You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

164 lines
5.9KB

  1. /*
  2. * G.722 ADPCM audio encoder/decoder
  3. *
  4. * Copyright (c) CMU 1993 Computer Science, Speech Group
  5. * Chengxiang Lu and Alex Hauptmann
  6. * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
  7. * Copyright (c) 2009 Kenan Gillet
  8. * Copyright (c) 2010 Martin Storsjo
  9. *
  10. * This file is part of Libav.
  11. *
  12. * Libav is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU Lesser General Public
  14. * License as published by the Free Software Foundation; either
  15. * version 2.1 of the License, or (at your option) any later version.
  16. *
  17. * Libav is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  20. * Lesser General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU Lesser General Public
  23. * License along with Libav; if not, write to the Free Software
  24. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  25. */
  26. /**
  27. * @file
  28. * G.722 ADPCM audio codec
  29. *
  30. * This G.722 decoder is a bit-exact implementation of the ITU G.722
  31. * specification for all three specified bitrates - 64000bps, 56000bps
  32. * and 48000bps. It passes the ITU tests.
  33. *
  34. * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits
  35. * respectively of each byte are ignored.
  36. */
  37. #include "mathops.h"
  38. #include "g722.h"
  39. static const int8_t sign_lookup[2] = { -1, 1 };
  40. static const int16_t inv_log2_table[32] = {
  41. 2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
  42. 2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
  43. 2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
  44. 3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008
  45. };
  46. static const int16_t high_log_factor_step[2] = { 798, -214 };
  47. const int16_t ff_g722_high_inv_quant[4] = { -926, -202, 926, 202 };
  48. /**
  49. * low_log_factor_step[index] == wl[rl42[index]]
  50. */
  51. static const int16_t low_log_factor_step[16] = {
  52. -60, 3042, 1198, 538, 334, 172, 58, -30,
  53. 3042, 1198, 538, 334, 172, 58, -30, -60
  54. };
  55. const int16_t ff_g722_low_inv_quant4[16] = {
  56. 0, -2557, -1612, -1121, -786, -530, -323, -150,
  57. 2557, 1612, 1121, 786, 530, 323, 150, 0
  58. };
  59. const int16_t ff_g722_low_inv_quant6[64] = {
  60. -17, -17, -17, -17, -3101, -2738, -2376, -2088,
  61. -1873, -1689, -1535, -1399, -1279, -1170, -1072, -982,
  62. -899, -822, -750, -682, -618, -558, -501, -447,
  63. -396, -347, -300, -254, -211, -170, -130, -91,
  64. 3101, 2738, 2376, 2088, 1873, 1689, 1535, 1399,
  65. 1279, 1170, 1072, 982, 899, 822, 750, 682,
  66. 618, 558, 501, 447, 396, 347, 300, 254,
  67. 211, 170, 130, 91, 54, 17, -54, -17
  68. };
  69. static inline void s_zero(int cur_diff, struct G722Band *band)
  70. {
  71. int s_zero = 0;
  72. #define ACCUM(k, x, d) do { \
  73. int tmp = x; \
  74. band->zero_mem[k] = ((band->zero_mem[k] * 255) >> 8) + \
  75. d*((band->diff_mem[k]^cur_diff) < 0 ? -128 : 128); \
  76. band->diff_mem[k] = tmp; \
  77. s_zero += (tmp * band->zero_mem[k]) >> 15; \
  78. } while (0)
  79. if (cur_diff) {
  80. ACCUM(5, band->diff_mem[4], 1);
  81. ACCUM(4, band->diff_mem[3], 1);
  82. ACCUM(3, band->diff_mem[2], 1);
  83. ACCUM(2, band->diff_mem[1], 1);
  84. ACCUM(1, band->diff_mem[0], 1);
  85. ACCUM(0, cur_diff << 1, 1);
  86. } else {
  87. ACCUM(5, band->diff_mem[4], 0);
  88. ACCUM(4, band->diff_mem[3], 0);
  89. ACCUM(3, band->diff_mem[2], 0);
  90. ACCUM(2, band->diff_mem[1], 0);
  91. ACCUM(1, band->diff_mem[0], 0);
  92. ACCUM(0, cur_diff << 1, 0);
  93. }
  94. #undef ACCUM
  95. band->s_zero = s_zero;
  96. }
  97. /**
  98. * adaptive predictor
  99. *
  100. * @param cur_diff the dequantized and scaled delta calculated from the
  101. * current codeword
  102. */
  103. static void do_adaptive_prediction(struct G722Band *band, const int cur_diff)
  104. {
  105. int sg[2], limit, cur_qtzd_reconst;
  106. const int cur_part_reconst = band->s_zero + cur_diff < 0;
  107. sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]];
  108. sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]];
  109. band->part_reconst_mem[1] = band->part_reconst_mem[0];
  110. band->part_reconst_mem[0] = cur_part_reconst;
  111. band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) +
  112. (sg[1] << 7) + (band->pole_mem[1] * 127 >> 7), -12288, 12288);
  113. limit = 15360 - band->pole_mem[1];
  114. band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit);
  115. s_zero(cur_diff, band);
  116. cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1);
  117. band->s_predictor = av_clip_int16(band->s_zero +
  118. (band->pole_mem[0] * cur_qtzd_reconst >> 15) +
  119. (band->pole_mem[1] * band->prev_qtzd_reconst >> 15));
  120. band->prev_qtzd_reconst = cur_qtzd_reconst;
  121. }
  122. static inline int linear_scale_factor(const int log_factor)
  123. {
  124. const int wd1 = inv_log2_table[(log_factor >> 6) & 31];
  125. const int shift = log_factor >> 11;
  126. return shift < 0 ? wd1 >> -shift : wd1 << shift;
  127. }
  128. void ff_g722_update_low_predictor(struct G722Band *band, const int ilow)
  129. {
  130. do_adaptive_prediction(band,
  131. band->scale_factor * ff_g722_low_inv_quant4[ilow] >> 10);
  132. // quantizer adaptation
  133. band->log_factor = av_clip((band->log_factor * 127 >> 7) +
  134. low_log_factor_step[ilow], 0, 18432);
  135. band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11));
  136. }
  137. void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh,
  138. const int ihigh)
  139. {
  140. do_adaptive_prediction(band, dhigh);
  141. // quantizer adaptation
  142. band->log_factor = av_clip((band->log_factor * 127 >> 7) +
  143. high_log_factor_step[ihigh&1], 0, 22528);
  144. band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11));
  145. }