You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

477 lines
14KB

  1. /*
  2. * G.726 ADPCM audio codec
  3. * Copyright (c) 2004 Roman Shaposhnik
  4. *
  5. * This is a very straightforward rendition of the G.726
  6. * Section 4 "Computational Details".
  7. *
  8. * This file is part of Libav.
  9. *
  10. * Libav is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * Libav is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with Libav; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <limits.h>
  25. #include "libavutil/channel_layout.h"
  26. #include "libavutil/opt.h"
  27. #include "avcodec.h"
  28. #include "bitstream.h"
  29. #include "internal.h"
  30. #include "put_bits.h"
  31. /**
  32. * G.726 11-bit float.
  33. * G.726 Standard uses rather odd 11-bit floating point arithmetic for
  34. * numerous occasions. It's a mystery to me why they did it this way
  35. * instead of simply using 32-bit integer arithmetic.
  36. */
  37. typedef struct Float11 {
  38. uint8_t sign; /**< 1 bit sign */
  39. uint8_t exp; /**< 4 bits exponent */
  40. uint8_t mant; /**< 6 bits mantissa */
  41. } Float11;
  42. static inline Float11* i2f(int i, Float11* f)
  43. {
  44. f->sign = (i < 0);
  45. if (f->sign)
  46. i = -i;
  47. f->exp = av_log2_16bit(i) + !!i;
  48. f->mant = i? (i<<6) >> f->exp : 1<<5;
  49. return f;
  50. }
  51. static inline int16_t mult(Float11* f1, Float11* f2)
  52. {
  53. int res, exp;
  54. exp = f1->exp + f2->exp;
  55. res = (((f1->mant * f2->mant) + 0x30) >> 4);
  56. res = exp > 19 ? res << (exp - 19) : res >> (19 - exp);
  57. return (f1->sign ^ f2->sign) ? -res : res;
  58. }
  59. static inline int sgn(int value)
  60. {
  61. return (value < 0) ? -1 : 1;
  62. }
  63. typedef struct G726Tables {
  64. const int* quant; /**< quantization table */
  65. const int16_t* iquant; /**< inverse quantization table */
  66. const int16_t* W; /**< special table #1 ;-) */
  67. const uint8_t* F; /**< special table #2 */
  68. } G726Tables;
  69. typedef struct G726Context {
  70. AVClass *class;
  71. G726Tables tbls; /**< static tables needed for computation */
  72. Float11 sr[2]; /**< prev. reconstructed samples */
  73. Float11 dq[6]; /**< prev. difference */
  74. int a[2]; /**< second order predictor coeffs */
  75. int b[6]; /**< sixth order predictor coeffs */
  76. int pk[2]; /**< signs of prev. 2 sez + dq */
  77. int ap; /**< scale factor control */
  78. int yu; /**< fast scale factor */
  79. int yl; /**< slow scale factor */
  80. int dms; /**< short average magnitude of F[i] */
  81. int dml; /**< long average magnitude of F[i] */
  82. int td; /**< tone detect */
  83. int se; /**< estimated signal for the next iteration */
  84. int sez; /**< estimated second order prediction */
  85. int y; /**< quantizer scaling factor for the next iteration */
  86. int code_size;
  87. } G726Context;
  88. static const int quant_tbl16[] = /**< 16kbit/s 2 bits per sample */
  89. { 260, INT_MAX };
  90. static const int16_t iquant_tbl16[] =
  91. { 116, 365, 365, 116 };
  92. static const int16_t W_tbl16[] =
  93. { -22, 439, 439, -22 };
  94. static const uint8_t F_tbl16[] =
  95. { 0, 7, 7, 0 };
  96. static const int quant_tbl24[] = /**< 24kbit/s 3 bits per sample */
  97. { 7, 217, 330, INT_MAX };
  98. static const int16_t iquant_tbl24[] =
  99. { INT16_MIN, 135, 273, 373, 373, 273, 135, INT16_MIN };
  100. static const int16_t W_tbl24[] =
  101. { -4, 30, 137, 582, 582, 137, 30, -4 };
  102. static const uint8_t F_tbl24[] =
  103. { 0, 1, 2, 7, 7, 2, 1, 0 };
  104. static const int quant_tbl32[] = /**< 32kbit/s 4 bits per sample */
