|
- /*
- * Lagarith lossless decoder
- * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
- *
- * This file is part of Libav.
- *
- * Libav is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * Libav is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with Libav; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- /**
- * @file
- * Lagarith lossless decoder
- * @author Nathan Caldwell
- */
-
- #include <inttypes.h>
-
- #include "avcodec.h"
- #include "bitstream.h"
- #include "mathops.h"
- #include "huffyuvdsp.h"
- #include "lagarithrac.h"
- #include "thread.h"
-
- enum LagarithFrameType {
- FRAME_RAW = 1, /**< uncompressed */
- FRAME_U_RGB24 = 2, /**< unaligned RGB24 */
- FRAME_ARITH_YUY2 = 3, /**< arithmetic coded YUY2 */
- FRAME_ARITH_RGB24 = 4, /**< arithmetic coded RGB24 */
- FRAME_SOLID_GRAY = 5, /**< solid grayscale color frame */
- FRAME_SOLID_COLOR = 6, /**< solid non-grayscale color frame */
- FRAME_OLD_ARITH_RGB = 7, /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
- FRAME_ARITH_RGBA = 8, /**< arithmetic coded RGBA */
- FRAME_SOLID_RGBA = 9, /**< solid RGBA color frame */
- FRAME_ARITH_YV12 = 10, /**< arithmetic coded YV12 */
- FRAME_REDUCED_RES = 11, /**< reduced resolution YV12 frame */
- };
-
- typedef struct LagarithContext {
- AVCodecContext *avctx;
- HuffYUVDSPContext hdsp;
- int zeros; /**< number of consecutive zero bytes encountered */
- int zeros_rem; /**< number of zero bytes remaining to output */
- uint8_t *rgb_planes;
- int rgb_planes_allocated;
- int rgb_stride;
- } LagarithContext;
-
- /**
- * Compute the 52-bit mantissa of 1/(double)denom.
- * This crazy format uses floats in an entropy coder and we have to match x86
- * rounding exactly, thus ordinary floats aren't portable enough.
- * @param denom denominator
- * @return 52-bit mantissa
- * @see softfloat_mul
- */
- static uint64_t softfloat_reciprocal(uint32_t denom)
- {
- int shift = av_log2(denom - 1) + 1;
- uint64_t ret = (1ULL << 52) / denom;
- uint64_t err = (1ULL << 52) - ret * denom;
- ret <<= shift;
- err <<= shift;
- err += denom / 2;
- return ret + err / denom;
- }
-
- /**
- * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
- * Used in combination with softfloat_reciprocal computes x/(double)denom.
- * @param x 32-bit integer factor
- * @param mantissa mantissa of f with exponent 0
- * @return 32-bit integer value (x*f)
- * @see softfloat_reciprocal
- */
- static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
- {
- uint64_t l = x * (mantissa & 0xffffffff);
- uint64_t h = x * (mantissa >> 32);
- h += l >> 32;
- l &= 0xffffffff;
- l += 1 << av_log2(h >> 21);
- h += l >> 32;
- return h >> 20;
- }
-
- static uint8_t lag_calc_zero_run(int8_t x)
- {
- return (x << 1) ^ (x >> 7);
- }
-
- static int lag_decode_prob(BitstreamContext *bc, uint32_t *value)
- {
- static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
- int i;
- int bit = 0;
- int bits = 0;
- int prevbit = 0;
- unsigned val;
-
- for (i = 0; i < 7; i++) {
- if (prevbit && bit)
- break;
- prevbit = bit;
- bit = bitstream_read_bit(bc);
- if (bit && !prevbit)
- bits += series[i];
- }
- bits--;
- if (bits < 0 || bits > 31) {
- *value = 0;
- return -1;
- } else if (bits == 0) {
- *value = 0;
- return 0;
- }
-
- val = bitstream_read(bc, bits);
- val |= 1 << bits;
-
- *value = val - 1;
-
- return 0;
- }
-
- static int lag_read_prob_header(lag_rac *rac, BitstreamContext *bc)
- {
- int i, j, scale_factor;
- unsigned prob, cumulative_target;
- unsigned cumul_prob = 0;
- unsigned scaled_cumul_prob = 0;
-
- rac->prob[0] = 0;
- rac->prob[257] = UINT_MAX;
- /* Read probabilities from bitstream */
- for (i = 1; i < 257; i++) {
- if (lag_decode_prob(bc, &rac->prob[i]) < 0) {
