-i*4] = (tab[29-i*4] + xr);
  243. xp += 2;
  244. }
  245. t = tab + 30;
  246. t1 = tab + 1;
  247. do {
  248. xr = MUL(t1[0], *xp);
  249. t1[0] = (t[0] - xr);
  250. t[0] = (t[0] + xr);
  251. t -= 2;
  252. t1 += 2;
  253. xp++;
  254. } while (t >= tab);
  255. for(i=0;i<32;i++) {
  256. out[i] = tab[bitinv32[i]];
  257. }
  258. }
  259. #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
  260. static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
  261. {
  262. short *p, *q;
  263. int sum, offset, i, j;
  264. int tmp[64];
  265. int tmp1[32];
  266. int *out;
  267. offset = s->samples_offset[ch];
  268. out = &s->sb_samples[ch][0][0][0];
  269. for(j=0;j<36;j++) {
  270. /* 32 samples at once */
  271. for(i=0;i<32;i++) {
  272. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  273. samples += incr;
  274. }
  275. /* filter */
  276. p = s->samples_buf[ch] + offset;
  277. q = s->filter_bank;
  278. /* maxsum = 23169 */
  279. for(i=0;i<64;i++) {
  280. sum = p[0*64] * q[0*64];
  281. sum += p[1*64] * q[1*64];
  282. sum += p[2*64] * q[2*64];
  283. sum += p[3*64] * q[3*64];
  284. sum += p[4*64] * q[4*64];
  285. sum += p[5*64] * q[5*64];
  286. sum += p[6*64] * q[6*64];
  287. sum += p[7*64] * q[7*64];
  288. tmp[i] = sum;
  289. p++;
  290. q++;
  291. }
  292. tmp1[0] = tmp[16] >> WSHIFT;
  293. for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
  294. for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
  295. idct32(out, tmp1);
  296. /* advance of 32 samples */
  297. offset -= 32;
  298. out += 32;
  299. /* handle the wrap around */
  300. if (offset < 0) {
  301. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  302. s->samples_buf[ch], (512 - 32) * 2);
  303. offset = SAMPLES_BUF_SIZE - 512;
  304. }
  305. }
  306. s->samples_offset[ch] = offset;
  307. }
  308. static void compute_scale_factors(MpegAudioContext *s,
  309. unsigned char scale_code[SBLIMIT],
  310. unsigned char scale_factors[SBLIMIT][3],
  311. int sb_samples[3][12][SBLIMIT],
  312. int sblimit)
  313. {
  314. int *p, vmax, v, n, i, j, k, code;
  315. int index, d1, d2;
  316. unsigned char *sf = &scale_factors[0][0];
  317. for(j=0;j<sblimit;j++) {
  318. for(i=0;i<3;i++) {
  319. /* find the max absolute value */
  320. p = &sb_samples[i][0][j];
  321. vmax = abs(*p);
  322. for(k=1;k<12;k++) {
  323. p += SBLIMIT;
  324. v = abs(*p);
  325. if (v > vmax)
  326. vmax = v;
  327. }
  328. /* compute the scale factor index using log 2 computations */
  329. if (vmax > 1) {
  330. n = av_log2(vmax);
  331. /* n is the position of the MSB of vmax. now
  332. use at most 2 compares to find the index */
  333. index = (21 - n) * 3 - 3;
  334. if (index >= 0) {
  335. while (vmax <= s->scale_factor_table[index+1])
  336. index++;
  337. } else {
  338. index = 0; /* very unlikely case of overflow */
  339. }
  340. } else {
  341. index = 62; /* value 63 is not allowed */
  342. }
  343. ff_dlog(NULL, "%2d:%d in=%x %x %d\n",
  344. j, i, vmax, s->scale_factor_table[index], index);
  345. /* store the scale factor */
  346. assert(index >=0 && index <= 63);
  347. sf[i] = index;
  348. }
  349. /* compute the transmission factor : look if the scale factors
  350. are close enough to each other */
  351. d1 = s->scale_diff_table[sf[0] - sf[1] + 64];
  352. d2 = s->scale_diff_table[sf[1] - sf[2] + 64];
  353. /* handle the 25 cases */
  354. switch(d1 * 5 + d2) {
  355. case 0*5+0:
