You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

708 lines
21KB

  1. /*
  2. * Lagarith lossless decoder
  3. * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Lagarith lossless decoder
  24. * @author Nathan Caldwell
  25. */
  26. #include <inttypes.h>
  27. #include "avcodec.h"
  28. #include "bitstream.h"
  29. #include "mathops.h"
  30. #include "huffyuvdsp.h"
  31. #include "lagarithrac.h"
  32. #include "thread.h"
  33. enum LagarithFrameType {
  34. FRAME_RAW = 1, /**< uncompressed */
  35. FRAME_U_RGB24 = 2, /**< unaligned RGB24 */
  36. FRAME_ARITH_YUY2 = 3, /**< arithmetic coded YUY2 */
  37. FRAME_ARITH_RGB24 = 4, /**< arithmetic coded RGB24 */
  38. FRAME_SOLID_GRAY = 5, /**< solid grayscale color frame */
  39. FRAME_SOLID_COLOR = 6, /**< solid non-grayscale color frame */
  40. FRAME_OLD_ARITH_RGB = 7, /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
  41. FRAME_ARITH_RGBA = 8, /**< arithmetic coded RGBA */
  42. FRAME_SOLID_RGBA = 9, /**< solid RGBA color frame */
  43. FRAME_ARITH_YV12 = 10, /**< arithmetic coded YV12 */
  44. FRAME_REDUCED_RES = 11, /**< reduced resolution YV12 frame */
  45. };
  46. typedef struct LagarithContext {
  47. AVCodecContext *avctx;
  48. HuffYUVDSPContext hdsp;
  49. int zeros; /**< number of consecutive zero bytes encountered */
  50. int zeros_rem; /**< number of zero bytes remaining to output */
  51. uint8_t *rgb_planes;
  52. int rgb_planes_allocated;
  53. int rgb_stride;
  54. } LagarithContext;
  55. /**
  56. * Compute the 52-bit mantissa of 1/(double)denom.
  57. * This crazy format uses floats in an entropy coder and we have to match x86
  58. * rounding exactly, thus ordinary floats aren't portable enough.
  59. * @param denom denominator
  60. * @return 52-bit mantissa
  61. * @see softfloat_mul
  62. */
  63. static uint64_t softfloat_reciprocal(uint32_t denom)
  64. {
  65. int shift = av_log2(denom - 1) + 1;
  66. uint64_t ret = (1ULL << 52) / denom;
  67. uint64_t err = (1ULL << 52) - ret * denom;
  68. ret <<= shift;
  69. err <<= shift;
  70. err += denom / 2;
  71. return ret + err / denom;
  72. }
  73. /**
  74. * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
  75. * Used in combination with softfloat_reciprocal computes x/(double)denom.
  76. * @param x 32-bit integer factor
  77. * @param mantissa mantissa of f with exponent 0
  78. * @return 32-bit integer value (x*f)
  79. * @see softfloat_reciprocal
  80. */
  81. static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
  82. {
  83. uint64_t l = x * (mantissa & 0xffffffff);
  84. uint64_t h = x * (mantissa >> 32);
  85. h += l >> 32;
  86. l &= 0xffffffff;
  87. l += 1 << av_log2(h >> 21);
  88. h += l >> 32;
  89. return h >> 20;
  90. }
  91. static uint8_t lag_calc_zero_run(int8_t x)
  92. {
  93. return (x << 1) ^ (x >> 7);
  94. }
  95. static int lag_decode_prob(BitstreamContext *bc, uint32_t *value)
  96. {
  97. static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
  98. int i;
  99. int bit = 0;
  100. int bits = 0;
  101. int prevbit = 0;
  102. unsigned val;
  103. for (i = 0; i < 7; i++) {
  104. if (prevbit && bit)
  105. break;
  106. prevbit = bit;
  107. bit = bitstream_read_bit(bc);
  108. if (bit && !prevbit)
  109. bits += series[i];
  110. }
  111. bits--;
  112. if (bits < 0 || bits > 31) {
  113. *value = 0;
  114. return -1;
  115. } else if (bits == 0) {
  116. *value = 0;
  117. return 0;
  118. }
  119. val = bitstream_read(bc, bits);
  120. val |= 1 << bits;
  121. *value = val - 1;
  122. return 0;
  123. }
  124. static int lag_read_prob_header(lag_rac *rac, BitstreamContext *bc)
  125. {
  126. int i, j, scale_factor;
  127. unsigned prob, cumulative_target;
  128. unsigned cumul_prob = 0;
  129. unsigned scaled_cumul_prob = 0;
  130. rac->prob[0] = 0;
  131. rac->prob[257] = UINT_MAX;
  132. /* Read probabilities from bitstream */
  133. for (i = 1; i < 257; i++) {
  134. if (lag_decode_prob(bc, &rac->prob[i]) < 0) {
  135. av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
  136. return -1;
  137. }
  138. if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
  139. av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
  140. return -1;
  141. }
  142. cumul_prob += rac->prob[i];
