You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

333 lines
11KB

  1. /*
  2. * This file is part of the Independent JPEG Group's software.
  3. *
  4. * The authors make NO WARRANTY or representation, either express or implied,
  5. * with respect to this software, its quality, accuracy, merchantability, or
  6. * fitness for a particular purpose. This software is provided "AS IS", and
  7. * you, its user, assume the entire risk as to its quality and accuracy.
  8. *
  9. * This software is copyright (C) 1994-1996, Thomas G. Lane.
  10. * All Rights Reserved except as specified below.
  11. *
  12. * Permission is hereby granted to use, copy, modify, and distribute this
  13. * software (or portions thereof) for any purpose, without fee, subject to
  14. * these conditions:
  15. * (1) If any part of the source code for this software is distributed, then
  16. * this README file must be included, with this copyright and no-warranty
  17. * notice unaltered; and any additions, deletions, or changes to the original
  18. * files must be clearly indicated in accompanying documentation.
  19. * (2) If only executable code is distributed, then the accompanying
  20. * documentation must state that "this software is based in part on the work
  21. * of the Independent JPEG Group".
  22. * (3) Permission for use of this software is granted only if the user accepts
  23. * full responsibility for any undesirable consequences; the authors accept
  24. * NO LIABILITY for damages of any kind.
  25. *
  26. * These conditions apply to any software derived from or based on the IJG
  27. * code, not just to the unmodified library. If you use our work, you ought
  28. * to acknowledge us.
  29. *
  30. * Permission is NOT granted for the use of any IJG author's name or company
  31. * name in advertising or publicity relating to this software or products
  32. * derived from it. This software may be referred to only as "the Independent
  33. * JPEG Group's software".
  34. *
  35. * We specifically permit and encourage the use of this software as the basis
  36. * of commercial products, provided that all warranty or liability claims are
  37. * assumed by the product vendor.
  38. *
  39. * This file contains a fast, not so accurate integer implementation of the
  40. * forward DCT (Discrete Cosine Transform).
  41. *
  42. * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  43. * on each column. Direct algorithms are also available, but they are
  44. * much more complex and seem not to be any faster when reduced to code.
  45. *
  46. * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  47. * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
  48. * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  49. * JPEG textbook (see REFERENCES section in file README). The following code
  50. * is based directly on figure 4-8 in P&M.
  51. * While an 8-point DCT cannot be done in less than 11 multiplies, it is
  52. * possible to arrange the computation so that many of the multiplies are
  53. * simple scalings of the final outputs. These multiplies can then be
  54. * folded into the multiplications or divisions by the JPEG quantization
  55. * table entries. The AA&N method leaves only 5 multiplies and 29 adds
  56. * to be done in the DCT itself.
  57. * The primary disadvantage of this method is that with fixed-point math,
  58. * accuracy is lost due to imprecise representation of the scaled
  59. * quantization values. The smaller the quantization table entry, the less
  60. * precise the scaled value, so this implementation does worse with high-
  61. * quality-setting files than with low-quality ones.
  62. */
  63. /**
  64. * @file
  65. * Independent JPEG Group's fast AAN dct.
  66. */
  67. #include <stdlib.h>
  68. #include <stdio.h>
  69. #include "libavutil/common.h"
  70. #include "dct.h"
  71. #define DCTSIZE 8
  72. #define GLOBAL(x) x
  73. #define RIGHT_SHIFT(x, n) ((x) >> (n))
  74. /*
  75. * This module is specialized to the case DCTSIZE = 8.
  76. */
  77. #if DCTSIZE != 8
  78. Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  79. #endif
  80. /* Scaling decisions are generally the same as in the LL&M algorithm;
  81. * see jfdctint.c for more details. However, we choose to descale
  82. * (right shift) multiplication products as soon as they are formed,
  83. * rather than carrying additional fractional bits into subsequent additions.
  84. * This compromises accuracy slightly, but it lets us save a few shifts.
  85. * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
  86. * everywhere except in the multiplications proper; this saves a good deal
  87. * of work on 16-bit-int machines.
