You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

347 lines
8.7KB

  1. /*
  2. * FFT/IFFT transforms
  3. * Copyright (c) 2008 Loren Merritt
  4. * Copyright (c) 2002 Fabrice Bellard
  5. * Partly based on libdjbfft by D. J. Bernstein
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * FFT/IFFT transforms.
  26. */
  27. #include <stdlib.h>
  28. #include <string.h>
  29. #include "libavutil/mathematics.h"
  30. #include "fft.h"
  31. #include "fft-internal.h"
  32. /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
  33. #if !CONFIG_HARDCODED_TABLES
  34. COSTABLE(16);
  35. COSTABLE(32);
  36. COSTABLE(64);
  37. COSTABLE(128);
  38. COSTABLE(256);
  39. COSTABLE(512);
  40. COSTABLE(1024);
  41. COSTABLE(2048);
  42. COSTABLE(4096);
  43. COSTABLE(8192);
  44. COSTABLE(16384);
  45. COSTABLE(32768);
  46. COSTABLE(65536);
  47. #endif
  48. COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
  49. NULL, NULL, NULL, NULL,
  50. FFT_NAME(ff_cos_16),
  51. FFT_NAME(ff_cos_32),
  52. FFT_NAME(ff_cos_64),
  53. FFT_NAME(ff_cos_128),
  54. FFT_NAME(ff_cos_256),
  55. FFT_NAME(ff_cos_512),
  56. FFT_NAME(ff_cos_1024),
  57. FFT_NAME(ff_cos_2048),
  58. FFT_NAME(ff_cos_4096),
  59. FFT_NAME(ff_cos_8192),
  60. FFT_NAME(ff_cos_16384),
  61. FFT_NAME(ff_cos_32768),
  62. FFT_NAME(ff_cos_65536),
  63. };
  64. static void fft_permute_c(FFTContext *s, FFTComplex *z);
  65. static void fft_calc_c(FFTContext *s, FFTComplex *z);
  66. static int split_radix_permutation(int i, int n, int inverse)
  67. {
  68. int m;
  69. if(n <= 2) return i&1;
  70. m = n >> 1;
  71. if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
  72. m >>= 1;
  73. if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
  74. else return split_radix_permutation(i, m, inverse)*4 - 1;
  75. }
  76. av_cold void ff_init_ff_cos_tabs(int index)
  77. {
  78. #if !CONFIG_HARDCODED_TABLES
  79. int i;
  80. int m = 1<<index;
  81. double freq = 2*M_PI/m;
  82. FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
  83. for(i=0; i<=m/4; i++)
  84. tab[i] = FIX15(cos(i*freq));
  85. for(i=1; i<m/4; i++)
  86. tab[m/2-i] = tab[i];
  87. #endif
  88. }
  89. static const int avx_tab[] = {
  90. 0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
  91. };
  92. static int is_second_half_of_fft32(int i, int n)
  93. {
  94. if (n <= 32)
  95. return i >= 16;
  96. else if (i < n/2)
  97. return is_second_half_of_fft32(i, n/2);
  98. else if (i < 3*n/4)
  99. return is_second_half_of_fft32(i - n/2, n/4);
  100. else
  101. return is_second_half_of_fft32(i - 3*n/4, n/4);
  102. }
  103. static av_cold void fft_perm_avx(FFTContext *s)
  104. {
  105. int i;
  106. int n = 1 << s->nbits;
  107. for (i = 0; i < n; i += 16) {
  108. int k;
  109. if (is_second_half_of_fft32(i, n)) {
  110. for (k = 0; k < 16; k++)
  111. s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] =
  112. i + avx_tab[k];
  113. } else {
  114. for (k = 0; k < 16; k++) {
  115. int j = i + k;
  116. j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4);
  117. s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = j;
  118. }
  119. }
  120. }
  121. }
  122. av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
  123. {
  124. int i, j, n;
  125. if (nbits < 2 || nbits > 16)
  126. goto fail;
  127. s->nbits = nbits;
  128. n = 1 << nbits;
  129. s->revtab = av_malloc(n * sizeof(uint16_t));
  130. if (!s->revtab)
  131. goto fail;
  132. s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
  133. if (!s->tmp_buf)
  134. goto fail;
  135. s->inverse = inverse;
  136. s->fft_permutation = FF_FFT_PERM_DEFAULT;
  137. s->fft_permute = fft_permute_c;
  138. s->fft_calc = fft_calc_c;
  139. #if FFT_FLOAT
  140. if (ARCH_AARCH64) ff_fft_init_aarch64(s);
  141. if (ARCH_ARM) ff_fft_init_arm(s);
  142. if (ARCH_PPC) ff_fft_init_ppc(s);
  143. if (ARCH_X86) ff_fft_init_x86(s);
  144. #else
  145. if (ARCH_ARM) ff_fft_fixed_init_arm(s);
  146. #endif
  147. for(j=4; j<=nbits; j++) {
  148. ff_init_ff_cos_tabs(j);
  149. }
  150. if (s->fft_permutation == FF_FFT_PERM_AVX) {
  151. fft_perm_avx(s);
  152. } else {
  153. for(i=0; i<n; i++) {
  154. int j = i;
  155. if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS)
  156. j = (j&~3) | ((j>>1)&1) | ((j<<1)&2);
  157. s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = j;
  158. }
  159. }
  160. return 0;
  161. fail:
  162. av_freep(&s->revtab);
  163. av_freep(&s->tmp_buf);
  164. return -1;
  165. }
  166. static void fft_permute_c(FFTContext *s, FFTComplex *z)
  167. {
  168. int j, np;
  169. const uint16_t *revtab = s->revtab;
  170. np = 1 << s->nbits;
  171. /* TODO: handle split-radix permute in a more optimal way, probably in-place */
  172. for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
  173. memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
  174. }
  175. av_cold void ff_fft_end(FFTContext *s)
  176. {
  177. av_freep(&s->revtab);
  178. av_freep(&s->tmp_buf);
  179. }
  180. #define BUTTERFLIES(a0,a1,a2,a3) {\
  181. BF(t3, t5, t5, t1);\
  182. BF(a2.re, a0.re, a0.re, t5);\
  183. BF(a3.im, a1.im, a1.im, t3);\
  184. BF(t4, t6, t2, t6);\
  185. BF(a3.re, a1.re, a1.re, t4);\
  186. BF(a2.im, a0.im, a0.im, t6);\
  187. }
  188. // force loading all the inputs before storing any.
