You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

275 lines
8.4KB

  1. /*
  2. * Copyright (c) 2013-2014 Mozilla Corporation
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * Celt non-power of 2 iMDCT
  23. */
  24. #include <float.h>
  25. #include <math.h>
  26. #include <stddef.h>
  27. #include "config.h"
  28. #include "libavutil/attributes.h"
  29. #include "libavutil/common.h"
  30. #include "avfft.h"
  31. #include "imdct15.h"
  32. #include "opus.h"
  33. // minimal iMDCT size to make SIMD opts easier
  34. #define CELT_MIN_IMDCT_SIZE 120
  35. // complex c = a * b
  36. #define CMUL3(cre, cim, are, aim, bre, bim) \
  37. do { \
  38. cre = are * bre - aim * bim; \
  39. cim = are * bim + aim * bre; \
  40. } while (0)
  41. #define CMUL(c, a, b) CMUL3((c).re, (c).im, (a).re, (a).im, (b).re, (b).im)
  42. // complex c = a * b
  43. // d = a * conjugate(b)
  44. #define CMUL2(c, d, a, b) \
  45. do { \
  46. float are = (a).re; \
  47. float aim = (a).im; \
  48. float bre = (b).re; \
  49. float bim = (b).im; \
  50. float rr = are * bre; \
  51. float ri = are * bim; \
  52. float ir = aim * bre; \
  53. float ii = aim * bim; \
  54. (c).re = rr - ii; \
  55. (c).im = ri + ir; \
  56. (d).re = rr + ii; \
  57. (d).im = -ri + ir; \
  58. } while (0)
  59. av_cold void ff_imdct15_uninit(IMDCT15Context **ps)
  60. {
  61. IMDCT15Context *s = *ps;
  62. int i;
  63. if (!s)
  64. return;
  65. for (i = 0; i < FF_ARRAY_ELEMS(s->exptab); i++)
  66. av_freep(&s->exptab[i]);
  67. av_freep(&s->twiddle_exptab);
  68. av_freep(&s->tmp);
  69. av_freep(ps);
  70. }
  71. static void imdct15_half(IMDCT15Context *s, float *dst, const float *src,
  72. ptrdiff_t stride, float scale);
  73. av_cold int ff_imdct15_init(IMDCT15Context **ps, int N)
  74. {
  75. IMDCT15Context *s;
  76. int len2 = 15 * (1 << N);
  77. int len = 2 * len2;
  78. int i, j;
  79. if (len2 > CELT_MAX_FRAME_SIZE || len2 < CELT_MIN_IMDCT_SIZE)
  80. return AVERROR(EINVAL);
  81. s = av_mallocz(sizeof(*s));
  82. if (!s)
  83. return AVERROR(ENOMEM);
  84. s->fft_n = N - 1;
  85. s->len4 = len2 / 2;
  86. s->len2 = len2;
  87. s->tmp = av_malloc(len * 2 * sizeof(*s->tmp));
  88. if (!s->tmp)
  89. goto fail;
  90. s->twiddle_exptab = av_malloc(s->len4 * sizeof(*s->twiddle_exptab));
  91. if (!s->twiddle_exptab)
  92. goto fail;
  93. for (i = 0; i < s->len4; i++) {
  94. s->twiddle_exptab[i].re = cos(2 * M_PI * (i + 0.125 + s->len4) / len);
  95. s->twiddle_exptab[i].im = sin(2 * M_PI * (i + 0.125 + s->len4) / len);
  96. }
  97. for (i = 0; i < FF_ARRAY_ELEMS(s->exptab); i++) {
  98. int N = 15 * (1 << i);
  99. s->exptab[i] = av_malloc(sizeof(*s->exptab[i]) * FFMAX(N, 19));
  100. if (!s->exptab[i])
  101. goto fail;
  102. for (j = 0; j < N; j++) {
  103. s->exptab[i][j].re = cos(2 * M_PI * j / N);
  104. s->exptab[i][j].im = sin(2 * M_PI * j / N);
  105. }
  106. }
  107. // wrap around to simplify fft15
  108. for (j = 15; j < 19; j++)
  109. s->exptab[0][j] = s->exptab[0][j - 15];
  110. s->imdct_half = imdct15_half;
  111. if (ARCH_AARCH64)
  112. ff_imdct15_init_aarch64(s);
  113. *ps = s;
  114. return 0;
  115. fail:
  116. ff_imdct15_uninit(&s);
  117. return AVERROR(ENOMEM);
  118. }
  119. static void fft5(FFTComplex *out, const FFTComplex *in, ptrdiff_t stride)
  120. {
  121. // [0] = exp(2 * i * pi / 5), [1] = exp(2 * i * pi * 2 / 5)
  122. static const FFTComplex fact[] = { { 0.30901699437494745, 0.95105651629515353 },
  123. { -0.80901699437494734, 0.58778525229247325 } };
  124. FFTComplex z[4][4];
  125. CMUL2(z[0][0], z[0][3], in[1 * stride], fact[0]);
  126. CMUL2(z[0][1], z[0][2], in[1 * stride], fact[1]);
  127. CMUL2(z[1][0], z[1][3], in[2 * stride], fact[0]);
  128. CMUL2(z[1][1], z[1][2], in[2 * stride], fact[1]);
  129. CMUL2(z[2][0], z[2][3], in[3 * stride], fact[0]);
