You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

826 lines
29KB

  1. /*
  2. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
  3. * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
  24. * @author Stefan Gehrer <stefan.gehrer@gmx.de>
  25. */
  26. #include "avcodec.h"
  27. #include "bitstream.h"
  28. #include "golomb.h"
  29. #include "h264chroma.h"
  30. #include "idctdsp.h"
  31. #include "internal.h"
  32. #include "mathops.h"
  33. #include "qpeldsp.h"
  34. #include "cavs.h"
  35. static const uint8_t alpha_tab[64] = {
  36. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3,
  37. 4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
  38. 22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44,
  39. 46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
  40. };
  41. static const uint8_t beta_tab[64] = {
  42. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  43. 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
  44. 6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14,
  45. 15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27
  46. };
  47. static const uint8_t tc_tab[64] = {
  48. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  49. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
  50. 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
  51. 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
  52. };
  53. /** mark block as unavailable, i.e. out of picture
  54. * or not yet decoded */
  55. static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL };
  56. static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 };
  57. static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 };
  58. static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 };
  59. static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 };
  60. /*****************************************************************************
  61. *
  62. * in-loop deblocking filter
  63. *
  64. ****************************************************************************/
  65. static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b)
  66. {
  67. if ((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
  68. return 2;
  69. if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
  70. return 1;
  71. if (b) {
  72. mvP += MV_BWD_OFFS;
  73. mvQ += MV_BWD_OFFS;
  74. if ((abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4))
  75. return 1;
  76. } else {
  77. if (mvP->ref != mvQ->ref)
  78. return 1;
  79. }
  80. return 0;
  81. }
  82. #define SET_PARAMS \
  83. alpha = alpha_tab[av_clip_uintp2(qp_avg + h->alpha_offset, 6)]; \
  84. beta = beta_tab[av_clip_uintp2(qp_avg + h->beta_offset, 6)]; \
  85. tc = tc_tab[av_clip_uintp2(qp_avg + h->alpha_offset, 6)];
  86. /**
  87. * in-loop deblocking filter for a single macroblock
  88. *
  89. * boundary strength (bs) mapping:
  90. *
  91. * --4---5--
  92. * 0 2 |
  93. * | 6 | 7 |
  94. * 1 3 |
  95. * ---------
  96. */
  97. void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type)
  98. {
  99. uint8_t bs[8];
  100. int qp_avg, alpha, beta, tc;
  101. int i;
  102. /* save un-deblocked lines */
  103. h->topleft_border_y = h->top_border_y[h->mbx * 16 + 15];
  104. h->topleft_border_u = h->top_border_u[h->mbx * 10 + 8];
  105. h->topleft_border_v = h->top_border_v[h->mbx * 10 + 8];
  106. memcpy(&h->top_border_y[h->mbx * 16], h->cy + 15 * h->l_stride, 16);
  107. memcpy(&h->top_border_u[h->mbx * 10 + 1], h->cu + 7 * h->c_stride, 8);
  108. memcpy(&h->top_border_v[h->mbx * 10 + 1], h->cv + 7 * h->c_stride, 8);
  109. for (i = 0; i < 8; i++) {
  110. h->left_border_y[i * 2 + 1] = *(h->cy + 15 + (i * 2 + 0) * h->l_stride);
  111. h->left_border_y[i * 2 + 2] = *(h->cy + 15 + (i * 2 + 1) * h->l_stride);