  88. *
  89. * Again to save a few shifts, the intermediate results between pass 1 and
  90. * pass 2 are not upscaled, but are represented only to integral precision.
  91. *
  92. * A final compromise is to represent the multiplicative constants to only
  93. * 8 fractional bits, rather than 13. This saves some shifting work on some
  94. * machines, and may also reduce the cost of multiplication (since there
  95. * are fewer one-bits in the constants).
  96. */
  97. #define CONST_BITS 8
  98. /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
  99. * causing a lot of useless floating-point operations at run time.
  100. * To get around this we use the following pre-calculated constants.
  101. * If you change CONST_BITS you may want to add appropriate values.
  102. * (With a reasonable C compiler, you can just rely on the FIX() macro...)
  103. */
  104. #if CONST_BITS == 8
  105. #define FIX_0_382683433 ((int32_t) 98) /* FIX(0.382683433) */
  106. #define FIX_0_541196100 ((int32_t) 139) /* FIX(0.541196100) */
  107. #define FIX_0_707106781 ((int32_t) 181) /* FIX(0.707106781) */
  108. #define FIX_1_306562965 ((int32_t) 334) /* FIX(1.306562965) */
  109. #else
  110. #define FIX_0_382683433 FIX(0.382683433)
  111. #define FIX_0_541196100 FIX(0.541196100)
  112. #define FIX_0_707106781 FIX(0.707106781)
  113. #define FIX_1_306562965 FIX(1.306562965)
  114. #endif
  115. /* We can gain a little more speed, with a further compromise in accuracy,
  116. * by omitting the addition in a descaling shift. This yields an incorrectly
  117. * rounded result half the time...
  118. */
  119. #ifndef USE_ACCURATE_ROUNDING
  120. #undef DESCALE
  121. #define DESCALE(x,n) RIGHT_SHIFT(x, n)
  122. #endif
  123. /* Multiply a int16_t variable by an int32_t constant, and immediately
  124. * descale to yield a int16_t result.
  125. */
  126. #define MULTIPLY(var,const) ((int16_t) DESCALE((var) * (const), CONST_BITS))
  127. static av_always_inline void row_fdct(int16_t * data){
  128. int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  129. int tmp10, tmp11, tmp12, tmp13;
  130. int z1, z2, z3, z4, z5, z11, z13;
  131. int16_t *dataptr;
  132. int ctr;
  133. /* Pass 1: process rows. */
  134. dataptr = data;
  135. for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  136. tmp0 = dataptr[0] + dataptr[7];
  137. tmp7 = dataptr[0] - dataptr[7];
  138. tmp1 = dataptr[1] + dataptr[6];
  139. tmp6 = dataptr[1] - dataptr[6];
  140. tmp2 = dataptr[2] + dataptr[5];
  141. tmp5 = dataptr[2] - dataptr[5];
  142. tmp3 = dataptr[3] + dataptr[4];
  143. tmp4 = dataptr[3] - dataptr[4];
  144. /* Even part */
  145. tmp10 = tmp0 + tmp3; /* phase 2 */
  146. tmp13 = tmp0 - tmp3;
  147. tmp11 = tmp1 + tmp2;
  148. tmp12 = tmp1 - tmp2;
  149. dataptr[0] = tmp10 + tmp11; /* phase 3 */
  150. dataptr[4] = tmp10 - tmp11;
  151. z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
  152. dataptr[2] = tmp13 + z1; /* phase 5 */
  153. dataptr[6] = tmp13 - z1;
  154. /* Odd part */
  155. tmp10 = tmp4 + tmp5; /* phase 2 */
  156. tmp11 = tmp5 + tmp6;
  157. tmp12 = tmp6 + tmp7;
  158. /* The rotator is modified from fig 4-8 to avoid extra negations. */
  159. z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
  160. z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
  161. z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
  162. z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
  163. z11 = tmp7 + z3; /* phase 5 */
  164. z13 = tmp7 - z3;
  165. dataptr[5] = z13 + z2; /* phase 6 */
  166. dataptr[3] = z13 - z2;
  167. dataptr[1] = z11 + z4;
  168. dataptr[7] = z11 - z4;
  169. dataptr += DCTSIZE; /* advance pointer to next row */
  170. }
  171. }
  172. /*
  173. * Perform the forward DCT on one block of samples.
