You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

288 lines
8.3KB

  1. /*
  2. * LPC utility code
  3. * Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/common.h"
  22. #include "libavutil/lls.h"
  23. #define LPC_USE_DOUBLE
  24. #include "lpc.h"
  25. /**
  26. * Apply Welch window function to audio block
  27. */
  28. static void lpc_apply_welch_window_c(const int32_t *data, int len,
  29. double *w_data)
  30. {
  31. int i, n2;
  32. double w;
  33. double c;
  34. /* The optimization in commit fa4ed8c does not support odd len.
  35. * If someone wants odd len extend that change. */
  36. assert(!(len & 1));
  37. n2 = (len >> 1);
  38. c = 2.0 / (len - 1.0);
  39. w_data+=n2;
  40. data+=n2;
  41. for(i=0; i<n2; i++) {
  42. w = c - n2 + i;
  43. w = 1.0 - (w * w);
  44. w_data[-i-1] = data[-i-1] * w;
  45. w_data[+i ] = data[+i ] * w;
  46. }
  47. }
  48. /**
  49. * Calculate autocorrelation data from audio samples
  50. * A Welch window function is applied before calculation.
  51. */
  52. static void lpc_compute_autocorr_c(const double *data, int len, int lag,
  53. double *autoc)
  54. {
  55. int i, j;
  56. for(j=0; j<lag; j+=2){
  57. double sum0 = 1.0, sum1 = 1.0;
  58. for(i=j; i<len; i++){
  59. sum0 += data[i] * data[i-j];
  60. sum1 += data[i] * data[i-j-1];
  61. }
  62. autoc[j ] = sum0;
  63. autoc[j+1] = sum1;
  64. }
  65. if(j==lag){
  66. double sum = 1.0;
  67. for(i=j-1; i<len; i+=2){
  68. sum += data[i ] * data[i-j ]
  69. + data[i+1] * data[i-j+1];
  70. }
  71. autoc[j] = sum;
  72. }
  73. }
  74. /**
  75. * Quantize LPC coefficients
  76. */
  77. static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
  78. int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
  79. {
  80. int i;
  81. double cmax, error;
  82. int32_t qmax;
  83. int sh;
  84. /* define maximum levels */
  85. qmax = (1 << (precision - 1)) - 1;
  86. /* find maximum coefficient value */
  87. cmax = 0.0;
  88. for(i=0; i<order; i++) {
  89. cmax= FFMAX(cmax, fabs(lpc_in[i]));
  90. }
  91. /* if maximum value quantizes to zero, return all zeros */
  92. if(cmax * (1 << max_shift) < 1.0) {
  93. *shift = zero_shift;
  94. memset(lpc_out, 0, sizeof(int32_t) * order);
  95. return;
  96. }
  97. /* calculate level shift which scales max coeff to available bits */
  98. sh = max_shift;
  99. while((cmax * (1 << sh) > qmax) && (sh > 0)) {
  100. sh--;
  101. }
  102. /* since negative shift values are unsupported in decoder, scale down
  103. coefficients instead */
  104. if(sh == 0 && cmax > qmax) {
  105. double scale = ((double)qmax) / cmax;
  106. for(i=0; i<order; i++) {
  107. lpc_in[i] *= scale;
  108. }
  109. }
  110. /* output quantized coefficients and level shift */
  111. error=0;
  112. for(i=0; i<order; i++) {
  113. error -= lpc_in[i] * (1 << sh);
  114. lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
  115. error -= lpc_out[i];
  116. }
  117. *shift = sh;
  118. }
  119. static int estimate_best_order(double *ref, int min_order, int max_order)
  120. {
  121. int i, est;
  122. est = min_order;
  123. for(i=max_order-1; i>=min_order-1; i--) {
  124. if(ref[i] > 0.10) {
  125. est = i+1;
  126. break;
  127. }
  128. }
  129. return est;
  130. }
  131. int ff_lpc_calc_ref_coefs(LPCContext *s,
  132. const int32_t *samples, int order, double *ref)
  133. {
  134. double autoc[MAX_LPC_ORDER + 1];
  135. s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples);
  136. s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc);
  137. compute_ref_coefs(autoc, order, ref, NULL);
  138. return order;
  139. }
  140. /**
  141. * Calculate LPC coefficients for multiple orders
  142. *
