You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

827 lines
24KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG-4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264DEC_H
  27. #define AVCODEC_H264DEC_H
  28. #include "libavutil/buffer.h"
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/thread.h"
  31. #include "cabac.h"
  32. #include "error_resilience.h"
  33. #include "h264_parse.h"
  34. #include "h264_ps.h"
  35. #include "h264_sei.h"
  36. #include "h2645_parse.h"
  37. #include "h264chroma.h"
  38. #include "h264dsp.h"
  39. #include "h264pred.h"
  40. #include "h264qpel.h"
  41. #include "internal.h"
  42. #include "mpegutils.h"
  43. #include "parser.h"
  44. #include "qpeldsp.h"
  45. #include "rectangle.h"
  46. #include "videodsp.h"
  47. #define H264_MAX_PICTURE_COUNT 32
  48. #define MAX_MMCO_COUNT 66
  49. #define MAX_DELAYED_PIC_COUNT 16
  50. /* Compiling in interlaced support reduces the speed
  51. * of progressive decoding by about 2%. */
  52. #define ALLOW_INTERLACE
  53. #define FMO 0
  54. /**
  55. * The maximum number of slices supported by the decoder.
  56. * must be a power of 2
  57. */
  58. #define MAX_SLICES 32
  59. #ifdef ALLOW_INTERLACE
  60. #define MB_MBAFF(h) h->mb_mbaff
  61. #define MB_FIELD(h) h->mb_field_decoding_flag
  62. #define FRAME_MBAFF(h) h->mb_aff_frame
  63. #define FIELD_PICTURE(h) (h->picture_structure != PICT_FRAME)
  64. #define LEFT_MBS 2
  65. #define LTOP 0
  66. #define LBOT 1
  67. #define LEFT(i) (i)
  68. #else
  69. #define MB_MBAFF(h) 0
  70. #define MB_FIELD(h) 0
  71. #define FRAME_MBAFF(h) 0
  72. #define FIELD_PICTURE(h) 0
  73. #undef IS_INTERLACED
  74. #define IS_INTERLACED(mb_type) 0
  75. #define LEFT_MBS 1
  76. #define LTOP 0
  77. #define LBOT 0
  78. #define LEFT(i) 0
  79. #endif
  80. #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
  81. #ifndef CABAC
  82. #define CABAC(h) h->ps.pps->cabac
  83. #endif
  84. #define CHROMA422(h) (h->ps.sps->chroma_format_idc == 2)
  85. #define CHROMA444(h) (h->ps.sps->chroma_format_idc == 3)
  86. #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
  87. #define MB_TYPE_8x8DCT 0x01000000
  88. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  89. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  90. /**
  91. * Memory management control operation opcode.
  92. */
  93. typedef enum MMCOOpcode {
  94. MMCO_END = 0,
  95. MMCO_SHORT2UNUSED,
  96. MMCO_LONG2UNUSED,
  97. MMCO_SHORT2LONG,
  98. MMCO_SET_MAX_LONG,
  99. MMCO_RESET,
  100. MMCO_LONG,
  101. } MMCOOpcode;
  102. /**
  103. * Memory management control operation.
