|
- /*
- * G.722 ADPCM audio encoder/decoder
- *
- * Copyright (c) CMU 1993 Computer Science, Speech Group
- * Chengxiang Lu and Alex Hauptmann
- * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
- * Copyright (c) 2009 Kenan Gillet
- * Copyright (c) 2010 Martin Storsjo
- *
- * This file is part of Libav.
- *
- * Libav is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * Libav is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with Libav; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- /**
- * @file
- * G.722 ADPCM audio codec
- *
- * This G.722 decoder is a bit-exact implementation of the ITU G.722
- * specification for all three specified bitrates - 64000bps, 56000bps
- * and 48000bps. It passes the ITU tests.
- *
- * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits
- * respectively of each byte are ignored.
- */
-
- #include "mathops.h"
- #include "g722.h"
-
- static const int8_t sign_lookup[2] = { -1, 1 };
-
- static const int16_t inv_log2_table[32] = {
- 2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
- 2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
- 2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
- 3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008
- };
- static const int16_t high_log_factor_step[2] = { 798, -214 };
- const int16_t ff_g722_high_inv_quant[4] = { -926, -202, 926, 202 };
- /**
- * low_log_factor_step[index] == wl[rl42[index]]
- */
- static const int16_t low_log_factor_step[16] = {
- -60, 3042, 1198, 538, 334, 172, 58, -30,
- 3042, 1198, 538, 334, 172, 58, -30, -60
- };
- const int16_t ff_g722_low_inv_quant4[16] = {
- 0, -2557, -1612, -1121, -786, -530, -323, -150,
- 2557, 1612, 1121, 786, 530, 323, 150, 0
- };
- const int16_t ff_g722_low_inv_quant6[64] = {
- -17, -17, -17, -17, -3101, -2738, -2376, -2088,
- -1873, -1689, -1535, -1399, -1279, -1170, -1072, -982,
- -899, -822, -750, -682, -618, -558, -501, -447,
- -396, -347, -300, -254, -211, -170, -130, -91,
- 3101, 2738, 2376, 2088, 1873, 1689, 1535, 1399,
- 1279, 1170, 1072, 982, 899, 822, 750, 682,
- 618, 558, 501, 447, 396, 347, 300, 254,
- 211, 170, 130, 91, 54, 17, -54, -17
- };
-
- static inline void s_zero(int cur_diff, struct G722Band *band)
- {
- int s_zero = 0;
-
- #define ACCUM(k, x, d) do { \
- int tmp = x; \
- band->zero_mem[k] = ((band->zero_mem[k] * 255) >> 8) + \
- d*((band->diff_mem[k]^cur_diff) < 0 ? -128 : 128); \
- band->diff_mem[k] = tmp; \
- s_zero += (tmp * band->zero_mem[k]) >> 15; \
- } while (0)
- if (cur_diff) {
- ACCUM(5, band->diff_mem[4], 1);
- ACCUM(4, band->diff_mem[3], 1);
- ACCUM(3, band->diff_mem[2], 1);
- ACCUM(2, band->diff_mem[1], 1);
- ACCUM(1, band->diff_mem[0], 1);
- ACCUM(0, cur_diff << 1, 1);
- } else {
- ACCUM(5, band->diff_mem[4], 0);
- ACCUM(4, band->diff_mem[3], 0);
- ACCUM(3, band->diff_mem[2], 0);
- ACCUM(2, band->diff_mem[1], 0);
- ACCUM(1, band->diff_mem[0], 0);
- ACCUM(0, cur_diff << 1, 0);
- }
- #undef ACCUM
- band->s_zero = s_zero;
- }
-
- /**
- * adaptive predictor
- *
- * @param cur_diff the dequantized and scaled delta calculated from the
- * current codeword
- */
- static void do_adaptive_prediction(struct G722Band *band, const int cur_diff)
- {
- int sg[2], limit, cur_qtzd_reconst;
-
- const int cur_part_reconst = band->s_zero + cur_diff < 0;
-
- sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]];
- sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]];
- band->part_reconst_mem[1] = band->part_reconst_mem[0];
- band->part_reconst_mem[0] = cur_part_reconst;
-
- band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) +
- (sg[1] << 7) + (band->pole_mem[1] * 127 >> 7), -12288, 12288);
-
- limit = 15360 - band->pole_mem[1];
- band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit);
-
- s_zero(cur_diff, band);
-
- cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1);
- band->s_predictor = av_clip_int16(band->s_zero +
- (band->pole_mem[0] * cur_qtzd_reconst >> 15) +
- (band->pole_mem[1] * band->prev_qtzd_reconst >> 15));
- band->prev_qtzd_reconst = cur_qtzd_reconst;
- }
-
- static inline int linear_scale_factor(const int log_factor)
- {
- const int wd1 = inv_log2_table[(log_factor >> 6) & 31];
- const int shift = log_factor >> 11;
- return shift < 0 ? wd1 >> -shift : wd1 << shift;
- }
-
- void ff_g722_update_low_predictor(struct G722Band *band, const int ilow)
- {
- do_adaptive_prediction(band,
- band->scale_factor * ff_g722_low_inv_quant4[ilow] >> 10);
-
- // quantizer adaptation
- band->log_factor = av_clip((band->log_factor * 127 >> 7) +
- low_log_factor_step[ilow], 0, 18432);
- band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11));
- }
-
- void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh,
- const int ihigh)
- {
- do_adaptive_prediction(band, dhigh);
-
- // quantizer adaptation
- band->log_factor = av_clip((band->log_factor * 127 >> 7) +
- high_log_factor_step[ihigh&1], 0, 22528);
- band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11));
- }
|