  143. * @param lpc_type LPC method for determining coefficients,
  144. * see #FFLPCType for details
  145. */
  146. int ff_lpc_calc_coefs(LPCContext *s,
  147. const int32_t *samples, int blocksize, int min_order,
  148. int max_order, int precision,
  149. int32_t coefs[][MAX_LPC_ORDER], int *shift,
  150. enum FFLPCType lpc_type, int lpc_passes,
  151. int omethod, int max_shift, int zero_shift)
  152. {
  153. double autoc[MAX_LPC_ORDER+1];
  154. double ref[MAX_LPC_ORDER] = { 0 };
  155. double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
  156. int i, j, pass = 0;
  157. int opt_order;
  158. assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
  159. lpc_type > FF_LPC_TYPE_FIXED);
  160. /* reinit LPC context if parameters have changed */
  161. if (blocksize != s->blocksize || max_order != s->max_order ||
  162. lpc_type != s->lpc_type) {
  163. ff_lpc_end(s);
  164. ff_lpc_init(s, blocksize, max_order, lpc_type);
  165. }
  166. if (lpc_type == FF_LPC_TYPE_LEVINSON || (lpc_type == FF_LPC_TYPE_CHOLESKY && lpc_passes > 1)) {
  167. s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples);
  168. s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc);
  169. compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
  170. for(i=0; i<max_order; i++)
  171. ref[i] = fabs(lpc[i][i]);
  172. pass++;
  173. }
  174. if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
  175. LLSModel m[2];
  176. LOCAL_ALIGNED(32, double, var, [FFALIGN(MAX_LPC_ORDER+1,4)]);
  177. double av_uninit(weight);
  178. memset(var, 0, FFALIGN(MAX_LPC_ORDER+1,4)*sizeof(*var));
  179. for(j=0; j<max_order; j++)
  180. m[0].coeff[max_order-1][j] = -lpc[max_order-1][j];
  181. for(; pass<lpc_passes; pass++){
  182. avpriv_init_lls(&m[pass&1], max_order);
  183. weight=0;
  184. for(i=max_order; i<blocksize; i++){
  185. for(j=0; j<=max_order; j++)
  186. var[j]= samples[i-j];
  187. if(pass){
  188. double eval, inv, rinv;
  189. eval= m[pass&1].evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
  190. eval= (512>>pass) + fabs(eval - var[0]);
  191. inv = 1/eval;
  192. rinv = sqrt(inv);
  193. for(j=0; j<=max_order; j++)
  194. var[j] *= rinv;
  195. weight += inv;
  196. }else
  197. weight++;
  198. m[pass&1].update_lls(&m[pass&1], var);
  199. }
  200. avpriv_solve_lls(&m[pass&1], 0.001, 0);
  201. }
  202. for(i=0; i<max_order; i++){
  203. for(j=0; j<max_order; j++)
  204. lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
  205. ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
  206. }
  207. for(i=max_order-1; i>0; i--)
  208. ref[i] = ref[i-1] - ref[i];
  209. }
  210. opt_order = max_order;
  211. if(omethod == ORDER_METHOD_EST) {
  212. opt_order = estimate_best_order(ref, min_order, max_order);
  213. i = opt_order-1;
  214. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
  215. } else {
  216. for(i=min_order-1; i<max_order; i++) {
  217. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
  218. }
  219. }
  220. return opt_order;
  221. }
  222. av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
  223. enum FFLPCType lpc_type)
  224. {
  225. s->blocksize = blocksize;
  226. s->max_order = max_order;
  227. s->lpc_type = lpc_type;
  228. s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) *
  229. sizeof(*s->windowed_samples));
  230. if (!s->windowed_buffer)
  231. return AVERROR(ENOMEM);
  232. s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4);
  233. s->lpc_apply_welch_window = lpc_apply_welch_window_c;
  234. s->lpc_compute_autocorr = lpc_compute_autocorr_c;
  235. if (ARCH_X86)
  236. ff_lpc_init_x86(s);
  237. return 0;
  238. }
  239. av_cold void ff_lpc_end(LPCContext *s)
  240. {
  241. av_freep(&s->windowed_buffer);
  242. }