  104. */
  105. typedef struct MMCO {
  106. MMCOOpcode opcode;
  107. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  108. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  109. } MMCO;
  110. typedef struct H264Picture {
  111. AVFrame *f;
  112. ThreadFrame tf;
  113. AVBufferRef *qscale_table_buf;
  114. int8_t *qscale_table;
  115. AVBufferRef *motion_val_buf[2];
  116. int16_t (*motion_val[2])[2];
  117. AVBufferRef *mb_type_buf;
  118. uint32_t *mb_type;
  119. AVBufferRef *hwaccel_priv_buf;
  120. void *hwaccel_picture_private; ///< hardware accelerator private data
  121. AVBufferRef *ref_index_buf[2];
  122. int8_t *ref_index[2];
  123. int field_poc[2]; ///< top/bottom POC
  124. int poc; ///< frame POC
  125. int frame_num; ///< frame_num (raw frame_num from slice header)
  126. int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
  127. not mix pictures before and after MMCO_RESET. */
  128. int pic_id; /**< pic_num (short -> no wrap version of pic_num,
  129. pic_num & max_pic_num; long -> long_pic_num) */
  130. int long_ref; ///< 1->long term reference 0->short term reference
  131. int ref_poc[2][2][32]; ///< POCs of the frames used as reference (FIXME need per slice)
  132. int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
  133. int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
  134. int field_picture; ///< whether or not picture was encoded in separate fields
  135. int reference;
  136. int recovered; ///< picture at IDR or recovery point + recovery count
  137. } H264Picture;
  138. typedef struct H264Ref {
  139. uint8_t *data[3];
  140. int linesize[3];
  141. int reference;
  142. int poc;
  143. int pic_id;
  144. H264Picture *parent;
  145. } H264Ref;
  146. typedef struct H264SliceContext {
  147. struct H264Context *h264;
  148. GetBitContext gb;
  149. ERContext er;
  150. int slice_num;
  151. int slice_type;
  152. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  153. int slice_type_fixed;
  154. int qscale;
  155. int chroma_qp[2]; // QPc
  156. int qp_thresh; ///< QP threshold to skip loopfilter
  157. int last_qscale_diff;
  158. // deblock
  159. int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
  160. int slice_alpha_c0_offset;
  161. int slice_beta_offset;
  162. H264PredWeightTable pwt;
  163. int prev_mb_skipped;
  164. int next_mb_skipped;
  165. int chroma_pred_mode;
  166. int intra16x16_pred_mode;
  167. int8_t intra4x4_pred_mode_cache[5 * 8];
  168. int8_t(*intra4x4_pred_mode);
  169. int topleft_mb_xy;
  170. int top_mb_xy;
  171. int topright_mb_xy;
  172. int left_mb_xy[LEFT_MBS];
  173. int topleft_type;
  174. int top_type;
  175. int topright_type;
  176. int left_type[LEFT_MBS];
  177. const uint8_t *left_block;
  178. int topleft_partition;
  179. unsigned int topleft_samples_available;
  180. unsigned int top_samples_available;
  181. unsigned int topright_samples_available;
  182. unsigned int left_samples_available;
  183. ptrdiff_t linesize, uvlinesize;
  184. ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
  185. ptrdiff_t mb_uvlinesize;
  186. int mb_x, mb_y;
  187. int mb_xy;
  188. int resync_mb_x;
  189. int resync_mb_y;
  190. unsigned int first_mb_addr;
  191. // index of the first MB of the next slice
  192. int next_slice_idx;
  193. int mb_skip_run;
  194. int is_complex;
  195. int picture_structure;
  196. int mb_field_decoding_flag;
  197. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  198. int redundant_pic_count;
  199. /**
  200. * number of neighbors (top and/or left) that used 8x8 dct
  201. */
  202. int neighbor_transform_size;
  203. int direct_spatial_mv_pred;
  204. int col_parity;
  205. int col_fieldoff;
  206. int cbp;
  207. int top_cbp;
  208. int left_cbp;
  209. int dist_scale_factor[32];
  210. int dist_scale_factor_field[2][32];
  211. int map_col_to_list0[2][16 + 32];
  212. int map_col_to_list0_field[2][2][16 + 32];
  213. /**
  214. * num_ref_idx_l0/1_active_minus1 + 1
  215. */
  216. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  217. unsigned int list_count;
  218. H264Ref ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  219. * Reordered version of default_ref_list
  220. * according to picture reordering in slice header */
  221. struct {
  222. uint8_t op;
  223. uint8_t val;
  224. } ref_modifications[2][32];
  225. int nb_ref_modifications[2];
  226. unsigned int pps_id;
  227. const uint8_t *intra_pcm_ptr;
  228. int16_t *dc_val_base;
  229. uint8_t *bipred_scratchpad;
  230. uint8_t *edge_emu_buffer;
  231. uint8_t (*top_borders[2])[(16 * 3) * 2];
  232. int bipred_scratchpad_allocated;
  233. int edge_emu_buffer_allocated;
  234. int top_borders_allocated[2];
  235. /**
  236. * non zero coeff count cache.
