You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

327 lines
10KB

  1. /*
  2. * MPEG-1/2 decoder
  3. * Copyright (c) 2000, 2001 Fabrice Bellard
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * MPEG-1/2 decoder
  25. */
  26. #include "libavutil/attributes.h"
  27. #include "internal.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "error_resilience.h"
  31. #include "mpeg12.h"
  32. #include "mpeg12data.h"
  33. #include "mpegvideodata.h"
  34. #include "bytestream.h"
  35. #include "thread.h"
  36. uint8_t ff_mpeg12_static_rl_table_store[2][2][2*MAX_RUN + MAX_LEVEL + 3];
  37. static const uint8_t table_mb_ptype[7][2] = {
  38. { 3, 5 }, // 0x01 MB_INTRA
  39. { 1, 2 }, // 0x02 MB_PAT
  40. { 1, 3 }, // 0x08 MB_FOR
  41. { 1, 1 }, // 0x0A MB_FOR|MB_PAT
  42. { 1, 6 }, // 0x11 MB_QUANT|MB_INTRA
  43. { 1, 5 }, // 0x12 MB_QUANT|MB_PAT
  44. { 2, 5 }, // 0x1A MB_QUANT|MB_FOR|MB_PAT
  45. };
  46. static const uint8_t table_mb_btype[11][2] = {
  47. { 3, 5 }, // 0x01 MB_INTRA
  48. { 2, 3 }, // 0x04 MB_BACK
  49. { 3, 3 }, // 0x06 MB_BACK|MB_PAT
  50. { 2, 4 }, // 0x08 MB_FOR
  51. { 3, 4 }, // 0x0A MB_FOR|MB_PAT
  52. { 2, 2 }, // 0x0C MB_FOR|MB_BACK
  53. { 3, 2 }, // 0x0E MB_FOR|MB_BACK|MB_PAT
  54. { 1, 6 }, // 0x11 MB_QUANT|MB_INTRA
  55. { 2, 6 }, // 0x16 MB_QUANT|MB_BACK|MB_PAT
  56. { 3, 6 }, // 0x1A MB_QUANT|MB_FOR|MB_PAT
  57. { 2, 5 }, // 0x1E MB_QUANT|MB_FOR|MB_BACK|MB_PAT
  58. };
  59. #define INIT_2D_VLC_RL(rl, static_size)\
  60. {\
  61. static RL_VLC_ELEM rl_vlc_table[static_size];\
  62. INIT_VLC_STATIC(&rl.vlc, TEX_VLC_BITS, rl.n + 2,\
  63. &rl.table_vlc[0][1], 4, 2,\
  64. &rl.table_vlc[0][0], 4, 2, static_size);\
  65. \
  66. rl.rl_vlc[0] = rl_vlc_table;\
  67. init_2d_vlc_rl(&rl);\
  68. }
  69. static av_cold void init_2d_vlc_rl(RLTable *rl)
  70. {
  71. int i;
  72. for (i = 0; i < rl->vlc.table_size; i++) {
  73. int code = rl->vlc.table[i][0];
  74. int len = rl->vlc.table[i][1];
  75. int level, run;
  76. if (len == 0) { // illegal code
  77. run = 65;
  78. level = MAX_LEVEL;
  79. } else if (len<0) { //more bits needed
  80. run = 0;
  81. level = code;
  82. } else {
  83. if (code == rl->n) { //esc
  84. run = 65;
  85. level = 0;
  86. } else if (code == rl->n+1) { //eob
  87. run = 0;
  88. level = 127;
  89. } else {
  90. run = rl->table_run [code] + 1;