  174. */
  175. GLOBAL(void)
  176. ff_fdct_ifast (int16_t * data)
  177. {
  178. int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  179. int tmp10, tmp11, tmp12, tmp13;
  180. int z1, z2, z3, z4, z5, z11, z13;
  181. int16_t *dataptr;
  182. int ctr;
  183. row_fdct(data);
  184. /* Pass 2: process columns. */
  185. dataptr = data;
  186. for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  187. tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
  188. tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
  189. tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
  190. tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
  191. tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
  192. tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
  193. tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
  194. tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
  195. /* Even part */
  196. tmp10 = tmp0 + tmp3; /* phase 2 */
  197. tmp13 = tmp0 - tmp3;
  198. tmp11 = tmp1 + tmp2;
  199. tmp12 = tmp1 - tmp2;
  200. dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
  201. dataptr[DCTSIZE*4] = tmp10 - tmp11;
  202. z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
  203. dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
  204. dataptr[DCTSIZE*6] = tmp13 - z1;
  205. /* Odd part */
  206. tmp10 = tmp4 + tmp5; /* phase 2 */
  207. tmp11 = tmp5 + tmp6;
  208. tmp12 = tmp6 + tmp7;
  209. /* The rotator is modified from fig 4-8 to avoid extra negations. */
  210. z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
  211. z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
  212. z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
  213. z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
  214. z11 = tmp7 + z3; /* phase 5 */
  215. z13 = tmp7 - z3;
  216. dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
  217. dataptr[DCTSIZE*3] = z13 - z2;
  218. dataptr[DCTSIZE*1] = z11 + z4;
  219. dataptr[DCTSIZE*7] = z11 - z4;
  220. dataptr++; /* advance pointer to next column */
  221. }
  222. }
  223. /*
  224. * Perform the forward 2-4-8 DCT on one block of samples.
  225. */
  226. GLOBAL(void)
  227. ff_fdct_ifast248 (int16_t * data)
  228. {
  229. int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  230. int tmp10, tmp11, tmp12, tmp13;
  231. int z1;
  232. int16_t *dataptr;
  233. int ctr;
  234. row_fdct(data);
  235. /* Pass 2: process columns. */
  236. dataptr = data;
  237. for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
  238. tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
  239. tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
  240. tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
  241. tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
  242. tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
  243. tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
  244. tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
  245. tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
  246. /* Even part */
  247. tmp10 = tmp0 + tmp3;
  248. tmp11 = tmp1 + tmp2;
  249. tmp12 = tmp1 - tmp2;
  250. tmp13 = tmp0 - tmp3;
  251. dataptr[DCTSIZE*0] = tmp10 + tmp11;
  252. dataptr[DCTSIZE*4] = tmp10 - tmp11;
  253. z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
  254. dataptr[DCTSIZE*2] = tmp13 + z1;
  255. dataptr[DCTSIZE*6] = tmp13 - z1;
  256. tmp10 = tmp4 + tmp7;
  257. tmp11 = tmp5 + tmp6;
  258. tmp12 = tmp5 - tmp6;
  259. tmp13 = tmp4 - tmp7;
  260. dataptr[DCTSIZE*1] = tmp10 + tmp11;
  261. dataptr[DCTSIZE*5] = tmp10 - tmp11;
  262. z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
  263. dataptr[DCTSIZE*3] = tmp13 + z1;
  264. dataptr[DCTSIZE*7] = tmp13 - z1;
  265. dataptr++; /* advance pointer to next column */
  266. }
  267. }
  268. #undef GLOBAL
  269. #undef CONST_BITS
  270. #undef DESCALE
  271. #undef FIX_0_541196100
  272. #undef FIX_1_306562965