  143. if (!rac->prob[i]) {
  144. if (lag_decode_prob(bc, &prob)) {
  145. av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
  146. return -1;
  147. }
  148. if (prob > 257 - i)
  149. prob = 257 - i;
  150. for (j = 0; j < prob; j++)
  151. rac->prob[++i] = 0;
  152. }
  153. }
  154. if (!cumul_prob) {
  155. av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
  156. return -1;
  157. }
  158. /* Scale probabilities so cumulative probability is an even power of 2. */
  159. scale_factor = av_log2(cumul_prob);
  160. if (cumul_prob & (cumul_prob - 1)) {
  161. uint64_t mul = softfloat_reciprocal(cumul_prob);
  162. for (i = 1; i < 257; i++) {
  163. rac->prob[i] = softfloat_mul(rac->prob[i], mul);
  164. scaled_cumul_prob += rac->prob[i];
  165. }
  166. scale_factor++;
  167. cumulative_target = 1 << scale_factor;
  168. if (scaled_cumul_prob > cumulative_target) {
  169. av_log(rac->avctx, AV_LOG_ERROR,
  170. "Scaled probabilities are larger than target!\n");
  171. return -1;
  172. }
  173. scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
  174. for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
  175. if (rac->prob[i]) {
  176. rac->prob[i]++;
  177. scaled_cumul_prob--;
  178. }
  179. /* Comment from reference source:
  180. * if (b & 0x80 == 0) { // order of operations is 'wrong'; it has been left this way
  181. * // since the compression change is negligible and fixing it
  182. * // breaks backwards compatibility
  183. * b =- (signed int)b;
  184. * b &= 0xFF;
  185. * } else {
  186. * b++;
  187. * b &= 0x7f;
  188. * }
  189. */
  190. }
  191. }
  192. rac->scale = scale_factor;
  193. /* Fill probability array with cumulative probability for each symbol. */
  194. for (i = 1; i < 257; i++)
  195. rac->prob[i] += rac->prob[i - 1];
  196. return 0;
  197. }
  198. static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
  199. uint8_t *diff, int w, int *left,
  200. int *left_top)
  201. {
  202. /* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h.
  203. * However the &0xFF on the gradient predictor yields incorrect output
  204. * for lagarith.
  205. */
  206. int i;
  207. uint8_t l, lt;
  208. l = *left;
  209. lt = *left_top;
  210. for (i = 0; i < w; i++) {
  211. l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
  212. lt = src1[i];
  213. dst[i] = l;
  214. }
  215. *left = l;
  216. *left_top = lt;
  217. }
  218. static void lag_pred_line(LagarithContext *l, uint8_t *buf,
  219. int width, int stride, int line)
  220. {
  221. int L, TL;
  222. if (!line) {
  223. int i, align_width = (width - 1) & ~31;
  224. /* Left prediction only for first line */
  225. L = l->hdsp.add_hfyu_left_pred(buf + 1, buf + 1, align_width, buf[0]);
  226. for (i = align_width + 1; i < width; i++)
  227. buf[i] += buf[i - 1];
  228. } else {
  229. /* Left pixel is actually prev_row[width] */
  230. L = buf[width - stride - 1];
  231. if (line == 1) {
  232. /* Second line, left predict first pixel, the rest of the line is median predicted
  233. * NOTE: In the case of RGB this pixel is top predicted */
  234. TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
  235. } else {
  236. /* Top left is 2 rows back, last pixel */
  237. TL = buf[width - (2 * stride) - 1];
  238. }
  239. add_lag_median_prediction(buf, buf - stride, buf,
  240. width, &L, &TL);
  241. }
  242. }
  243. static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf,
  244. int width, int stride, int line,
  245. int is_luma)
  246. {
  247. int L, TL;
  248. if (!line) {
  249. int i, align_width;
  250. if (is_luma) {
  251. buf++;
  252. width--;
  253. }
  254. align_width = (width - 1) & ~31;
  255. l->hdsp.add_hfyu_left_pred(buf + 1, buf + 1, align_width, buf[0]);
  256. for (i = align_width + 1; i < width; i++)
  257. buf[i] += buf[i - 1];
  258. return;
  259. }
  260. if (line == 1) {
  261. const int HEAD = is_luma ? 4 : 2;
  262. int i;
  263. L = buf[width - stride - 1];
  264. TL = buf[HEAD - stride - 1];
  265. for (i = 0; i < HEAD; i++) {
  266. L += buf[i];
  267. buf[i] = L;
  268. }
  269. for (; i < width; i++) {
  270. L = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i];
  271. TL = buf[i - stride];
  272. buf[i] = L;