  237. * is 64 if not available.
  238. */
  239. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
  240. /**
  241. * Motion vector cache.
  242. */
  243. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
  244. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
  245. DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
  246. uint8_t direct_cache[5 * 8];
  247. DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
  248. ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
  249. DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
  250. DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
  251. ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
  252. ///< check that i is not too large or ensure that there is some unused stuff after mb
  253. int16_t mb_padding[256 * 2];
  254. uint8_t (*mvd_table[2])[2];
  255. /**
  256. * Cabac
  257. */
  258. CABACContext cabac;
  259. uint8_t cabac_state[1024];
  260. int cabac_init_idc;
  261. MMCO mmco[MAX_MMCO_COUNT];
  262. int nb_mmco;
  263. int explicit_ref_marking;
  264. int frame_num;
  265. int poc_lsb;
  266. int delta_poc_bottom;
  267. int delta_poc[2];
  268. int curr_pic_num;
  269. int max_pic_num;
  270. } H264SliceContext;
  271. /**
  272. * H264Context
  273. */
  274. typedef struct H264Context {
  275. const AVClass *class;
  276. AVCodecContext *avctx;
  277. VideoDSPContext vdsp;
  278. H264DSPContext h264dsp;
  279. H264ChromaContext h264chroma;
  280. H264QpelContext h264qpel;
  281. H264Picture DPB[H264_MAX_PICTURE_COUNT];
  282. H264Picture *cur_pic_ptr;
  283. H264Picture cur_pic;
  284. H264SliceContext *slice_ctx;
  285. int nb_slice_ctx;
  286. int nb_slice_ctx_queued;
  287. H2645Packet pkt;
  288. int pixel_shift; ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
  289. /* coded dimensions -- 16 * mb w/h */
  290. int width, height;
  291. int chroma_x_shift, chroma_y_shift;
  292. int droppable;
  293. int coded_picture_number;
  294. int context_initialized;
  295. int flags;
  296. int workaround_bugs;
  297. /* Set when slice threading is used and at least one slice uses deblocking
  298. * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
  299. * during normal MB decoding and execute it serially at the end.
  300. */
  301. int postpone_filter;
  302. /*
  303. * Set to 1 when the current picture is IDR, 0 otherwise.
  304. */
  305. int picture_idr;
  306. int crop_left;
  307. int crop_right;
  308. int crop_top;
  309. int crop_bottom;
  310. int8_t(*intra4x4_pred_mode);
  311. H264PredContext hpc;
  312. uint8_t (*non_zero_count)[48];
  313. #define LIST_NOT_USED -1 // FIXME rename?