  105. { -125, 79, 177, 245, 299, 348, 399, INT_MAX };
  106. static const int16_t iquant_tbl32[] =
  107. { INT16_MIN, 4, 135, 213, 273, 323, 373, 425,
  108. 425, 373, 323, 273, 213, 135, 4, INT16_MIN };
  109. static const int16_t W_tbl32[] =
  110. { -12, 18, 41, 64, 112, 198, 355, 1122,
  111. 1122, 355, 198, 112, 64, 41, 18, -12};
  112. static const uint8_t F_tbl32[] =
  113. { 0, 0, 0, 1, 1, 1, 3, 7, 7, 3, 1, 1, 1, 0, 0, 0 };
  114. static const int quant_tbl40[] = /**< 40kbit/s 5 bits per sample */
  115. { -122, -16, 67, 138, 197, 249, 297, 338,
  116. 377, 412, 444, 474, 501, 527, 552, INT_MAX };
  117. static const int16_t iquant_tbl40[] =
  118. { INT16_MIN, -66, 28, 104, 169, 224, 274, 318,
  119. 358, 395, 429, 459, 488, 514, 539, 566,
  120. 566, 539, 514, 488, 459, 429, 395, 358,
  121. 318, 274, 224, 169, 104, 28, -66, INT16_MIN };
  122. static const int16_t W_tbl40[] =
  123. { 14, 14, 24, 39, 40, 41, 58, 100,
  124. 141, 179, 219, 280, 358, 440, 529, 696,
  125. 696, 529, 440, 358, 280, 219, 179, 141,
  126. 100, 58, 41, 40, 39, 24, 14, 14 };
  127. static const uint8_t F_tbl40[] =
  128. { 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 6,
  129. 6, 6, 5, 4, 3, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
  130. static const G726Tables G726Tables_pool[] =
  131. {{ quant_tbl16, iquant_tbl16, W_tbl16, F_tbl16 },
  132. { quant_tbl24, iquant_tbl24, W_tbl24, F_tbl24 },
  133. { quant_tbl32, iquant_tbl32, W_tbl32, F_tbl32 },
  134. { quant_tbl40, iquant_tbl40, W_tbl40, F_tbl40 }};
  135. /**
  136. * Paragraph 4.2.2 page 18: Adaptive quantizer.
  137. */
  138. static inline uint8_t quant(G726Context* c, int d)
  139. {
  140. int sign, exp, i, dln;
  141. sign = i = 0;
  142. if (d < 0) {
  143. sign = 1;
  144. d = -d;
  145. }
  146. exp = av_log2_16bit(d);
  147. dln = ((exp<<7) + (((d<<7)>>exp)&0x7f)) - (c->y>>2);
  148. while (c->tbls.quant[i] < INT_MAX && c->tbls.quant[i] < dln)
  149. ++i;
  150. if (sign)
  151. i = ~i;
  152. if (c->code_size != 2 && i == 0) /* I'm not sure this is a good idea */
  153. i = 0xff;
  154. return i;
  155. }
  156. /**
  157. * Paragraph 4.2.3 page 22: Inverse adaptive quantizer.
  158. */
  159. static inline int16_t inverse_quant(G726Context* c, int i)
  160. {
  161. int dql, dex, dqt;
  162. dql = c->tbls.iquant[i] + (c->y >> 2);
  163. dex = (dql>>7) & 0xf; /* 4-bit exponent */
  164. dqt = (1<<7) + (dql & 0x7f); /* log2 -> linear */
  165. return (dql < 0) ? 0 : ((dqt<<dex) >> 7);
  166. }
  167. static int16_t g726_decode(G726Context* c, int I)
  168. {
  169. int dq, re_signal, pk0, fa1, i, tr, ylint, ylfrac, thr2, al, dq0;
  170. Float11 f;
  171. int I_sig= I >> (c->code_size - 1);
  172. dq = inverse_quant(c, I);
  173. /* Transition detect */
  174. ylint = (c->yl >> 15);
  175. ylfrac = (c->yl >> 10) & 0x1f;
  176. thr2 = (ylint > 9) ? 0x1f << 10 : (0x20 + ylfrac) << ylint;
  177. tr= (c->td == 1 && dq > ((3*thr2)>>2));
  178. if (I_sig) /* get the sign */
  179. dq = -dq;
  180. re_signal = c->se + dq;
  181. /* Update second order predictor coefficient A2 and A1 */
  182. pk0 = (c->sez + dq) ? sgn(c->sez + dq) : 0;
  183. dq0 = dq ? sgn(dq) : 0;
  184. if (tr) {
  185. c->a[0] = 0;
  186. c->a[1] = 0;
  187. for (i=0; i<6; i++)
  188. c->b[i] = 0;
  189. } else {
  190. /* This is a bit crazy, but it really is +255 not +256 */
  191. fa1 = av_clip_intp2((-c->a[0]*c->pk[0]*pk0)>>5, 8);
  192. c->a[1] += 128*pk0*c->pk[1] + fa1 - (c->a[1]>>7);
  193. c->a[1] = av_clip(c->a[1], -12288, 12288);
  194. c->a[0] += 64*3*pk0*c->pk[0] - (c->a[0] >> 8);
  195. c->a[0] = av_clip(c->a[0], -(15360 - c->a[1]), 15360 - c->a[1]);