- av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
- return -1;
- }
- if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
- av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
- return -1;
- }
- cumul_prob += rac->prob[i];
- if (!rac->prob[i]) {
- if (lag_decode_prob(bc, &prob)) {
- av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
- return -1;
- }
- if (prob > 257 - i)
- prob = 257 - i;
- for (j = 0; j < prob; j++)
- rac->prob[++i] = 0;
- }
- }
-
- if (!cumul_prob) {
- av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
- return -1;
- }
-
- /* Scale probabilities so cumulative probability is an even power of 2. */
- scale_factor = av_log2(cumul_prob);
-
- if (cumul_prob & (cumul_prob - 1)) {
- uint64_t mul = softfloat_reciprocal(cumul_prob);
- for (i = 1; i < 257; i++) {
- rac->prob[i] = softfloat_mul(rac->prob[i], mul);
- scaled_cumul_prob += rac->prob[i];
- }
-
- scale_factor++;
- cumulative_target = 1 << scale_factor;
-
- if (scaled_cumul_prob > cumulative_target) {
- av_log(rac->avctx, AV_LOG_ERROR,
- "Scaled probabilities are larger than target!\n");
- return -1;
- }
-
- scaled_cumul_prob = cumulative_target - scaled_cumul_prob;
-
- for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
- if (rac->prob[i]) {
- rac->prob[i]++;
- scaled_cumul_prob--;
- }
- /* Comment from reference source:
- * if (b & 0x80 == 0) { // order of operations is 'wrong'; it has been left this way
- * // since the compression change is negligible and fixing it
- * // breaks backwards compatibility
- * b =- (signed int)b;
- * b &= 0xFF;
- * } else {
- * b++;
- * b &= 0x7f;
- * }
- */
- }
- }
-
- rac->scale = scale_factor;
-
- /* Fill probability array with cumulative probability for each symbol. */
- for (i = 1; i < 257; i++)
- rac->prob[i] += rac->prob[i - 1];
-
- return 0;
- }
-
- static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
- uint8_t *diff, int w, int *left,
- int *left_top)
- {
- /* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h.
- * However the &0xFF on the gradient predictor yields incorrect output
- * for lagarith.
- */
- int i;
- uint8_t l, lt;
-
- l = *left;
- lt = *left_top;
-
- for (i = 0; i < w; i++) {
- l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
- lt = src1[i];
- dst[i] = l;
- }
-
- *left = l;
- *left_top = lt;
- }
-
- static void lag_pred_line(LagarithContext *l, uint8_t *buf,
- int width, int stride, int line)
- {
- int L, TL;
-
- if (!line) {
- int i, align_width = (width - 1) & ~31;
- /* Left prediction only for first line */
- L = l->hdsp.add_hfyu_left_pred(buf + 1, buf + 1, align_width, buf[0]);
- for (i = align_width + 1; i < width; i++)
- buf[i] += buf[i - 1];
- } else {
- /* Left pixel is actually prev_row[width] */
- L = buf[width - stride - 1];
-
- if (line == 1) {
- /* Second line, left predict first pixel, the rest of the line is median predicted
- * NOTE: In the case of RGB this pixel is top predicted */
- TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
- } else {
- /* Top left is 2 rows back, last pixel */
- TL = buf[width - (2 * stride) - 1];
- }
-
- add_lag_median_prediction(buf, buf - stride, buf,
- width, &L, &TL);
- }
- }
-
- static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf,
- int width, int stride, int line,
- int is_luma)
- {
- int L, TL;
-
- if (!line) {
- int i, align_width;
- if (is_luma) {
- buf++;
- width--;
- }
-
- align_width = (width - 1) & ~31;
- l->hdsp.add_hfyu_left_pred(buf + 1, buf + 1, align_width, buf[0]);
-
- for (i = align_width + 1; i < width; i++)
- buf[i] += buf[i - 1];
-
- return;
- }
- if (line == 1) {
- const int HEAD = is_luma ? 4 : 2;
- int i;
-
- L = buf[width - stride - 1];
- TL = buf[HEAD - stride - 1];
- for (i = 0; i < HEAD; i++) {
- L += buf[i];