  91. level = rl->table_level[code];
  92. }
  93. }
  94. rl->rl_vlc[0][i].len = len;
  95. rl->rl_vlc[0][i].level = level;
  96. rl->rl_vlc[0][i].run = run;
  97. }
  98. }
  99. av_cold void ff_mpeg12_common_init(MpegEncContext *s)
  100. {
  101. s->y_dc_scale_table =
  102. s->c_dc_scale_table = ff_mpeg2_dc_scale_table[s->intra_dc_precision];
  103. }
  104. void ff_mpeg1_clean_buffers(MpegEncContext *s)
  105. {
  106. s->last_dc[0] = 1 << (7 + s->intra_dc_precision);
  107. s->last_dc[1] = s->last_dc[0];
  108. s->last_dc[2] = s->last_dc[0];
  109. memset(s->last_mv, 0, sizeof(s->last_mv));
  110. }
  111. /******************************************/
  112. /* decoding */
  113. VLC ff_mv_vlc;
  114. VLC ff_dc_lum_vlc;
  115. VLC ff_dc_chroma_vlc;
  116. VLC ff_mbincr_vlc;
  117. VLC ff_mb_ptype_vlc;
  118. VLC ff_mb_btype_vlc;
  119. VLC ff_mb_pat_vlc;
  120. av_cold void ff_mpeg12_init_vlcs(void)
  121. {
  122. static int done = 0;
  123. if (!done) {
  124. done = 1;
  125. INIT_VLC_STATIC(&ff_dc_lum_vlc, DC_VLC_BITS, 12,
  126. ff_mpeg12_vlc_dc_lum_bits, 1, 1,
  127. ff_mpeg12_vlc_dc_lum_code, 2, 2, 512);
  128. INIT_VLC_STATIC(&ff_dc_chroma_vlc, DC_VLC_BITS, 12,
  129. ff_mpeg12_vlc_dc_chroma_bits, 1, 1,
  130. ff_mpeg12_vlc_dc_chroma_code, 2, 2, 514);
  131. INIT_VLC_STATIC(&ff_mv_vlc, MV_VLC_BITS, 17,
  132. &ff_mpeg12_mbMotionVectorTable[0][1], 2, 1,
  133. &ff_mpeg12_mbMotionVectorTable[0][0], 2, 1, 518);
  134. INIT_VLC_STATIC(&ff_mbincr_vlc, MBINCR_VLC_BITS, 36,
  135. &ff_mpeg12_mbAddrIncrTable[0][1], 2, 1,
  136. &ff_mpeg12_mbAddrIncrTable[0][0], 2, 1, 538);
  137. INIT_VLC_STATIC(&ff_mb_pat_vlc, MB_PAT_VLC_BITS, 64,
  138. &ff_mpeg12_mbPatTable[0][1], 2, 1,
  139. &ff_mpeg12_mbPatTable[0][0], 2, 1, 512);
  140. INIT_VLC_STATIC(&ff_mb_ptype_vlc, MB_PTYPE_VLC_BITS, 7,
  141. &table_mb_ptype[0][1], 2, 1,
  142. &table_mb_ptype[0][0], 2, 1, 64);
  143. INIT_VLC_STATIC(&ff_mb_btype_vlc, MB_BTYPE_VLC_BITS, 11,
  144. &table_mb_btype[0][1], 2, 1,
  145. &table_mb_btype[0][0], 2, 1, 64);
  146. ff_rl_init(&ff_rl_mpeg1, ff_mpeg12_static_rl_table_store[0]);
  147. ff_rl_init(&ff_rl_mpeg2, ff_mpeg12_static_rl_table_store[1]);
  148. INIT_2D_VLC_RL(ff_rl_mpeg1, 680);
  149. INIT_2D_VLC_RL(ff_rl_mpeg2, 674);
  150. }
  151. }
  152. /**
  153. * Find the end of the current frame in the bitstream.