  314. #define PART_NOT_AVAILABLE -2
  315. /**
  316. * block_offset[ 0..23] for frame macroblocks
  317. * block_offset[24..47] for field macroblocks
  318. */
  319. int block_offset[2 * (16 * 3)];
  320. uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
  321. uint32_t *mb2br_xy;
  322. int b_stride; // FIXME use s->b4_stride
  323. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  324. // interlacing specific flags
  325. int mb_aff_frame;
  326. int picture_structure;
  327. int first_field;
  328. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  329. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
  330. uint16_t *cbp_table;
  331. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  332. uint8_t *chroma_pred_mode_table;
  333. uint8_t (*mvd_table[2])[2];
  334. uint8_t *direct_table;
  335. uint8_t zigzag_scan[16];
  336. uint8_t zigzag_scan8x8[64];
  337. uint8_t zigzag_scan8x8_cavlc[64];
  338. uint8_t field_scan[16];
  339. uint8_t field_scan8x8[64];
  340. uint8_t field_scan8x8_cavlc[64];
  341. const uint8_t *zigzag_scan_q0;
  342. const uint8_t *zigzag_scan8x8_q0;
  343. const uint8_t *zigzag_scan8x8_cavlc_q0;
  344. const uint8_t *field_scan_q0;
  345. const uint8_t *field_scan8x8_q0;
  346. const uint8_t *field_scan8x8_cavlc_q0;
  347. int mb_y;
  348. int mb_height, mb_width;
  349. int mb_stride;
  350. int mb_num;
  351. // =============================================================
  352. // Things below are not used in the MB or more inner code
  353. int nal_ref_idc;
  354. int nal_unit_type;
  355. /**
  356. * Used to parse AVC variant of H.264
  357. */
  358. int is_avc; ///< this flag is != 0 if codec is avc1
  359. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  360. int bit_depth_luma; ///< luma bit depth from sps to detect changes
  361. int chroma_format_idc; ///< chroma format from sps to detect changes
  362. H264ParamSets ps;
  363. uint16_t *slice_table_base;
  364. H264POCContext poc;
  365. H264Picture *short_ref[32];
  366. H264Picture *long_ref[32];
  367. H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
  368. int last_pocs[MAX_DELAYED_PIC_COUNT];
  369. int next_outputed_poc;
  370. /**
  371. * memory management control operations buffer.
  372. */
  373. MMCO mmco[MAX_MMCO_COUNT];
  374. int nb_mmco;
  375. int mmco_reset;
  376. int explicit_ref_marking;
  377. int long_ref_count; ///< number of actual long term references
  378. int short_ref_count; ///< number of actual short term references
  379. /**
  380. * @name Members for slice based multithreading
  381. * @{
  382. */
  383. /**
  384. * current slice number, used to initialize slice_num of each thread/context
  385. */
  386. int current_slice;
  387. /** @} */
  388. /**
  389. * Complement sei_pic_struct
  390. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  391. * However, soft telecined frames may have these values.
  392. * This is used in an attempt to flag soft telecine progressive.
  393. */
  394. int prev_interlaced_frame;
  395. /**
  396. * recovery_frame is the frame_num at which the next frame should
  397. * be fully constructed.
  398. *
  399. * Set to -1 when not expecting a recovery point.
  400. */
  401. int recovery_frame;
  402. /**
  403. * We have seen an IDR, so all the following frames in coded order are correctly
  404. * decodable.
  405. */
  406. #define FRAME_RECOVERED_IDR (1 << 0)
  407. /**
  408. * Sufficient number of frames have been decoded since a SEI recovery point,
  409. * so all the following frames in presentation order are correct.
  410. */
  411. #define FRAME_RECOVERED_SEI (1 << 1)
  412. int frame_recovered; ///< Initial frame has been completely recovered
  413. /* for frame threading, this is set to 1
  414. * after finish_setup() has been called, so we cannot modify
  415. * some context properties (which are supposed to stay constant between
  416. * slices) anymore */
  417. int setup_finished;
  418. /* This is set to 1 if h264_field_start() has been called successfully,
  419. * so all per-field state is properly initialized and we can decode
  420. * the slice data */
  421. int field_started;
  422. /* original AVCodecContext dimensions, used to handle container
  423. * cropping */
  424. int width_from_caller;
  425. int height_from_caller;
  426. AVFrame *output_frame;
  427. int enable_er;
  428. H264SEIContext sei;
  429. AVBufferPool *qscale_table_pool;
  430. AVBufferPool *mb_type_pool;
  431. AVBufferPool *motion_val_pool;
  432. AVBufferPool *ref_index_pool;
  433. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  434. } H264Context;
  435. extern const uint16_t ff_h264_mb_sizes[4];
  436. /**
  437. * Reconstruct bitstream slice_type.