- buf[i] = L;
- }
- for (; i < width; i++) {
- L = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i];
- TL = buf[i - stride];
- buf[i] = L;
- }
- } else {
- TL = buf[width - (2 * stride) - 1];
- L = buf[width - stride - 1];
- l->hdsp.add_hfyu_median_pred(buf, buf - stride, buf, width, &L, &TL);
- }
- }
-
- static int lag_decode_line(LagarithContext *l, lag_rac *rac,
- uint8_t *dst, int width, int stride,
- int esc_count)
- {
- int i = 0;
- int ret = 0;
-
- if (!esc_count)
- esc_count = -1;
-
- /* Output any zeros remaining from the previous run */
- handle_zeros:
- if (l->zeros_rem) {
- int count = FFMIN(l->zeros_rem, width - i);
- memset(dst + i, 0, count);
- i += count;
- l->zeros_rem -= count;
- }
-
- while (i < width) {
- dst[i] = lag_get_rac(rac);
- ret++;
-
- if (dst[i])
- l->zeros = 0;
- else
- l->zeros++;
-
- i++;
- if (l->zeros == esc_count) {
- int index = lag_get_rac(rac);
- ret++;
-
- l->zeros = 0;
-
- l->zeros_rem = lag_calc_zero_run(index);
- goto handle_zeros;
- }
- }
- return ret;
- }
-
- static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
- const uint8_t *src, const uint8_t *src_end,
- int width, int esc_count)
- {
- int i = 0;
- int count;
- uint8_t zero_run = 0;
- const uint8_t *src_start = src;
- uint8_t mask1 = -(esc_count < 2);
- uint8_t mask2 = -(esc_count < 3);
- uint8_t *end = dst + (width - 2);
-
- output_zeros:
- if (l->zeros_rem) {
- count = FFMIN(l->zeros_rem, width - i);
- if (end - dst < count) {
- av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
- return AVERROR_INVALIDDATA;
- }
-
- memset(dst, 0, count);
- l->zeros_rem -= count;
- dst += count;
- }
-
- while (dst < end) {
- i = 0;
- while (!zero_run && dst + i < end) {
- i++;
- if (src + i >= src_end)
- return AVERROR_INVALIDDATA;
- zero_run =
- !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
- }
- if (zero_run) {
- zero_run = 0;
- i += esc_count;
- memcpy(dst, src, i);
- dst += i;
- l->zeros_rem = lag_calc_zero_run(src[i]);
-
- src += i + 1;
- goto output_zeros;
- } else {
- memcpy(dst, src, i);
- src += i;
- dst += i;
- }
- }
- return src_start - src;
- }
-
-
-
- static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
- int width, int height, int stride,
- const uint8_t *src, int src_size)
- {
- int i = 0;
- int read = 0;
- uint32_t length;
- uint32_t offset = 1;
- int esc_count = src[0];
- BitstreamContext bc;
- lag_rac rac;
- const uint8_t *src_end = src + src_size;
-
- rac.avctx = l->avctx;
- l->zeros = 0;
-
- if (esc_count < 4) {
- length = width * height;
- if (esc_count && AV_RL32(src + 1) < length) {
- length = AV_RL32(src + 1);
- offset += 4;
- }
-
- bitstream_init8(&bc, src + offset, src_size);
-
- if (lag_read_prob_header(&rac, &bc) < 0)
- return -1;
-
- ff_lag_rac_init(&rac, &bc, length - stride);
-
- for (i = 0; i < height; i++)
- read += lag_decode_line(l, &rac, dst + (i * stride), width,
- stride, esc_count);
-
- if (read > length)
- av_log(l->avctx, AV_LOG_WARNING,
- "Output more bytes than length (%d of %"PRIu32")\n", read,
- length);
- } else if (esc_count < 8) {
- esc_count -= 4;
- if (esc_count > 0) {
- /* Zero run coding only, no range coding. */
- for (i = 0; i < height; i++) {
- int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
- src_end, width, esc_count);
- if (res < 0)
- return res;
- src += res;
- }
- } else {
- if (src_size < width * height)
- return AVERROR_INVALIDDATA; // buffer not big enough
- /* Plane is stored uncompressed */
- for (i = 0; i < height; i++) {
- memcpy(dst + (i * stride), src, width);
- src += width;
- }
- }
- } else if (esc_count == 0xff) {
- /* Plane is a solid run of given value */
- for (i = 0; i < height; i++)
- memset(dst + i * stride, src[1], width);
- /* Do not apply prediction.