  154. * @return the position of the first byte of the next frame, or -1
  155. */
  156. int ff_mpeg1_find_frame_end(ParseContext *pc, const uint8_t *buf, int buf_size, AVCodecParserContext *s)
  157. {
  158. int i;
  159. uint32_t state = pc->state;
  160. /* EOF considered as end of frame */
  161. if (buf_size == 0)
  162. return 0;
  163. /*
  164. 0 frame start -> 1/4
  165. 1 first_SEQEXT -> 0/2
  166. 2 first field start -> 3/0
  167. 3 second_SEQEXT -> 2/0
  168. 4 searching end
  169. */
  170. for (i = 0; i < buf_size; i++) {
  171. assert(pc->frame_start_found >= 0 && pc->frame_start_found <= 4);
  172. if (pc->frame_start_found & 1) {
  173. if (state == EXT_START_CODE && (buf[i] & 0xF0) != 0x80)
  174. pc->frame_start_found--;
  175. else if (state == EXT_START_CODE + 2) {
  176. if ((buf[i] & 3) == 3)
  177. pc->frame_start_found = 0;
  178. else
  179. pc->frame_start_found = (pc->frame_start_found + 1) & 3;
  180. }
  181. state++;
  182. } else {
  183. i = avpriv_find_start_code(buf + i, buf + buf_size, &state) - buf - 1;
  184. if (pc->frame_start_found == 0 && state >= SLICE_MIN_START_CODE && state <= SLICE_MAX_START_CODE) {
  185. i++;
  186. pc->frame_start_found = 4;
  187. }
  188. if (state == SEQ_END_CODE) {
  189. pc->frame_start_found = 0;
  190. pc->state=-1;
  191. return i+1;
  192. }
  193. if (pc->frame_start_found == 2 && state == SEQ_START_CODE)
  194. pc->frame_start_found = 0;
  195. if (pc->frame_start_found < 4 && state == EXT_START_CODE)
  196. pc->frame_start_found++;
  197. if (pc->frame_start_found == 4 && (state & 0xFFFFFF00) == 0x100) {
  198. if (state < SLICE_MIN_START_CODE || state > SLICE_MAX_START_CODE) {
  199. pc->frame_start_found = 0;
  200. pc->state = -1;
  201. return i - 3;
  202. }
  203. }
  204. if (pc->frame_start_found == 0 && s && state == PICTURE_START_CODE) {
  205. ff_fetch_timestamp(s, i - 3, 1);
  206. }
  207. }
  208. }
  209. pc->state = state;
  210. return END_NOT_FOUND;
  211. }
  212. #define MAX_INDEX (64 - 1)
  213. int ff_mpeg1_decode_block_intra(GetBitContext *gb,
  214. const uint16_t *quant_matrix,
  215. uint8_t *const scantable, int last_dc[3],
  216. int16_t *block, int index, int qscale)
  217. {
  218. int dc, diff, i = 0, component;
  219. RLTable *rl = &ff_rl_mpeg1;
  220. /* DC coefficient */
  221. component = index <= 3 ? 0 : index - 4 + 1;
  222. diff = decode_dc(gb, component);
  223. if (diff >= 0xffff)
  224. return AVERROR_INVALIDDATA;
  225. dc = last_dc[component];
  226. dc += diff;
  227. last_dc[component] = dc;
  228. block[0] = dc * quant_matrix[0];
  229. {
  230. OPEN_READER(re, gb);
  231. /* now quantify & encode AC coefficients */
  232. while (1) {
  233. int level, run, j;
  234. UPDATE_CACHE(re, gb);
  235. GET_RL_VLC(level, run, re, gb, rl->rl_vlc[0], TEX_VLC_BITS, 2, 0);
  236. if (level == 127) {
  237. break;
  238. } else if (level != 0) {
  239. i += run;
  240. if (i > MAX_INDEX)
  241. break;
  242. j = scantable[i];
  243. level = (level * qscale * quant_matrix[j]) >> 4;
  244. level = (level - 1) | 1;
  245. level = (level ^ SHOW_SBITS(re, gb, 1)) -
  246. SHOW_SBITS(re, gb, 1);
  247. LAST_SKIP_BITS(re, gb, 1);
  248. } else {
  249. /* escape */
  250. run = SHOW_UBITS(re, gb, 6) + 1;
  251. LAST_SKIP_BITS(re, gb, 6);
  252. UPDATE_CACHE(re, gb);
  253. level = SHOW_SBITS(re, gb, 8);
  254. SKIP_BITS(re, gb, 8);
  255. if (level == -128) {
  256. level = SHOW_UBITS(re, gb, 8) - 256;
  257. LAST_SKIP_BITS(re, gb, 8);
  258. } else if (level == 0) {
  259. level = SHOW_UBITS(re, gb, 8);
  260. LAST_SKIP_BITS(re, gb, 8);
  261. }
  262. i += run;
  263. if (i > MAX_INDEX)
  264. break;
  265. j = scantable[i];
  266. if (level < 0) {
  267. level = -level;
  268. level = (level * qscale * quant_matrix[j]) >> 4;
  269. level = (level - 1) | 1;
  270. level = -level;
  271. } else {
  272. level = (level * qscale * quant_matrix[j]) >> 4;
  273. level = (level - 1) | 1;
  274. }
  275. }
  276. block[j] = level;
  277. }
  278. CLOSE_READER(re, gb);
  279. }
  280. if (i > MAX_INDEX)
  281. i = AVERROR_INVALIDDATA;
  282. return i;
  283. }