  273. }
  274. } else {
  275. TL = buf[width - (2 * stride) - 1];
  276. L = buf[width - stride - 1];
  277. l->hdsp.add_hfyu_median_pred(buf, buf - stride, buf, width, &L, &TL);
  278. }
  279. }
  280. static int lag_decode_line(LagarithContext *l, lag_rac *rac,
  281. uint8_t *dst, int width, int stride,
  282. int esc_count)
  283. {
  284. int i = 0;
  285. int ret = 0;
  286. if (!esc_count)
  287. esc_count = -1;
  288. /* Output any zeros remaining from the previous run */
  289. handle_zeros:
  290. if (l->zeros_rem) {
  291. int count = FFMIN(l->zeros_rem, width - i);
  292. memset(dst + i, 0, count);
  293. i += count;
  294. l->zeros_rem -= count;
  295. }
  296. while (i < width) {
  297. dst[i] = lag_get_rac(rac);
  298. ret++;
  299. if (dst[i])
  300. l->zeros = 0;
  301. else
  302. l->zeros++;
  303. i++;
  304. if (l->zeros == esc_count) {
  305. int index = lag_get_rac(rac);
  306. ret++;
  307. l->zeros = 0;
  308. l->zeros_rem = lag_calc_zero_run(index);
  309. goto handle_zeros;
  310. }
  311. }
  312. return ret;
  313. }
  314. static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
  315. const uint8_t *src, const uint8_t *src_end,
  316. int width, int esc_count)
  317. {
  318. int i = 0;
  319. int count;
  320. uint8_t zero_run = 0;
  321. const uint8_t *src_start = src;
  322. uint8_t mask1 = -(esc_count < 2);
  323. uint8_t mask2 = -(esc_count < 3);
  324. uint8_t *end = dst + (width - 2);
  325. output_zeros:
  326. if (l->zeros_rem) {
  327. count = FFMIN(l->zeros_rem, width - i);
  328. if (end - dst < count) {
  329. av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
  330. return AVERROR_INVALIDDATA;
  331. }
  332. memset(dst, 0, count);
  333. l->zeros_rem -= count;
  334. dst += count;
  335. }
  336. while (dst < end) {
  337. i = 0;
  338. while (!zero_run && dst + i < end) {
  339. i++;
  340. if (src + i >= src_end)
  341. return AVERROR_INVALIDDATA;
  342. zero_run =
  343. !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
  344. }
  345. if (zero_run) {
  346. zero_run = 0;
  347. i += esc_count;
  348. memcpy(dst, src, i);
  349. dst += i;
  350. l->zeros_rem = lag_calc_zero_run(src[i]);
  351. src += i + 1;
  352. goto output_zeros;
  353. } else {
  354. memcpy(dst, src, i);
  355. src += i;
  356. dst += i;
  357. }
  358. }
  359. return src_start - src;
  360. }
  361. static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
  362. int width, int height, int stride,
  363. const uint8_t *src, int src_size)
  364. {
  365. int i = 0;
  366. int read = 0;
  367. uint32_t length;
  368. uint32_t offset = 1;
  369. int esc_count = src[0];
  370. BitstreamContext bc;
  371. lag_rac rac;
  372. const uint8_t *src_end = src + src_size;
  373. rac.avctx = l->avctx;
  374. l->zeros = 0;
  375. if (esc_count < 4) {
  376. length = width * height;
  377. if (esc_count && AV_RL32(src + 1) < length) {
  378. length = AV_RL32(src + 1);
  379. offset += 4;
  380. }
  381. bitstream_init8(&bc, src + offset, src_size);
  382. if (lag_read_prob_header(&rac, &bc) < 0)
  383. return -1;
  384. ff_lag_rac_init(&rac, &bc, length - stride);
  385. for (i = 0; i < height; i++)
  386. read += lag_decode_line(l, &rac, dst + (i * stride), width,
  387. stride, esc_count);
  388. if (read > length)
  389. av_log(l->avctx, AV_LOG_WARNING,
  390. "Output more bytes than length (%d of %"PRIu32")\n", read,
  391. length);
  392. } else if (esc_count < 8) {
  393. esc_count -= 4;
  394. if (esc_count > 0) {
  395. /* Zero run coding only, no range coding. */
  396. for (i = 0; i < height; i++) {
  397. int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
  398. src_end, width, esc_count);
  399. if (res < 0)
  400. return res;
  401. src += res;
  402. }
  403. } else {
  404. if (src_size < width * height)
  405. return AVERROR_INVALIDDATA; // buffer not big enough
  406. /* Plane is stored uncompressed */
  407. for (i = 0; i < height; i++) {
  408. memcpy(dst + (i * stride), src, width);
  409. src += width;
  410. }
  411. }
  412. } else if (esc_count == 0xff) {
  413. /* Plane is a solid run of given value */
  414. for (i = 0; i < height; i++)
  415. memset(dst + i * stride, src[1], width);
  416. /* Do not apply prediction.