  356. case 0*5+4:
  357. case 3*5+4:
  358. case 4*5+0:
  359. case 4*5+4:
  360. code = 0;
  361. break;
  362. case 0*5+1:
  363. case 0*5+2:
  364. case 4*5+1:
  365. case 4*5+2:
  366. code = 3;
  367. sf[2] = sf[1];
  368. break;
  369. case 0*5+3:
  370. case 4*5+3:
  371. code = 3;
  372. sf[1] = sf[2];
  373. break;
  374. case 1*5+0:
  375. case 1*5+4:
  376. case 2*5+4:
  377. code = 1;
  378. sf[1] = sf[0];
  379. break;
  380. case 1*5+1:
  381. case 1*5+2:
  382. case 2*5+0:
  383. case 2*5+1:
  384. case 2*5+2:
  385. code = 2;
  386. sf[1] = sf[2] = sf[0];
  387. break;
  388. case 2*5+3:
  389. case 3*5+3:
  390. code = 2;
  391. sf[0] = sf[1] = sf[2];
  392. break;
  393. case 3*5+0:
  394. case 3*5+1:
  395. case 3*5+2:
  396. code = 2;
  397. sf[0] = sf[2] = sf[1];
  398. break;
  399. case 1*5+3:
  400. code = 2;
  401. if (sf[0] > sf[2])
  402. sf[0] = sf[2];
  403. sf[1] = sf[2] = sf[0];
  404. break;
  405. default:
  406. assert(0); //cannot happen
  407. code = 0; /* kill warning */
  408. }
  409. ff_dlog(NULL, "%d: %2d %2d %2d %d %d -> %d\n", j,
  410. sf[0], sf[1], sf[2], d1, d2, code);
  411. scale_code[j] = code;
  412. sf += 3;
  413. }
  414. }
  415. /* The most important function : psycho acoustic module. In this
  416. encoder there is basically none, so this is the worst you can do,
  417. but also this is the simpler. */
  418. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  419. {
  420. int i;
  421. for(i=0;i<s->sblimit;i++) {
  422. smr[i] = (int)(fixed_smr[i] * 10);
  423. }
  424. }
  425. #define SB_NOTALLOCATED 0
  426. #define SB_ALLOCATED 1
  427. #define SB_NOMORE 2
  428. /* Try to maximize the smr while using a number of bits inferior to
  429. the frame size. I tried to make the code simpler, faster and
  430. smaller than other encoders :-) */
  431. static void compute_bit_allocation(MpegAudioContext *s,
  432. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  433. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  434. int *padding)
  435. {
  436. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  437. int incr;
  438. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  439. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  440. const unsigned char *alloc;
  441. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  442. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  443. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  444. /* compute frame size and padding */
  445. max_frame_size = s->frame_size;
  446. s->frame_frac += s->frame_frac_incr;
  447. if (s->frame_frac >= 65536) {
  448. s->frame_frac -= 65536;
  449. s->do_padding = 1;
  450. max_frame_size += 8;
  451. } else {
  452. s->do_padding = 0;
  453. }
  454. /* compute the header + bit alloc size */
  455. current_frame_size = 32;
  456. alloc = s->alloc_table;
  457. for(i=0;i<s->sblimit;i++) {
  458. incr = alloc[0];
  459. current_frame_size += incr * s->nb_channels;
  460. alloc += 1 << incr;
  461. }
  462. for(;;) {
  463. /* look for the subband with the largest signal to mask ratio */
  464. max_sb = -1;
  465. max_ch = -1;
  466. max_smr = INT_MIN;
  467. for(ch=0;ch<s->nb_channels;ch++) {
  468. for(i=0;i<s->sblimit;i++) {
  469. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  470. max_smr = smr[ch][i];
  471. max_sb = i;
  472. max_ch = ch;
  473. }
  474. }
  475. }
  476. if (max_sb < 0)
  477. break;