  196. for (i=0; i<6; i++)
  197. c->b[i] += 128*dq0*sgn(-c->dq[i].sign) - (c->b[i]>>8);
  198. }
  199. /* Update Dq and Sr and Pk */
  200. c->pk[1] = c->pk[0];
  201. c->pk[0] = pk0 ? pk0 : 1;
  202. c->sr[1] = c->sr[0];
  203. i2f(re_signal, &c->sr[0]);
  204. for (i=5; i>0; i--)
  205. c->dq[i] = c->dq[i-1];
  206. i2f(dq, &c->dq[0]);
  207. c->dq[0].sign = I_sig; /* Isn't it crazy ?!?! */
  208. c->td = c->a[1] < -11776;
  209. /* Update Ap */
  210. c->dms += (c->tbls.F[I]<<4) + ((- c->dms) >> 5);
  211. c->dml += (c->tbls.F[I]<<4) + ((- c->dml) >> 7);
  212. if (tr)
  213. c->ap = 256;
  214. else {
  215. c->ap += (-c->ap) >> 4;
  216. if (c->y <= 1535 || c->td || abs((c->dms << 2) - c->dml) >= (c->dml >> 3))
  217. c->ap += 0x20;
  218. }
  219. /* Update Yu and Yl */
  220. c->yu = av_clip(c->y + c->tbls.W[I] + ((-c->y)>>5), 544, 5120);
  221. c->yl += c->yu + ((-c->yl)>>6);
  222. /* Next iteration for Y */
  223. al = (c->ap >= 256) ? 1<<6 : c->ap >> 2;
  224. c->y = (c->yl + (c->yu - (c->yl>>6))*al) >> 6;
  225. /* Next iteration for SE and SEZ */
  226. c->se = 0;
  227. for (i=0; i<6; i++)
  228. c->se += mult(i2f(c->b[i] >> 2, &f), &c->dq[i]);
  229. c->sez = c->se >> 1;
  230. for (i=0; i<2; i++)
  231. c->se += mult(i2f(c->a[i] >> 2, &f), &c->sr[i]);
  232. c->se >>= 1;
  233. return av_clip(re_signal << 2, -0xffff, 0xffff);
  234. }
  235. static av_cold int g726_reset(G726Context *c)
  236. {
  237. int i;
  238. c->tbls = G726Tables_pool[c->code_size - 2];
  239. for (i=0; i<2; i++) {
  240. c->sr[i].mant = 1<<5;
  241. c->pk[i] = 1;
  242. }
  243. for (i=0; i<6; i++) {
  244. c->dq[i].mant = 1<<5;
  245. }
  246. c->yu = 544;
  247. c->yl = 34816;
  248. c->y = 544;
  249. return 0;
  250. }
  251. #if CONFIG_ADPCM_G726_ENCODER
  252. static int16_t g726_encode(G726Context* c, int16_t sig)
  253. {
  254. uint8_t i;
  255. i = quant(c, sig/4 - c->se) & ((1<<c->code_size) - 1);
  256. g726_decode(c, i);
  257. return i;
  258. }
  259. /* Interfacing to the libavcodec */
  260. static av_cold int g726_encode_init(AVCodecContext *avctx)
  261. {
  262. G726Context* c = avctx->priv_data;
  263. if (avctx->strict_std_compliance > FF_COMPLIANCE_UNOFFICIAL &&
  264. avctx->sample_rate != 8000) {
  265. av_log(avctx, AV_LOG_ERROR, "Sample rates other than 8kHz are not "
  266. "allowed when the compliance level is higher than unofficial. "
  267. "Resample or reduce the compliance level.\n");
  268. return AVERROR(EINVAL);
  269. }
  270. if (avctx->sample_rate <= 0) {
  271. av_log(avctx, AV_LOG_ERROR, "Invalid sample rate %d\n",
  272. avctx->sample_rate);
  273. return AVERROR(EINVAL);
  274. }
  275. if(avctx->channels != 1){
  276. av_log(avctx, AV_LOG_ERROR, "Only mono is supported\n");
  277. return AVERROR(EINVAL);
  278. }
  279. if (avctx->bit_rate)
  280. c->code_size = (avctx->bit_rate + avctx->sample_rate/2) / avctx->sample_rate;
  281. c->code_size = av_clip(c->code_size, 2, 5);
  282. avctx->bit_rate = c->code_size * avctx->sample_rate;
  283. avctx->bits_per_coded_sample = c->code_size;
  284. g726_reset(c);
  285. /* select a frame size that will end on a byte boundary and have a size of
  286. approximately 1024 bytes */
  287. avctx->frame_size = ((int[]){ 4096, 2736, 2048, 1640 })[c->code_size - 2];
  288. return 0;
  289. }
  290. static int g726_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  291. const AVFrame *frame, int *got_packet_ptr)
  292. {
  293. G726Context *c = avctx->priv_data;
  294. const int16_t *samples = (const int16_t *)frame->data[0];
  295. PutBitContext pb;
  296. int i, ret, out_size;
  297. out_size = (frame->nb_samples * c->code_size + 7) / 8;