  112. h->left_border_u[i + 1] = *(h->cu + 7 + i * h->c_stride);
  113. h->left_border_v[i + 1] = *(h->cv + 7 + i * h->c_stride);
  114. }
  115. if (!h->loop_filter_disable) {
  116. /* determine bs */
  117. if (mb_type == I_8X8)
  118. memset(bs, 2, 8);
  119. else {
  120. memset(bs, 0, 8);
  121. if (ff_cavs_partition_flags[mb_type] & SPLITV) {
  122. bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  123. bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  124. }
  125. if (ff_cavs_partition_flags[mb_type] & SPLITH) {
  126. bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  127. bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  128. }
  129. bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  130. bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  131. bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  132. bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  133. }
  134. if (AV_RN64(bs)) {
  135. if (h->flags & A_AVAIL) {
  136. qp_avg = (h->qp + h->left_qp + 1) >> 1;
  137. SET_PARAMS;
  138. h->cdsp.cavs_filter_lv(h->cy, h->l_stride, alpha, beta, tc, bs[0], bs[1]);
  139. h->cdsp.cavs_filter_cv(h->cu, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
  140. h->cdsp.cavs_filter_cv(h->cv, h->c_stride, alpha, beta, tc, bs[0], bs[1]);
  141. }
  142. qp_avg = h->qp;
  143. SET_PARAMS;
  144. h->cdsp.cavs_filter_lv(h->cy + 8, h->l_stride, alpha, beta, tc, bs[2], bs[3]);
  145. h->cdsp.cavs_filter_lh(h->cy + 8 * h->l_stride, h->l_stride, alpha, beta, tc, bs[6], bs[7]);
  146. if (h->flags & B_AVAIL) {
  147. qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
  148. SET_PARAMS;
  149. h->cdsp.cavs_filter_lh(h->cy, h->l_stride, alpha, beta, tc, bs[4], bs[5]);
  150. h->cdsp.cavs_filter_ch(h->cu, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
  151. h->cdsp.cavs_filter_ch(h->cv, h->c_stride, alpha, beta, tc, bs[4], bs[5]);
  152. }
  153. }
  154. }
  155. h->left_qp = h->qp;
  156. h->top_qp[h->mbx] = h->qp;
  157. }
  158. #undef SET_PARAMS
  159. /*****************************************************************************
  160. *
  161. * spatial intra prediction
  162. *
  163. ****************************************************************************/
  164. void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top,
  165. uint8_t **left, int block)
  166. {
  167. int i;
  168. switch (block) {
  169. case 0:
  170. *left = h->left_border_y;
  171. h->left_border_y[0] = h->left_border_y[1];
  172. memset(&h->left_border_y[17], h->left_border_y[16], 9);
  173. memcpy(&top[1], &h->top_border_y[h->mbx * 16], 16);
  174. top[17] = top[16];
  175. top[0] = top[1];
  176. if ((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
  177. h->left_border_y[0] = top[0] = h->topleft_border_y;
  178. break;
  179. case 1:
  180. *left = h->intern_border_y;
  181. for (i = 0; i < 8; i++)
  182. h->intern_border_y[i + 1] = *(h->cy + 7 + i * h->l_stride);
  183. memset(&h->intern_border_y[9], h->intern_border_y[8], 9);
  184. h->intern_border_y[0] = h->intern_border_y[1];
  185. memcpy(&top[1], &h->top_border_y[h->mbx * 16 + 8], 8);
  186. if (h->flags & C_AVAIL)
  187. memcpy(&top[9], &h->top_border_y[(h->mbx + 1) * 16], 8);
  188. else
  189. memset(&top[9], top[8], 9);
  190. top[17] = top[16];
  191. top[0] = top[1];
  192. if (h->flags & B_AVAIL)
  193. h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx * 16 + 7];
  194. break;
  195. case 2:
  196. *left = &h->left_border_y[8];
  197. memcpy(&top[1], h->cy + 7 * h->l_stride, 16);
  198. top[17] = top[16];
  199. top[0] = top[1];
  200. if (h->flags & A_AVAIL)
  201. top[0] = h->left_border_y[8];
  202. break;
  203. case 3:
  204. *left = &h->intern_border_y[8];
  205. for (i = 0; i < 8; i++)