  478. ff_dlog(NULL, "current=%d max=%d max_sb=%d max_ch=%d alloc=%d\n",
  479. current_frame_size, max_frame_size, max_sb, max_ch,
  480. bit_alloc[max_ch][max_sb]);
  481. /* find alloc table entry (XXX: not optimal, should use
  482. pointer table) */
  483. alloc = s->alloc_table;
  484. for(i=0;i<max_sb;i++) {
  485. alloc += 1 << alloc[0];
  486. }
  487. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  488. /* nothing was coded for this band: add the necessary bits */
  489. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  490. incr += s->total_quant_bits[alloc[1]];
  491. } else {
  492. /* increments bit allocation */
  493. b = bit_alloc[max_ch][max_sb];
  494. incr = s->total_quant_bits[alloc[b + 1]] -
  495. s->total_quant_bits[alloc[b]];
  496. }
  497. if (current_frame_size + incr <= max_frame_size) {
  498. /* can increase size */
  499. b = ++bit_alloc[max_ch][max_sb];
  500. current_frame_size += incr;
  501. /* decrease smr by the resolution we added */
  502. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  503. /* max allocation size reached ? */
  504. if (b == ((1 << alloc[0]) - 1))
  505. subband_status[max_ch][max_sb] = SB_NOMORE;
  506. else
  507. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  508. } else {
  509. /* cannot increase the size of this subband */
  510. subband_status[max_ch][max_sb] = SB_NOMORE;
  511. }
  512. }
  513. *padding = max_frame_size - current_frame_size;
  514. assert(*padding >= 0);
  515. }
  516. /*
  517. * Output the MPEG audio layer 2 frame. Note how the code is small
  518. * compared to other encoders :-)
  519. */
  520. static void encode_frame(MpegAudioContext *s,
  521. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  522. int padding)
  523. {
  524. int i, j, k, l, bit_alloc_bits, b, ch;
  525. unsigned char *sf;
  526. int q[3];
  527. PutBitContext *p = &s->pb;
  528. /* header */
  529. put_bits(p, 12, 0xfff);
  530. put_bits(p, 1, 1 - s->lsf); /* 1 = MPEG-1 ID, 0 = MPEG-2 lsf ID */
  531. put_bits(p, 2, 4-2); /* layer 2 */
  532. put_bits(p, 1, 1); /* no error protection */
  533. put_bits(p, 4, s->bitrate_index);
  534. put_bits(p, 2, s->freq_index);
  535. put_bits(p, 1, s->do_padding); /* use padding */
  536. put_bits(p, 1, 0); /* private_bit */
  537. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  538. put_bits(p, 2, 0); /* mode_ext */
  539. put_bits(p, 1, 0); /* no copyright */
  540. put_bits(p, 1, 1); /* original */
  541. put_bits(p, 2, 0); /* no emphasis */
  542. /* bit allocation */
  543. j = 0;
  544. for(i=0;i<s->sblimit;i++) {
  545. bit_alloc_bits = s->alloc_table[j];
  546. for(ch=0;ch<s->nb_channels;ch++) {
  547. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  548. }
  549. j += 1 << bit_alloc_bits;
  550. }
  551. /* scale codes */
  552. for(i=0;i<s->sblimit;i++) {
  553. for(ch=0;ch<s->nb_channels;ch++) {
  554. if (bit_alloc[ch][i])
  555. put_bits(p, 2, s->scale_code[ch][i]);
  556. }
  557. }
  558. /* scale factors */
  559. for(i=0;i<s->sblimit;i++) {
  560. for(ch=0;ch<s->nb_channels;ch++) {
  561. if (bit_alloc[ch][i]) {
  562. sf = &s->scale_factors[ch][i][0];
  563. switch(s->scale_code[ch][i]) {
  564. case 0:
  565. put_bits(p, 6, sf[0]);
  566. put_bits(p, 6, sf[1]);
  567. put_bits(p, 6, sf[2]);
  568. break;
  569. case 3:
  570. case 1:
  571. put_bits(p, 6, sf[0]);
  572. put_bits(p, 6, sf[2]);
  573. break;
  574. case 2:
  575. put_bits(p, 6, sf[0]);