  417. Note: memset to 0 above, setting first value to src[1]
  418. and applying prediction gives the same result. */
  419. return 0;
  420. } else {
  421. av_log(l->avctx, AV_LOG_ERROR,
  422. "Invalid zero run escape code! (%#x)\n", esc_count);
  423. return -1;
  424. }
  425. if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
  426. for (i = 0; i < height; i++) {
  427. lag_pred_line(l, dst, width, stride, i);
  428. dst += stride;
  429. }
  430. } else {
  431. for (i = 0; i < height; i++) {
  432. lag_pred_line_yuy2(l, dst, width, stride, i,
  433. width == l->avctx->width);
  434. dst += stride;
  435. }
  436. }
  437. return 0;
  438. }
  439. /**
  440. * Decode a frame.
  441. * @param avctx codec context
  442. * @param data output AVFrame
  443. * @param data_size size of output data or 0 if no picture is returned
  444. * @param avpkt input packet
  445. * @return number of consumed bytes on success or negative if decode fails
  446. */
  447. static int lag_decode_frame(AVCodecContext *avctx,
  448. void *data, int *got_frame, AVPacket *avpkt)
  449. {
  450. const uint8_t *buf = avpkt->data;
  451. int buf_size = avpkt->size;
  452. LagarithContext *l = avctx->priv_data;
  453. ThreadFrame frame = { .f = data };
  454. AVFrame *const p = data;
  455. uint8_t frametype = 0;
  456. uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
  457. uint32_t offs[4];
  458. uint8_t *srcs[4], *dst;
  459. int i, j, planes = 3;
  460. p->key_frame = 1;
  461. frametype = buf[0];
  462. offset_gu = AV_RL32(buf + 1);
  463. offset_bv = AV_RL32(buf + 5);
  464. switch (frametype) {
  465. case FRAME_SOLID_RGBA:
  466. avctx->pix_fmt = AV_PIX_FMT_RGB32;
  467. if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
  468. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  469. return -1;
  470. }
  471. dst = p->data[0];
  472. for (j = 0; j < avctx->height; j++) {
  473. for (i = 0; i < avctx->width; i++)
  474. AV_WN32(dst + i * 4, offset_gu);
  475. dst += p->linesize[0];
  476. }
  477. break;
  478. case FRAME_ARITH_RGBA:
  479. avctx->pix_fmt = AV_PIX_FMT_RGB32;
  480. planes = 4;
  481. offset_ry += 4;
  482. offs[3] = AV_RL32(buf + 9);
  483. case FRAME_ARITH_RGB24:
  484. case FRAME_U_RGB24:
  485. if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
  486. avctx->pix_fmt = AV_PIX_FMT_RGB24;
  487. if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
  488. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  489. return -1;
  490. }
  491. offs[0] = offset_bv;
  492. offs[1] = offset_gu;
  493. offs[2] = offset_ry;
  494. l->rgb_stride = FFALIGN(avctx->width, 16);
  495. av_fast_malloc(&l->rgb_planes, &l->rgb_planes_allocated,
  496. l->rgb_stride * avctx->height * planes + 1);
  497. if (!l->rgb_planes) {
  498. av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n");
  499. return AVERROR(ENOMEM);
  500. }
  501. for (i = 0; i < planes; i++)
  502. srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride;
  503. if (offset_ry >= buf_size ||
  504. offset_gu >= buf_size ||
  505. offset_bv >= buf_size ||
  506. (planes == 4 && offs[3] >= buf_size)) {
  507. av_log(avctx, AV_LOG_ERROR,
  508. "Invalid frame offsets\n");
  509. return AVERROR_INVALIDDATA;
  510. }
  511. for (i = 0; i < planes; i++)
  512. lag_decode_arith_plane(l, srcs[i],
  513. avctx->width, avctx->height,
  514. -l->rgb_stride, buf + offs[i],
  515. buf_size - offs[i]);
  516. dst = p->data[0];
