You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

305 lines
9.9KB

  1. /*
  2. * DV decoder
  3. * Copyright (c) 2002 Fabrice Bellard
  4. * Copyright (c) 2004 Roman Shaposhnik
  5. *
  6. * DV encoder
  7. * Copyright (c) 2003 Roman Shaposhnik
  8. *
  9. * 50 Mbps (DVCPRO50) support
  10. * Copyright (c) 2006 Daniel Maas <dmaas@maasdigital.com>
  11. *
  12. * 100 Mbps (DVCPRO HD) support
  13. * Initial code by Daniel Maas <dmaas@maasdigital.com> (funded by BBC R&D)
  14. * Final code by Roman Shaposhnik
  15. *
  16. * Many thanks to Dan Dennedy <dan@dennedy.org> for providing wealth
  17. * of DV technical info.
  18. *
  19. * This file is part of Libav.
  20. *
  21. * Libav is free software; you can redistribute it and/or
  22. * modify it under the terms of the GNU Lesser General Public
  23. * License as published by the Free Software Foundation; either
  24. * version 2.1 of the License, or (at your option) any later version.
  25. *
  26. * Libav is distributed in the hope that it will be useful,
  27. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  28. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  29. * Lesser General Public License for more details.
  30. *
  31. * You should have received a copy of the GNU Lesser General Public
  32. * License along with Libav; if not, write to the Free Software
  33. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  34. */
  35. /**
  36. * @file
  37. * DV codec.
  38. */
  39. #include "libavutil/internal.h"
  40. #include "libavutil/pixdesc.h"
  41. #include "avcodec.h"
  42. #include "dv.h"
  43. #include "dvdata.h"
  44. #include "internal.h"
  45. #include "put_bits.h"
  46. #include "simple_idct.h"
  47. /* XXX: also include quantization */
  48. RL_VLC_ELEM ff_dv_rl_vlc[1184];
  49. static inline void dv_calc_mb_coordinates(const AVDVProfile *d, int chan,
  50. int seq, int slot, uint16_t *tbl)
  51. {
  52. static const uint8_t off[] = { 2, 6, 8, 0, 4 };
  53. static const uint8_t shuf1[] = { 36, 18, 54, 0, 72 };
  54. static const uint8_t shuf2[] = { 24, 12, 36, 0, 48 };
  55. static const uint8_t shuf3[] = { 18, 9, 27, 0, 36 };
  56. static const uint8_t l_start[] = { 0, 4, 9, 13, 18, 22, 27, 31, 36, 40 };
  57. static const uint8_t l_start_shuffled[] = { 9, 4, 13, 0, 18 };
  58. static const uint8_t serpent1[] = {
  59. 0, 1, 2, 2, 1, 0,
  60. 0, 1, 2, 2, 1, 0,
  61. 0, 1, 2, 2, 1, 0,
  62. 0, 1, 2, 2, 1, 0,
  63. 0, 1, 2
  64. };
  65. static const uint8_t serpent2[] = {
  66. 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0,
  67. 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0,
  68. 0, 1, 2, 3, 4, 5
  69. };
  70. static const uint8_t remap[][2] = {
  71. { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, /* dummy */
  72. { 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 }, { 10, 0 },
  73. { 10, 1 }, { 10, 2 }, { 10, 3 }, { 20, 0 }, { 20, 1 },
  74. { 20, 2 }, { 20, 3 }, { 30, 0 }, { 30, 1 }, { 30, 2 },
  75. { 30, 3 }, { 40, 0 }, { 40, 1 }, { 40, 2 }, { 40, 3 },
  76. { 50, 0 }, { 50, 1 }, { 50, 2 }, { 50, 3 }, { 60, 0 },
  77. { 60, 1 }, { 60, 2 }, { 60, 3 }, { 70, 0 }, { 70, 1 },