  438. */
  439. int ff_h264_get_slice_type(const H264SliceContext *sl);
  440. /**
  441. * Allocate tables.
  442. * needs width/height
  443. */
  444. int ff_h264_alloc_tables(H264Context *h);
  445. int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
  446. int ff_h264_build_ref_list(const H264Context *h, H264SliceContext *sl);
  447. void ff_h264_remove_all_refs(H264Context *h);
  448. /**
  449. * Execute the reference picture marking (memory management control operations).
  450. */
  451. int ff_h264_execute_ref_pic_marking(H264Context *h);
  452. int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
  453. const H2645NAL *nal, void *logctx);
  454. void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
  455. void ff_h264_decode_init_vlc(void);
  456. /**
  457. * Decode a macroblock
  458. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  459. */
  460. int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
  461. /**
  462. * Decode a CABAC coded macroblock
  463. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  464. */
  465. int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
  466. void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
  467. void ff_h264_init_dequant_tables(H264Context *h);
  468. void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
  469. void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
  470. void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
  471. int *mb_type);
  472. void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
  473. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  474. unsigned int linesize, unsigned int uvlinesize);
  475. void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
  476. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  477. unsigned int linesize, unsigned int uvlinesize);
  478. /*
  479. * o-o o-o
  480. * / / /
  481. * o-o o-o
  482. * ,---'
  483. * o-o o-o
  484. * / / /
  485. * o-o o-o
  486. */
  487. /* Scan8 organization:
  488. * 0 1 2 3 4 5 6 7
  489. * 0 DY y y y y y
  490. * 1 y Y Y Y Y
  491. * 2 y Y Y Y Y
  492. * 3 y Y Y Y Y
  493. * 4 y Y Y Y Y
  494. * 5 DU u u u u u
  495. * 6 u U U U U
  496. * 7 u U U U U
  497. * 8 u U U U U
  498. * 9 u U U U U
  499. * 10 DV v v v v v
  500. * 11 v V V V V
  501. * 12 v V V V V
  502. * 13 v V V V V
  503. * 14 v V V V V
  504. * DY/DU/DV are for luma/chroma DC.
  505. */
  506. #define LUMA_DC_BLOCK_INDEX 48
  507. #define CHROMA_DC_BLOCK_INDEX 49
  508. // This table must be here because scan8[constant] must be known at compiletime
  509. static const uint8_t scan8[16 * 3 + 3] = {
  510. 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
  511. 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
  512. 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
  513. 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
  514. 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
  515. 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
  516. 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
  517. 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
  518. 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
  519. 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
  520. 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
  521. 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
  522. 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
  523. };
  524. static av_always_inline uint32_t pack16to32(int a, int b)
  525. {
  526. #if HAVE_BIGENDIAN
  527. return (b & 0xFFFF) + (a << 16);
  528. #else
  529. return (a & 0xFFFF) + (b << 16);
  530. #endif
  531. }
  532. static av_always_inline uint16_t pack8to16(int a, int b)
  533. {
  534. #if HAVE_BIGENDIAN
  535. return (b & 0xFF) + (a << 8);
  536. #else
  537. return (a & 0xFF) + (b << 8);
  538. #endif
  539. }
  540. /**
  541. * Get the chroma qp.
  542. */
  543. static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
  544. {
  545. return pps->chroma_qp_table[t][qscale];
  546. }
  547. /**
  548. * Get the predicted intra4x4 prediction mode.