  206. h->intern_border_y[i + 9] = *(h->cy + 7 + (i + 8) * h->l_stride);
  207. memset(&h->intern_border_y[17], h->intern_border_y[16], 9);
  208. memcpy(&top[0], h->cy + 7 + 7 * h->l_stride, 9);
  209. memset(&top[9], top[8], 9);
  210. break;
  211. }
  212. }
  213. void ff_cavs_load_intra_pred_chroma(AVSContext *h)
  214. {
  215. /* extend borders by one pixel */
  216. h->left_border_u[9] = h->left_border_u[8];
  217. h->left_border_v[9] = h->left_border_v[8];
  218. h->top_border_u[h->mbx * 10 + 9] = h->top_border_u[h->mbx * 10 + 8];
  219. h->top_border_v[h->mbx * 10 + 9] = h->top_border_v[h->mbx * 10 + 8];
  220. if (h->mbx && h->mby) {
  221. h->top_border_u[h->mbx * 10] = h->left_border_u[0] = h->topleft_border_u;
  222. h->top_border_v[h->mbx * 10] = h->left_border_v[0] = h->topleft_border_v;
  223. } else {
  224. h->left_border_u[0] = h->left_border_u[1];
  225. h->left_border_v[0] = h->left_border_v[1];
  226. h->top_border_u[h->mbx * 10] = h->top_border_u[h->mbx * 10 + 1];
  227. h->top_border_v[h->mbx * 10] = h->top_border_v[h->mbx * 10 + 1];
  228. }
  229. }
  230. static void intra_pred_vert(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
  231. {
  232. int y;
  233. uint64_t a = AV_RN64(&top[1]);
  234. for (y = 0; y < 8; y++)
  235. *((uint64_t *)(d + y * stride)) = a;
  236. }
  237. static void intra_pred_horiz(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
  238. {
  239. int y;
  240. uint64_t a;
  241. for (y = 0; y < 8; y++) {
  242. a = left[y + 1] * 0x0101010101010101ULL;
  243. *((uint64_t *)(d + y * stride)) = a;
  244. }
  245. }
  246. static void intra_pred_dc_128(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
  247. {
  248. int y;
  249. uint64_t a = 0x8080808080808080ULL;
  250. for (y = 0; y < 8; y++)
  251. *((uint64_t *)(d + y * stride)) = a;
  252. }
  253. static void intra_pred_plane(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
  254. {
  255. int x, y, ia;
  256. int ih = 0;
  257. int iv = 0;
  258. const uint8_t *cm = ff_crop_tab + MAX_NEG_CROP;
  259. for (x = 0; x < 4; x++) {
  260. ih += (x + 1) * (top[5 + x] - top[3 - x]);
  261. iv += (x + 1) * (left[5 + x] - left[3 - x]);
  262. }
  263. ia = (top[8] + left[8]) << 4;
  264. ih = (17 * ih + 16) >> 5;
  265. iv = (17 * iv + 16) >> 5;
  266. for (y = 0; y < 8; y++)
  267. for (x = 0; x < 8; x++)
  268. d[y * stride + x] = cm[(ia + (x - 3) * ih + (y - 3) * iv + 16) >> 5];
  269. }
  270. #define LOWPASS(ARRAY, INDEX) \
  271. ((ARRAY[(INDEX) - 1] + 2 * ARRAY[(INDEX)] + ARRAY[(INDEX) + 1] + 2) >> 2)
  272. static void intra_pred_lp(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
  273. {
  274. int x, y;
  275. for (y = 0; y < 8; y++)
  276. for (x = 0; x < 8; x++)
  277. d[y * stride + x] = (LOWPASS(top, x + 1) + LOWPASS(left, y + 1)) >> 1;
  278. }
  279. static void intra_pred_down_left(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
  280. {
  281. int x, y;
  282. for (y = 0; y < 8; y++)
  283. for (x = 0; x < 8; x++)
  284. d[y * stride + x] = (LOWPASS(top, x + y + 2) + LOWPASS(left, x + y + 2)) >> 1;
  285. }
  286. static void intra_pred_down_right(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
  287. {
  288. int x, y;
  289. for (y = 0; y < 8; y++)
  290. for (x = 0; x < 8; x++)
  291. if (x == y)
  292. d[y * stride + x] = (left[1] + 2 * top[0] + top[1] + 2) >> 2;
  293. else if (x > y)
  294. d[y * stride + x] = LOWPASS(top, x - y);
  295. else
  296. d[y * stride + x] = LOWPASS(left, y - x);
  297. }
  298. static void intra_pred_lp_left(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
  299. {
  300. int x, y;
  301. for (y = 0; y < 8; y++)
  302. for (x = 0; x < 8; x++)
  303. d[y * stride + x] = LOWPASS(left, y + 1);
  304. }
  305. static void intra_pred_lp_top(uint8_t *d, uint8_t *top, uint8_t *left, ptrdiff_t stride)