  78. { 70, 2 }, { 70, 3 }, { 0, 64 }, { 0, 65 }, { 0, 66 },
  79. { 10, 64 }, { 10, 65 }, { 10, 66 }, { 20, 64 }, { 20, 65 },
  80. { 20, 66 }, { 30, 64 }, { 30, 65 }, { 30, 66 }, { 40, 64 },
  81. { 40, 65 }, { 40, 66 }, { 50, 64 }, { 50, 65 }, { 50, 66 },
  82. { 60, 64 }, { 60, 65 }, { 60, 66 }, { 70, 64 }, { 70, 65 },
  83. { 70, 66 }, { 0, 67 }, { 20, 67 }, { 40, 67 }, { 60, 67 }
  84. };
  85. int i, k, m;
  86. int x, y, blk;
  87. for (m = 0; m < 5; m++) {
  88. switch (d->width) {
  89. case 1440:
  90. blk = (chan * 11 + seq) * 27 + slot;
  91. if (chan == 0 && seq == 11) {
  92. x = m * 27 + slot;
  93. if (x < 90) {
  94. y = 0;
  95. } else {
  96. x = (x - 90) * 2;
  97. y = 67;
  98. }
  99. } else {
  100. i = (4 * chan + blk + off[m]) % 11;
  101. k = (blk / 11) % 27;
  102. x = shuf1[m] + (chan & 1) * 9 + k % 9;
  103. y = (i * 3 + k / 9) * 2 + (chan >> 1) + 1;
  104. }
  105. tbl[m] = (x << 1) | (y << 9);
  106. break;
  107. case 1280:
  108. blk = (chan * 10 + seq) * 27 + slot;
  109. i = (4 * chan + (seq / 5) + 2 * blk + off[m]) % 10;
  110. k = (blk / 5) % 27;
  111. x = shuf1[m] + (chan & 1) * 9 + k % 9;
  112. y = (i * 3 + k / 9) * 2 + (chan >> 1) + 4;
  113. if (x >= 80) {
  114. x = remap[y][0] + ((x - 80) << (y > 59));
  115. y = remap[y][1];
  116. }
  117. tbl[m] = (x << 1) | (y << 9);
  118. break;
  119. case 960:
  120. blk = (chan * 10 + seq) * 27 + slot;
  121. i = (4 * chan + (seq / 5) + 2 * blk + off[m]) % 10;
  122. k = (blk / 5) % 27 + (i & 1) * 3;
  123. x = shuf2[m] + k % 6 + 6 * (chan & 1);
  124. y = l_start[i] + k / 6 + 45 * (chan >> 1);
  125. tbl[m] = (x << 1) | (y << 9);
  126. break;
  127. case 720:
  128. switch (d->pix_fmt) {
  129. case AV_PIX_FMT_YUV422P:
  130. x = shuf3[m] + slot / 3;
  131. y = serpent1[slot] +
  132. ((((seq + off[m]) % d->difseg_size) << 1) + chan) * 3;
  133. tbl[m] = (x << 1) | (y << 8);
  134. break;
  135. case AV_PIX_FMT_YUV420P:
  136. x = shuf3[m] + slot / 3;
  137. y = serpent1[slot] +
  138. ((seq + off[m]) % d->difseg_size) * 3;
  139. tbl[m] = (x << 1) | (y << 9);
  140. break;
  141. case AV_PIX_FMT_YUV411P:
  142. i = (seq + off[m]) % d->difseg_size;
  143. k = slot + ((m == 1 || m == 2) ? 3 : 0);
  144. x = l_start_shuffled[m] + k / 6;
  145. y = serpent2[k] + i * 6;
  146. if (x > 21)
  147. y = y * 2 - i * 6;
  148. tbl[m] = (x << 2) | (y << 8);
  149. break;
  150. }
  151. default:
  152. break;
  153. }
  154. }
  155. }
  156. /* quantization quanta by QNO for DV100 */
  157. static const uint8_t dv100_qstep[16] = {
  158. 1, /* QNO = 0 and 1 both have no quantization */
  159. 1,
  160. 2, 3, 4, 5, 6, 7, 8, 16, 18, 20, 22, 24, 28, 52
  161. };
  162. static const uint8_t dv_quant_areas[4] = { 6, 21, 43, 64 };
  163. int ff_dv_init_dynamic_tables(DVVideoContext *ctx, const AVDVProfile *d)
  164. {
  165. int j, i, c, s, p;
  166. uint32_t *factor1, *factor2;
  167. const int *iweight1, *iweight2;
  168. p = i = 0;
  169. for (c = 0; c < d->n_difchan; c++) {
  170. for (s = 0; s < d->difseg_size; s++) {
  171. p += 6;
  172. for (j = 0; j < 27; j++) {
  173. p += !(j % 3);
  174. if (!(DV_PROFILE_IS_1080i50(d) && c != 0 && s == 11) &&