  517. for (i = 0; i < planes; i++)
  518. srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height;
  519. for (j = 0; j < avctx->height; j++) {
  520. for (i = 0; i < avctx->width; i++) {
  521. uint8_t r, g, b, a;
  522. r = srcs[0][i];
  523. g = srcs[1][i];
  524. b = srcs[2][i];
  525. r += g;
  526. b += g;
  527. if (frametype == FRAME_ARITH_RGBA) {
  528. a = srcs[3][i];
  529. AV_WN32(dst + i * 4, MKBETAG(a, r, g, b));
  530. } else {
  531. dst[i * 3 + 0] = r;
  532. dst[i * 3 + 1] = g;
  533. dst[i * 3 + 2] = b;
  534. }
  535. }
  536. dst += p->linesize[0];
  537. for (i = 0; i < planes; i++)
  538. srcs[i] += l->rgb_stride;
  539. }
  540. break;
  541. case FRAME_ARITH_YUY2:
  542. avctx->pix_fmt = AV_PIX_FMT_YUV422P;
  543. if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
  544. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  545. return -1;
  546. }
  547. if (offset_ry >= buf_size ||
  548. offset_gu >= buf_size ||
  549. offset_bv >= buf_size) {
  550. av_log(avctx, AV_LOG_ERROR,
  551. "Invalid frame offsets\n");
  552. return AVERROR_INVALIDDATA;
  553. }
  554. lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
  555. p->linesize[0], buf + offset_ry,
  556. buf_size - offset_ry);
  557. lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
  558. avctx->height, p->linesize[1],
  559. buf + offset_gu, buf_size - offset_gu);
  560. lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
  561. avctx->height, p->linesize[2],
  562. buf + offset_bv, buf_size - offset_bv);
  563. break;
  564. case FRAME_ARITH_YV12:
  565. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  566. if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
  567. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  568. return -1;
  569. }
  570. if (offset_ry >= buf_size ||
  571. offset_gu >= buf_size ||
  572. offset_bv >= buf_size) {
  573. av_log(avctx, AV_LOG_ERROR,
  574. "Invalid frame offsets\n");
  575. return AVERROR_INVALIDDATA;
  576. }
  577. lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
  578. p->linesize[0], buf + offset_ry,
  579. buf_size - offset_ry);
  580. lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
  581. avctx->height / 2, p->linesize[2],
  582. buf + offset_gu, buf_size - offset_gu);
  583. lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
  584. avctx->height / 2, p->linesize[1],
  585. buf + offset_bv, buf_size - offset_bv);
  586. break;
  587. default:
  588. av_log(avctx, AV_LOG_ERROR,
  589. "Unsupported Lagarith frame type: %#"PRIx8"\n", frametype);
  590. return -1;
  591. }
  592. *got_frame = 1;
  593. return buf_size;
  594. }
  595. static av_cold int lag_decode_init(AVCodecContext *avctx)
  596. {
  597. LagarithContext *l = avctx->priv_data;
  598. l->avctx = avctx;
  599. ff_huffyuvdsp_init(&l->hdsp);
  600. return 0;
  601. }
  602. static av_cold int lag_decode_end(AVCodecContext *avctx)
  603. {
  604. LagarithContext *l = avctx->priv_data;
  605. av_freep(&l->rgb_planes);
  606. return 0;
  607. }
  608. AVCodec ff_lagarith_decoder = {
  609. .name = "lagarith",
  610. .long_name = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
  611. .type = AVMEDIA_TYPE_VIDEO,
  612. .id = AV_CODEC_ID_LAGARITH,
  613. .priv_data_size = sizeof(LagarithContext),
  614. .init = lag_decode_init,
  615. .close = lag_decode_end,
  616. .decode = lag_decode_frame,
  617. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
  618. };