  189. // this is slightly slower for small data, but avoids store->load aliasing
  190. // for addresses separated by large powers of 2.
  191. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
  192. FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
  193. BF(t3, t5, t5, t1);\
  194. BF(a2.re, a0.re, r0, t5);\
  195. BF(a3.im, a1.im, i1, t3);\
  196. BF(t4, t6, t2, t6);\
  197. BF(a3.re, a1.re, r1, t4);\
  198. BF(a2.im, a0.im, i0, t6);\
  199. }
  200. #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
  201. CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
  202. CMUL(t5, t6, a3.re, a3.im, wre, wim);\
  203. BUTTERFLIES(a0,a1,a2,a3)\
  204. }
  205. #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
  206. t1 = a2.re;\
  207. t2 = a2.im;\
  208. t5 = a3.re;\
  209. t6 = a3.im;\
  210. BUTTERFLIES(a0,a1,a2,a3)\
  211. }
  212. /* z[0...8n-1], w[1...2n-1] */
  213. #define PASS(name)\
  214. static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
  215. {\
  216. FFTDouble t1, t2, t3, t4, t5, t6;\
  217. int o1 = 2*n;\
  218. int o2 = 4*n;\
  219. int o3 = 6*n;\
  220. const FFTSample *wim = wre+o1;\
  221. n--;\
  222. \
  223. TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
  224. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  225. do {\
  226. z += 2;\
  227. wre += 2;\
  228. wim -= 2;\
  229. TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
  230. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  231. } while(--n);\
  232. }
  233. PASS(pass)
  234. #undef BUTTERFLIES
  235. #define BUTTERFLIES BUTTERFLIES_BIG
  236. PASS(pass_big)
  237. #define DECL_FFT(n,n2,n4)\
  238. static void fft##n(FFTComplex *z)\
  239. {\
  240. fft##n2(z);\
  241. fft##n4(z+n4*2);\
  242. fft##n4(z+n4*3);\
  243. pass(z,FFT_NAME(ff_cos_##n),n4/2);\
  244. }
  245. static void fft4(FFTComplex *z)
  246. {
  247. FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
  248. BF(t3, t1, z[0].re, z[1].re);
  249. BF(t8, t6, z[3].re, z[2].re);
  250. BF(z[2].re, z[0].re, t1, t6);
  251. BF(t4, t2, z[0].im, z[1].im);
  252. BF(t7, t5, z[2].im, z[3].im);
  253. BF(z[3].im, z[1].im, t4, t8);
  254. BF(z[3].re, z[1].re, t3, t7);
  255. BF(z[2].im, z[0].im, t2, t5);
  256. }
  257. static void fft8(FFTComplex *z)
  258. {
  259. FFTDouble t1, t2, t3, t4, t5, t6;
  260. fft4(z);
  261. BF(t1, z[5].re, z[4].re, -z[5].re);
  262. BF(t2, z[5].im, z[4].im, -z[5].im);
  263. BF(t5, z[7].re, z[6].re, -z[7].re);
  264. BF(t6, z[7].im, z[6].im, -z[7].im);
  265. BUTTERFLIES(z[0],z[2],z[4],z[6]);
  266. TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
  267. }
  268. #if !CONFIG_SMALL
  269. static void fft16(FFTComplex *z)
  270. {
  271. FFTDouble t1, t2, t3, t4, t5, t6;
  272. FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
  273. FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
  274. fft8(z);
  275. fft4(z+8);
  276. fft4(z+12);
  277. TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
  278. TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
  279. TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
  280. TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
  281. }
  282. #else
  283. DECL_FFT(16,8,4)
  284. #endif
  285. DECL_FFT(32,16,8)
  286. DECL_FFT(64,32,16)
  287. DECL_FFT(128,64,32)
  288. DECL_FFT(256,128,64)
  289. DECL_FFT(512,256,128)
  290. #if !CONFIG_SMALL
  291. #define pass pass_big
  292. #endif
  293. DECL_FFT(1024,512,256)
  294. DECL_FFT(2048,1024,512)
  295. DECL_FFT(4096,2048,1024)
  296. DECL_FFT(8192,4096,2048)
  297. DECL_FFT(16384,8192,4096)
  298. DECL_FFT(32768,16384,8192)
  299. DECL_FFT(65536,32768,16384)
  300. static void (* const fft_dispatch[])(FFTComplex*) = {
  301. fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
  302. fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
  303. };
  304. static void fft_calc_c(FFTContext *s, FFTComplex *z)
  305. {
  306. fft_dispatch[s->nbits-2](z);
  307. }