  175. !(DV_PROFILE_IS_720p50(d) && s > 9)) {
  176. dv_calc_mb_coordinates(d, c, s, j, &ctx->work_chunks[i].mb_coordinates[0]);
  177. ctx->work_chunks[i++].buf_offset = p;
  178. }
  179. p += 5;
  180. }
  181. }
  182. }
  183. factor1 = &ctx->idct_factor[0];
  184. factor2 = &ctx->idct_factor[DV_PROFILE_IS_HD(d) ? 4096 : 2816];
  185. if (d->height == 720) {
  186. iweight1 = &ff_dv_iweight_720_y[0];
  187. iweight2 = &ff_dv_iweight_720_c[0];
  188. } else {
  189. iweight1 = &ff_dv_iweight_1080_y[0];
  190. iweight2 = &ff_dv_iweight_1080_c[0];
  191. }
  192. if (DV_PROFILE_IS_HD(d)) {
  193. for (c = 0; c < 4; c++) {
  194. for (s = 0; s < 16; s++) {
  195. for (i = 0; i < 64; i++) {
  196. *factor1++ = (dv100_qstep[s] << (c + 9)) * iweight1[i];
  197. *factor2++ = (dv100_qstep[s] << (c + 9)) * iweight2[i];
  198. }
  199. }
  200. }
  201. } else {
  202. iweight1 = &ff_dv_iweight_88[0];
  203. for (j = 0; j < 2; j++, iweight1 = &ff_dv_iweight_248[0]) {
  204. for (s = 0; s < 22; s++) {
  205. for (i = c = 0; c < 4; c++) {
  206. for (; i < dv_quant_areas[c]; i++) {
  207. *factor1 = iweight1[i] << (ff_dv_quant_shifts[s][c] + 1);
  208. *factor2++ = (*factor1++) << 1;
  209. }
  210. }
  211. }
  212. }
  213. }
  214. return 0;
  215. }
  216. av_cold int ff_dvvideo_init(AVCodecContext *avctx)
  217. {
  218. DVVideoContext *s = avctx->priv_data;
  219. static int done = 0;
  220. int i, j;
  221. if (!done) {
  222. VLC dv_vlc;
  223. uint16_t new_dv_vlc_bits[NB_DV_VLC * 2];
  224. uint8_t new_dv_vlc_len[NB_DV_VLC * 2];
  225. uint8_t new_dv_vlc_run[NB_DV_VLC * 2];
  226. int16_t new_dv_vlc_level[NB_DV_VLC * 2];
  227. done = 1;
  228. /* it's faster to include sign bit in a generic VLC parsing scheme */
  229. for (i = 0, j = 0; i < NB_DV_VLC; i++, j++) {
  230. new_dv_vlc_bits[j] = ff_dv_vlc_bits[i];
  231. new_dv_vlc_len[j] = ff_dv_vlc_len[i];
  232. new_dv_vlc_run[j] = ff_dv_vlc_run[i];
  233. new_dv_vlc_level[j] = ff_dv_vlc_level[i];
  234. if (ff_dv_vlc_level[i]) {
  235. new_dv_vlc_bits[j] <<= 1;
  236. new_dv_vlc_len[j]++;
  237. j++;
  238. new_dv_vlc_bits[j] = (ff_dv_vlc_bits[i] << 1) | 1;
  239. new_dv_vlc_len[j] = ff_dv_vlc_len[i] + 1;
  240. new_dv_vlc_run[j] = ff_dv_vlc_run[i];
  241. new_dv_vlc_level[j] = -ff_dv_vlc_level[i];
  242. }
  243. }
  244. /* NOTE: as a trick, we use the fact the no codes are unused
  245. * to accelerate the parsing of partial codes */
  246. init_vlc(&dv_vlc, TEX_VLC_BITS, j, new_dv_vlc_len,
  247. 1, 1, new_dv_vlc_bits, 2, 2, 0);
  248. assert(dv_vlc.table_size == 1184);
  249. for (i = 0; i < dv_vlc.table_size; i++) {
  250. int code = dv_vlc.table[i][0];
  251. int len = dv_vlc.table[i][1];
  252. int level, run;
  253. if (len < 0) { // more bits needed
  254. run = 0;
  255. level = code;
  256. } else {
  257. run = new_dv_vlc_run[code] + 1;
  258. level = new_dv_vlc_level[code];
  259. }
  260. ff_dv_rl_vlc[i].len = len;
  261. ff_dv_rl_vlc[i].level = level;
  262. ff_dv_rl_vlc[i].run = run;
  263. }
  264. ff_free_vlc(&dv_vlc);
  265. }
  266. s->avctx = avctx;
  267. avctx->chroma_sample_location = AVCHROMA_LOC_TOPLEFT;
  268. return 0;
  269. }