You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

154 lines
4.9KB

  1. /*
  2. * gsm 06.10 decoder
  3. * Copyright (c) 2010 Reimar Döffinger <Reimar.Doeffinger@gmx.de>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * GSM decoder
  24. */
  25. #include "bitstream.h"
  26. #include "gsm.h"
  27. #include "gsmdec_data.h"
  28. static void apcm_dequant_add(BitstreamContext *bc, int16_t *dst, const int *frame_bits)
  29. {
  30. int i, val;
  31. int maxidx = bitstream_read(bc, 6);
  32. const int16_t *tab = ff_gsm_dequant_tab[maxidx];
  33. for (i = 0; i < 13; i++) {
  34. val = bitstream_read(bc, frame_bits[i]);
  35. dst[3 * i] += tab[ff_gsm_requant_tab[frame_bits[i]][val]];
  36. }
  37. }
  38. static inline int gsm_mult(int a, int b)
  39. {
  40. return (a * b + (1 << 14)) >> 15;
  41. }
  42. static void long_term_synth(int16_t *dst, int lag, int gain_idx)
  43. {
  44. int i;
  45. const int16_t *src = dst - lag;
  46. uint16_t gain = ff_gsm_long_term_gain_tab[gain_idx];
  47. for (i = 0; i < 40; i++)
  48. dst[i] = gsm_mult(gain, src[i]);
  49. }
  50. static inline int decode_log_area(int coded, int factor, int offset)
  51. {
  52. coded <<= 10;
  53. coded -= offset;
  54. return gsm_mult(coded, factor) << 1;
  55. }
  56. static av_noinline int get_rrp(int filtered)
  57. {
  58. int abs = FFABS(filtered);
  59. if (abs < 11059) abs <<= 1;
  60. else if (abs < 20070) abs += 11059;
  61. else abs = (abs >> 2) + 26112;
  62. return filtered < 0 ? -abs : abs;
  63. }
  64. static int filter_value(int in, int rrp[8], int v[9])
  65. {
  66. int i;
  67. for (i = 7; i >= 0; i--) {
  68. in -= gsm_mult(rrp[i], v[i]);
  69. v[i + 1] = v[i] + gsm_mult(rrp[i], in);
  70. }
  71. v[0] = in;
  72. return in;
  73. }
  74. static void short_term_synth(GSMContext *ctx, int16_t *dst, const int16_t *src)
  75. {
  76. int i;
  77. int rrp[8];
  78. int *lar = ctx->lar[ctx->lar_idx];
  79. int *lar_prev = ctx->lar[ctx->lar_idx ^ 1];
  80. for (i = 0; i < 8; i++)
  81. rrp[i] = get_rrp((lar_prev[i] >> 2) + (lar_prev[i] >> 1) + (lar[i] >> 2));
  82. for (i = 0; i < 13; i++)
  83. dst[i] = filter_value(src[i], rrp, ctx->v);
  84. for (i = 0; i < 8; i++)
  85. rrp[i] = get_rrp((lar_prev[i] >> 1) + (lar [i] >> 1));
  86. for (i = 13; i < 27; i++)
  87. dst[i] = filter_value(src[i], rrp, ctx->v);
  88. for (i = 0; i < 8; i++)
  89. rrp[i] = get_rrp((lar_prev[i] >> 2) + (lar [i] >> 1) + (lar[i] >> 2));
  90. for (i = 27; i < 40; i++)
  91. dst[i] = filter_value(src[i], rrp, ctx->v);
  92. for (i = 0; i < 8; i++)
  93. rrp[i] = get_rrp(lar[i]);
  94. for (i = 40; i < 160; i++)
  95. dst[i] = filter_value(src[i], rrp, ctx->v);
  96. ctx->lar_idx ^= 1;
  97. }
  98. static int postprocess(int16_t *data, int msr)
  99. {
  100. int i;
  101. for (i = 0; i < 160; i++) {
  102. msr = av_clip_int16(data[i] + gsm_mult(msr, 28180));
  103. data[i] = av_clip_int16(msr << 1) & ~7;
  104. }
  105. return msr;
  106. }
  107. static int gsm_decode_block(AVCodecContext *avctx, int16_t *samples,
  108. BitstreamContext *bc, int mode)
  109. {
  110. GSMContext *ctx = avctx->priv_data;
  111. int i;
  112. int16_t *ref_dst = ctx->ref_buf + 120;
  113. int *lar = ctx->lar[ctx->lar_idx];
  114. lar[0] = decode_log_area(bitstream_read(bc, 6), 13107, 1 << 15);
  115. lar[1] = decode_log_area(bitstream_read(bc, 6), 13107, 1 << 15);
  116. lar[2] = decode_log_area(bitstream_read(bc, 5), 13107, (1 << 14) + 2048 * 2);
  117. lar[3] = decode_log_area(bitstream_read(bc, 5), 13107, (1 << 14) - 2560 * 2);
  118. lar[4] = decode_log_area(bitstream_read(bc, 4), 19223, (1 << 13) + 94 * 2);
  119. lar[5] = decode_log_area(bitstream_read(bc, 4), 17476, (1 << 13) - 1792 * 2);
  120. lar[6] = decode_log_area(bitstream_read(bc, 3), 31454, (1 << 12) - 341 * 2);
  121. lar[7] = decode_log_area(bitstream_read(bc, 3), 29708, (1 << 12) - 1144 * 2);
  122. for (i = 0; i < 4; i++) {
  123. int lag = bitstream_read(bc, 7);
  124. int gain_idx = bitstream_read(bc, 2);
  125. int offset = bitstream_read(bc, 2);
  126. lag = av_clip(lag, 40, 120);
  127. long_term_synth(ref_dst, lag, gain_idx);
  128. apcm_dequant_add(bc, ref_dst + offset, ff_gsm_apcm_bits[mode][i]);
  129. ref_dst += 40;
  130. }
  131. memcpy(ctx->ref_buf, ctx->ref_buf + 160, 120 * sizeof(*ctx->ref_buf));
  132. short_term_synth(ctx, samples, ctx->ref_buf + 120);
  133. // for optimal speed this could be merged with short_term_synth,
  134. // not done yet because it is a bit ugly
  135. ctx->msr = postprocess(samples, ctx->msr);
  136. return 0;
  137. }