  549. */
  550. static av_always_inline int pred_intra_mode(const H264Context *h,
  551. H264SliceContext *sl, int n)
  552. {
  553. const int index8 = scan8[n];
  554. const int left = sl->intra4x4_pred_mode_cache[index8 - 1];
  555. const int top = sl->intra4x4_pred_mode_cache[index8 - 8];
  556. const int min = FFMIN(left, top);
  557. ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
  558. if (min < 0)
  559. return DC_PRED;
  560. else
  561. return min;
  562. }
  563. static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
  564. H264SliceContext *sl)
  565. {
  566. int8_t *i4x4 = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
  567. int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
  568. AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
  569. i4x4[4] = i4x4_cache[7 + 8 * 3];
  570. i4x4[5] = i4x4_cache[7 + 8 * 2];
  571. i4x4[6] = i4x4_cache[7 + 8 * 1];
  572. }
  573. static av_always_inline void write_back_non_zero_count(const H264Context *h,
  574. H264SliceContext *sl)
  575. {
  576. const int mb_xy = sl->mb_xy;
  577. uint8_t *nnz = h->non_zero_count[mb_xy];
  578. uint8_t *nnz_cache = sl->non_zero_count_cache;
  579. AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
  580. AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
  581. AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
  582. AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
  583. AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
  584. AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
  585. AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
  586. AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
  587. if (!h->chroma_y_shift) {
  588. AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
  589. AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
  590. AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
  591. AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
  592. }
  593. }
  594. static av_always_inline void write_back_motion_list(const H264Context *h,
  595. H264SliceContext *sl,
  596. int b_stride,
  597. int b_xy, int b8_xy,
  598. int mb_type, int list)
  599. {
  600. int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
  601. int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
  602. AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
  603. AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
  604. AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
  605. AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
  606. if (CABAC(h)) {
  607. uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
  608. : h->mb2br_xy[sl->mb_xy]];
  609. uint8_t(*mvd_src)[2] = &sl->mvd_cache[list][scan8[0]];
  610. if (IS_SKIP(mb_type)) {
  611. AV_ZERO128(mvd_dst);
  612. } else {
  613. AV_COPY64(mvd_dst, mvd_src + 8 * 3);
  614. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
  615. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
  616. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
  617. }
  618. }
  619. {
  620. int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
  621. int8_t *ref_cache = sl->ref_cache[list];
  622. ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
  623. ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
  624. ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
  625. ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
  626. }
  627. }
  628. static av_always_inline void write_back_motion(const H264Context *h,
  629. H264SliceContext *sl,
  630. int mb_type)
  631. {
  632. const int b_stride = h->b_stride;
  633. const int b_xy = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
  634. const int b8_xy = 4 * sl->mb_xy;
  635. if (USES_LIST(mb_type, 0)) {
  636. write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
  637. } else {
  638. fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
  639. 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  640. }
  641. if (USES_LIST(mb_type, 1))
  642. write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
  643. if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
  644. if (IS_8X8(mb_type)) {
  645. uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
  646. direct_table[1] = sl->sub_mb_type[1] >> 1;
  647. direct_table[2] = sl->sub_mb_type[2] >> 1;
  648. direct_table[3] = sl->sub_mb_type[3] >> 1;
  649. }
  650. }
  651. }
  652. static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
  653. {
  654. if (h->ps.sps->direct_8x8_inference_flag)
  655. return !(AV_RN64A(sl->sub_mb_type) &
  656. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
  657. 0x0001000100010001ULL));
  658. else
  659. return !(AV_RN64A(sl->sub_mb_type) &
  660. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
  661. 0x0001000100010001ULL));
  662. }
  663. int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
  664. int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
  665. void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
  666. int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
  667. void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
  668. /**
  669. * Submit a slice for decoding.
  670. *
  671. * Parse the slice header, starting a new field/frame if necessary. If any
  672. * slices are queued for the previous field, they are decoded.
  673. */
  674. int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
  675. int ff_h264_execute_decode_slices(H264Context *h);
  676. int ff_h264_update_thread_context(AVCodecContext *dst,
  677. const AVCodecContext *src);
  678. void ff_h264_flush_change(H264Context *h);
  679. void ff_h264_free_tables(H264Context *h);
  680. #endif /* AVCODEC_H264DEC_H */