- Note: memset to 0 above, setting first value to src[1]
- and applying prediction gives the same result. */
- return 0;
- } else {
- av_log(l->avctx, AV_LOG_ERROR,
- "Invalid zero run escape code! (%#x)\n", esc_count);
- return -1;
- }
-
- if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
- for (i = 0; i < height; i++) {
- lag_pred_line(l, dst, width, stride, i);
- dst += stride;
- }
- } else {
- for (i = 0; i < height; i++) {
- lag_pred_line_yuy2(l, dst, width, stride, i,
- width == l->avctx->width);
- dst += stride;
- }
- }
-
- return 0;
- }
-
- /**
- * Decode a frame.
- * @param avctx codec context
- * @param data output AVFrame
- * @param data_size size of output data or 0 if no picture is returned
- * @param avpkt input packet
- * @return number of consumed bytes on success or negative if decode fails
- */
- static int lag_decode_frame(AVCodecContext *avctx,
- void *data, int *got_frame, AVPacket *avpkt)
- {
- const uint8_t *buf = avpkt->data;
- int buf_size = avpkt->size;
- LagarithContext *l = avctx->priv_data;
- ThreadFrame frame = { .f = data };
- AVFrame *const p = data;
- uint8_t frametype = 0;
- uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
- uint32_t offs[4];
- uint8_t *srcs[4], *dst;
- int i, j, planes = 3;
-
- p->key_frame = 1;
-
- frametype = buf[0];
-
- offset_gu = AV_RL32(buf + 1);
- offset_bv = AV_RL32(buf + 5);
-
- switch (frametype) {
- case FRAME_SOLID_RGBA:
- avctx->pix_fmt = AV_PIX_FMT_RGB32;
-
- if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
- av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
- return -1;
- }
-
- dst = p->data[0];
- for (j = 0; j < avctx->height; j++) {
- for (i = 0; i < avctx->width; i++)
- AV_WN32(dst + i * 4, offset_gu);
- dst += p->linesize[0];
- }
- break;
- case FRAME_ARITH_RGBA:
- avctx->pix_fmt = AV_PIX_FMT_RGB32;
- planes = 4;
- offset_ry += 4;
- offs[3] = AV_RL32(buf + 9);
- case FRAME_ARITH_RGB24:
- case FRAME_U_RGB24:
- if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
- avctx->pix_fmt = AV_PIX_FMT_RGB24;
-
- if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
- av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
- return -1;
- }
-
- offs[0] = offset_bv;
- offs[1] = offset_gu;
- offs[2] = offset_ry;
-
- l->rgb_stride = FFALIGN(avctx->width, 16);
- av_fast_malloc(&l->rgb_planes, &l->rgb_planes_allocated,
- l->rgb_stride * avctx->height * planes + 1);
- if (!l->rgb_planes) {
- av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n");
- return AVERROR(ENOMEM);
- }
- for (i = 0; i < planes; i++)
- srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride;
- if (offset_ry >= buf_size ||
- offset_gu >= buf_size ||
- offset_bv >= buf_size ||
- (planes == 4 && offs[3] >= buf_size)) {
- av_log(avctx, AV_LOG_ERROR,
- "Invalid frame offsets\n");
- return AVERROR_INVALIDDATA;
- }
- for (i = 0; i < planes; i++)
- lag_decode_arith_plane(l, srcs[i],
- avctx->width, avctx->height,
- -l->rgb_stride, buf + offs[i],
- buf_size - offs[i]);
- dst = p->data[0];