  298. if ((ret = ff_alloc_packet(avpkt, out_size))) {
  299. av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
  300. return ret;
  301. }
  302. init_put_bits(&pb, avpkt->data, avpkt->size);
  303. for (i = 0; i < frame->nb_samples; i++)
  304. put_bits(&pb, c->code_size, g726_encode(c, *samples++));
  305. flush_put_bits(&pb);
  306. avpkt->size = out_size;
  307. *got_packet_ptr = 1;
  308. return 0;
  309. }
  310. #define OFFSET(x) offsetof(G726Context, x)
  311. #define AE AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  312. static const AVOption options[] = {
  313. { "code_size", "Bits per code", OFFSET(code_size), AV_OPT_TYPE_INT, { .i64 = 4 }, 2, 5, AE },
  314. { NULL },
  315. };
  316. static const AVClass class = {
  317. .class_name = "g726",
  318. .item_name = av_default_item_name,
  319. .option = options,
  320. .version = LIBAVUTIL_VERSION_INT,
  321. };
  322. static const AVCodecDefault defaults[] = {
  323. { "b", "0" },
  324. { NULL },
  325. };
  326. AVCodec ff_adpcm_g726_encoder = {
  327. .name = "g726",
  328. .long_name = NULL_IF_CONFIG_SMALL("G.726 ADPCM"),
  329. .type = AVMEDIA_TYPE_AUDIO,
  330. .id = AV_CODEC_ID_ADPCM_G726,
  331. .priv_data_size = sizeof(G726Context),
  332. .init = g726_encode_init,
  333. .encode2 = g726_encode_frame,
  334. .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME,
  335. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
  336. AV_SAMPLE_FMT_NONE },
  337. .priv_class = &class,
  338. .defaults = defaults,
  339. };
  340. #endif
  341. #if CONFIG_ADPCM_G726_DECODER
  342. static av_cold int g726_decode_init(AVCodecContext *avctx)
  343. {
  344. G726Context* c = avctx->priv_data;
  345. avctx->channels = 1;
  346. avctx->channel_layout = AV_CH_LAYOUT_MONO;
  347. c->code_size = avctx->bits_per_coded_sample;
  348. if (c->code_size < 2 || c->code_size > 5) {
  349. av_log(avctx, AV_LOG_ERROR, "Invalid number of bits %d\n", c->code_size);
  350. return AVERROR(EINVAL);
  351. }
  352. g726_reset(c);
  353. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  354. return 0;
  355. }
  356. static int g726_decode_frame(AVCodecContext *avctx, void *data,
  357. int *got_frame_ptr, AVPacket *avpkt)
  358. {
  359. AVFrame *frame = data;
  360. const uint8_t *buf = avpkt->data;
  361. int buf_size = avpkt->size;
  362. G726Context *c = avctx->priv_data;
  363. int16_t *samples;
  364. BitstreamContext bc;
  365. int out_samples, ret;
  366. out_samples = buf_size * 8 / c->code_size;
  367. /* get output buffer */
  368. frame->nb_samples = out_samples;
  369. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  370. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  371. return ret;
  372. }
  373. samples = (int16_t *)frame->data[0];
  374. bitstream_init8(&bc, buf, buf_size);
  375. while (out_samples--)
  376. *samples++ = g726_decode(c, bitstream_read(&bc, c->code_size));
  377. if (bitstream_bits_left(&bc) > 0)
  378. av_log(avctx, AV_LOG_ERROR, "Frame invalidly split, missing parser?\n");
  379. *got_frame_ptr = 1;
  380. return buf_size;
  381. }
  382. static void g726_decode_flush(AVCodecContext *avctx)
  383. {
  384. G726Context *c = avctx->priv_data;
  385. g726_reset(c);
  386. }
  387. AVCodec ff_adpcm_g726_decoder = {
  388. .name = "g726",
  389. .long_name = NULL_IF_CONFIG_SMALL("G.726 ADPCM"),
  390. .type = AVMEDIA_TYPE_AUDIO,
  391. .id = AV_CODEC_ID_ADPCM_G726,
  392. .priv_data_size = sizeof(G726Context),
  393. .init = g726_decode_init,
  394. .decode = g726_decode_frame,
  395. .flush = g726_decode_flush,
  396. .capabilities = AV_CODEC_CAP_DR1,
  397. };
  398. #endif