  576. break;
  577. }
  578. }
  579. }
  580. }
  581. /* quantization & write sub band samples */
  582. for(k=0;k<3;k++) {
  583. for(l=0;l<12;l+=3) {
  584. j = 0;
  585. for(i=0;i<s->sblimit;i++) {
  586. bit_alloc_bits = s->alloc_table[j];
  587. for(ch=0;ch<s->nb_channels;ch++) {
  588. b = bit_alloc[ch][i];
  589. if (b) {
  590. int qindex, steps, m, sample, bits;
  591. /* we encode 3 sub band samples of the same sub band at a time */
  592. qindex = s->alloc_table[j+b];
  593. steps = ff_mpa_quant_steps[qindex];
  594. for(m=0;m<3;m++) {
  595. float a;
  596. sample = s->sb_samples[ch][k][l + m][i];
  597. /* divide by scale factor */
  598. a = (float)sample * s->scale_factor_inv_table[s->scale_factors[ch][i][k]];
  599. q[m] = (int)((a + 1.0) * steps * 0.5);
  600. if (q[m] >= steps)
  601. q[m] = steps - 1;
  602. assert(q[m] >= 0 && q[m] < steps);
  603. }
  604. bits = ff_mpa_quant_bits[qindex];
  605. if (bits < 0) {
  606. /* group the 3 values to save bits */
  607. put_bits(p, -bits,
  608. q[0] + steps * (q[1] + steps * q[2]));
  609. } else {
  610. put_bits(p, bits, q[0]);
  611. put_bits(p, bits, q[1]);
  612. put_bits(p, bits, q[2]);
  613. }
  614. }
  615. }
  616. /* next subband in alloc table */
  617. j += 1 << bit_alloc_bits;
  618. }
  619. }
  620. }
  621. /* padding */
  622. for(i=0;i<padding;i++)
  623. put_bits(p, 1, 0);
  624. /* flush */
  625. flush_put_bits(p);
  626. }
  627. static int MPA_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  628. const AVFrame *frame, int *got_packet_ptr)
  629. {
  630. MpegAudioContext *s = avctx->priv_data;
  631. const int16_t *samples = (const int16_t *)frame->data[0];
  632. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  633. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  634. int padding, i, ret;
  635. for(i=0;i<s->nb_channels;i++) {
  636. filter(s, i, samples + i, s->nb_channels);
  637. }
  638. for(i=0;i<s->nb_channels;i++) {
  639. compute_scale_factors(s, s->scale_code[i], s->scale_factors[i],
  640. s->sb_samples[i], s->sblimit);
  641. }
  642. for(i=0;i<s->nb_channels;i++) {
  643. psycho_acoustic_model(s, smr[i]);
  644. }
  645. compute_bit_allocation(s, smr, bit_alloc, &padding);
  646. if ((ret = ff_alloc_packet(avpkt, MPA_MAX_CODED_FRAME_SIZE))) {
  647. av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
  648. return ret;
  649. }
  650. init_put_bits(&s->pb, avpkt->data, avpkt->size);
  651. encode_frame(s, bit_alloc, padding);
  652. if (frame->pts != AV_NOPTS_VALUE)
  653. avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding);
  654. avpkt->size = put_bits_count(&s->pb) / 8;
  655. *got_packet_ptr = 1;
  656. return 0;
  657. }
  658. static const AVCodecDefault mp2_defaults[] = {
  659. { "b", "384000" },
  660. { NULL },
  661. };
  662. AVCodec ff_mp2_encoder = {
  663. .name = "mp2",
  664. .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  665. .type = AVMEDIA_TYPE_AUDIO,
  666. .id = AV_CODEC_ID_MP2,
  667. .priv_data_size = sizeof(MpegAudioContext),
  668. .init = MPA_encode_init,
  669. .encode2 = MPA_encode_frame,
  670. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
  671. AV_SAMPLE_FMT_NONE },
  672. .supported_samplerates = (const int[]){
  673. 44100, 48000, 32000, 22050, 24000, 16000, 0
  674. },
  675. .channel_layouts = (const uint64_t[]){ AV_CH_LAYOUT_MONO,
  676. AV_CH_LAYOUT_STEREO,
  677. 0 },
  678. .defaults = mp2_defaults,
  679. };