- for (i = 0; i < planes; i++)
- srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height;
- for (j = 0; j < avctx->height; j++) {
- for (i = 0; i < avctx->width; i++) {
- uint8_t r, g, b, a;
- r = srcs[0][i];
- g = srcs[1][i];
- b = srcs[2][i];
- r += g;
- b += g;
- if (frametype == FRAME_ARITH_RGBA) {
- a = srcs[3][i];
- AV_WN32(dst + i * 4, MKBETAG(a, r, g, b));
- } else {
- dst[i * 3 + 0] = r;
- dst[i * 3 + 1] = g;
- dst[i * 3 + 2] = b;
- }
- }
- dst += p->linesize[0];
- for (i = 0; i < planes; i++)
- srcs[i] += l->rgb_stride;
- }
- break;
- case FRAME_ARITH_YUY2:
- avctx->pix_fmt = AV_PIX_FMT_YUV422P;
-
- if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
- av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
- return -1;
- }
-
- if (offset_ry >= buf_size ||
- offset_gu >= buf_size ||
- offset_bv >= buf_size) {
- av_log(avctx, AV_LOG_ERROR,
- "Invalid frame offsets\n");
- return AVERROR_INVALIDDATA;
- }
-
- lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
- p->linesize[0], buf + offset_ry,
- buf_size - offset_ry);
- lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
- avctx->height, p->linesize[1],
- buf + offset_gu, buf_size - offset_gu);
- lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
- avctx->height, p->linesize[2],
- buf + offset_bv, buf_size - offset_bv);
- break;
- case FRAME_ARITH_YV12:
- avctx->pix_fmt = AV_PIX_FMT_YUV420P;
-
- if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
- av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
- return -1;
- }
-
- if (offset_ry >= buf_size ||
- offset_gu >= buf_size ||
- offset_bv >= buf_size) {
- av_log(avctx, AV_LOG_ERROR,
- "Invalid frame offsets\n");
- return AVERROR_INVALIDDATA;
- }
-
- lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
- p->linesize[0], buf + offset_ry,
- buf_size - offset_ry);
- lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
- avctx->height / 2, p->linesize[2],
- buf + offset_gu, buf_size - offset_gu);
- lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
- avctx->height / 2, p->linesize[1],
- buf + offset_bv, buf_size - offset_bv);
- break;
- default:
- av_log(avctx, AV_LOG_ERROR,
- "Unsupported Lagarith frame type: %#"PRIx8"\n", frametype);
- return -1;
- }
-
- *got_frame = 1;
-
- return buf_size;
- }
-
- static av_cold int lag_decode_init(AVCodecContext *avctx)
- {
- LagarithContext *l = avctx->priv_data;
- l->avctx = avctx;
-
- ff_huffyuvdsp_init(&l->hdsp);
-
- return 0;
- }
-
- static av_cold int lag_decode_end(AVCodecContext *avctx)
- {
- LagarithContext *l = avctx->priv_data;
-
- av_freep(&l->rgb_planes);
-
- return 0;
- }
-
- AVCodec ff_lagarith_decoder = {
- .name = "lagarith",
- .long_name = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
- .type = AVMEDIA_TYPE_VIDEO,
- .id = AV_CODEC_ID_LAGARITH,
- .priv_data_size = sizeof(LagarithContext),
- .init = lag_decode_init,
- .close = lag_decode_end,
- .decode = lag_decode_frame,
- .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
- };
|