  130. CMUL2(z[2][1], z[2][2], in[3 * stride], fact[1]);
  131. CMUL2(z[3][0], z[3][3], in[4 * stride], fact[0]);
  132. CMUL2(z[3][1], z[3][2], in[4 * stride], fact[1]);
  133. out[0].re = in[0].re + in[stride].re + in[2 * stride].re + in[3 * stride].re + in[4 * stride].re;
  134. out[0].im = in[0].im + in[stride].im + in[2 * stride].im + in[3 * stride].im + in[4 * stride].im;
  135. out[1].re = in[0].re + z[0][0].re + z[1][1].re + z[2][2].re + z[3][3].re;
  136. out[1].im = in[0].im + z[0][0].im + z[1][1].im + z[2][2].im + z[3][3].im;
  137. out[2].re = in[0].re + z[0][1].re + z[1][3].re + z[2][0].re + z[3][2].re;
  138. out[2].im = in[0].im + z[0][1].im + z[1][3].im + z[2][0].im + z[3][2].im;
  139. out[3].re = in[0].re + z[0][2].re + z[1][0].re + z[2][3].re + z[3][1].re;
  140. out[3].im = in[0].im + z[0][2].im + z[1][0].im + z[2][3].im + z[3][1].im;
  141. out[4].re = in[0].re + z[0][3].re + z[1][2].re + z[2][1].re + z[3][0].re;
  142. out[4].im = in[0].im + z[0][3].im + z[1][2].im + z[2][1].im + z[3][0].im;
  143. }
  144. static void fft15(IMDCT15Context *s, FFTComplex *out, const FFTComplex *in,
  145. ptrdiff_t stride)
  146. {
  147. const FFTComplex *exptab = s->exptab[0];
  148. FFTComplex tmp[5];
  149. FFTComplex tmp1[5];
  150. FFTComplex tmp2[5];
  151. int k;
  152. fft5(tmp, in, stride * 3);
  153. fft5(tmp1, in + stride, stride * 3);
  154. fft5(tmp2, in + 2 * stride, stride * 3);
  155. for (k = 0; k < 5; k++) {
  156. FFTComplex t1, t2;
  157. CMUL(t1, tmp1[k], exptab[k]);
  158. CMUL(t2, tmp2[k], exptab[2 * k]);
  159. out[k].re = tmp[k].re + t1.re + t2.re;
  160. out[k].im = tmp[k].im + t1.im + t2.im;
  161. CMUL(t1, tmp1[k], exptab[k + 5]);
  162. CMUL(t2, tmp2[k], exptab[2 * (k + 5)]);
  163. out[k + 5].re = tmp[k].re + t1.re + t2.re;
  164. out[k + 5].im = tmp[k].im + t1.im + t2.im;
  165. CMUL(t1, tmp1[k], exptab[k + 10]);
  166. CMUL(t2, tmp2[k], exptab[2 * k + 5]);
  167. out[k + 10].re = tmp[k].re + t1.re + t2.re;
  168. out[k + 10].im = tmp[k].im + t1.im + t2.im;
  169. }
  170. }
  171. /*
  172. * FFT of the length 15 * (2^N)
  173. */
  174. static void fft_calc(IMDCT15Context *s, FFTComplex *out, const FFTComplex *in,
  175. int N, ptrdiff_t stride)
  176. {
  177. if (N) {
  178. const FFTComplex *exptab = s->exptab[N];
  179. const int len2 = 15 * (1 << (N - 1));
  180. int k;
  181. fft_calc(s, out, in, N - 1, stride * 2);
  182. fft_calc(s, out + len2, in + stride, N - 1, stride * 2);
  183. for (k = 0; k < len2; k++) {
  184. FFTComplex t;
  185. CMUL(t, out[len2 + k], exptab[k]);
  186. out[len2 + k].re = out[k].re - t.re;
  187. out[len2 + k].im = out[k].im - t.im;
  188. out[k].re += t.re;
  189. out[k].im += t.im;
  190. }
  191. } else
  192. fft15(s, out, in, stride);
  193. }
  194. static void imdct15_half(IMDCT15Context *s, float *dst, const float *src,
  195. ptrdiff_t stride, float scale)
  196. {
  197. FFTComplex *z = (FFTComplex *)dst;
  198. const int len8 = s->len4 / 2;
  199. const float *in1 = src;
  200. const float *in2 = src + (s->len2 - 1) * stride;
  201. int i;
  202. for (i = 0; i < s->len4; i++) {
  203. FFTComplex tmp = { *in2, *in1 };
  204. CMUL(s->tmp[i], tmp, s->twiddle_exptab[i]);
  205. in1 += 2 * stride;
  206. in2 -= 2 * stride;
  207. }
  208. fft_calc(s, z, s->tmp, s->fft_n, 1);
  209. for (i = 0; i < len8; i++) {
  210. float r0, i0, r1, i1;
  211. CMUL3(r0, i1, z[len8 - i - 1].im, z[len8 - i - 1].re, s->twiddle_exptab[len8 - i - 1].im, s->twiddle_exptab[len8 - i - 1].re);
  212. CMUL3(r1, i0, z[len8 + i].im, z[len8 + i].re, s->twiddle_exptab[len8 + i].im, s->twiddle_exptab[len8 + i].re);
  213. z[len8 - i - 1].re = scale * r0;
  214. z[len8 - i - 1].im = scale * i0;
  215. z[len8 + i].re = scale * r1;
  216. z[len8 + i].im = scale * i1;
  217. }
  218. }