  306. {
  307. int x, y;
  308. for (y = 0; y < 8; y++)
  309. for (x = 0; x < 8; x++)
  310. d[y * stride + x] = LOWPASS(top, x + 1);
  311. }
  312. #undef LOWPASS
  313. static inline void modify_pred(const int8_t *mod_table, int *mode)
  314. {
  315. *mode = mod_table[*mode];
  316. if (*mode < 0) {
  317. av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
  318. *mode = 0;
  319. }
  320. }
  321. void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv)
  322. {
  323. /* save pred modes before they get modified */
  324. h->pred_mode_Y[3] = h->pred_mode_Y[5];
  325. h->pred_mode_Y[6] = h->pred_mode_Y[8];
  326. h->top_pred_Y[h->mbx * 2 + 0] = h->pred_mode_Y[7];
  327. h->top_pred_Y[h->mbx * 2 + 1] = h->pred_mode_Y[8];
  328. /* modify pred modes according to availability of neighbour samples */
  329. if (!(h->flags & A_AVAIL)) {
  330. modify_pred(left_modifier_l, &h->pred_mode_Y[4]);
  331. modify_pred(left_modifier_l, &h->pred_mode_Y[7]);
  332. modify_pred(left_modifier_c, pred_mode_uv);
  333. }
  334. if (!(h->flags & B_AVAIL)) {
  335. modify_pred(top_modifier_l, &h->pred_mode_Y[4]);
  336. modify_pred(top_modifier_l, &h->pred_mode_Y[5]);
  337. modify_pred(top_modifier_c, pred_mode_uv);
  338. }
  339. }
  340. /*****************************************************************************
  341. *
  342. * motion compensation
  343. *
  344. ****************************************************************************/
  345. static inline void mc_dir_part(AVSContext *h, AVFrame *pic, int chroma_height,
  346. int delta, int list, uint8_t *dest_y,
  347. uint8_t *dest_cb, uint8_t *dest_cr,
  348. int src_x_offset, int src_y_offset,
  349. qpel_mc_func *qpix_op,
  350. h264_chroma_mc_func chroma_op, cavs_vector *mv)
  351. {
  352. const int mx = mv->x + src_x_offset * 8;
  353. const int my = mv->y + src_y_offset * 8;
  354. const int luma_xy = (mx & 3) + ((my & 3) << 2);
  355. uint8_t *src_y = pic->data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
  356. uint8_t *src_cb = pic->data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
  357. uint8_t *src_cr = pic->data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
  358. int extra_width = 0;
  359. int extra_height = extra_width;
  360. const int full_mx = mx >> 2;
  361. const int full_my = my >> 2;
  362. const int pic_width = 16 * h->mb_width;
  363. const int pic_height = 16 * h->mb_height;
  364. int emu = 0;
  365. if (!pic->data[0])
  366. return;
  367. if (mx & 7)
  368. extra_width -= 3;
  369. if (my & 7)
  370. extra_height -= 3;
  371. if (full_mx < 0 - extra_width ||
  372. full_my < 0 - extra_height ||
  373. full_mx + 16 /* FIXME */ > pic_width + extra_width ||
  374. full_my + 16 /* FIXME */ > pic_height + extra_height) {
  375. h->vdsp.emulated_edge_mc(h->edge_emu_buffer,
  376. src_y - 2 - 2 * h->l_stride,
  377. h->l_stride, h->l_stride,
  378. 16 + 5, 16 + 5 /* FIXME */,
  379. full_mx - 2, full_my - 2,
  380. pic_width, pic_height);
  381. src_y = h->edge_emu_buffer + 2 + 2 * h->l_stride;
  382. emu = 1;
  383. }
  384. // FIXME try variable height perhaps?
  385. qpix_op[luma_xy](dest_y, src_y, h->l_stride);
  386. if (emu) {
  387. h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb,
  388. h->c_stride, h->c_stride,
  389. 9, 9 /* FIXME */,
  390. mx >> 3, my >> 3,
  391. pic_width >> 1, pic_height >> 1);
  392. src_cb = h->edge_emu_buffer;
  393. }
  394. chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx & 7, my & 7);
  395. if (emu) {
  396. h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr,
  397. h->c_stride, h->c_stride,
  398. 9, 9 /* FIXME */,
  399. mx >> 3, my >> 3,
  400. pic_width >> 1, pic_height >> 1);
  401. src_cr = h->edge_emu_buffer;
  402. }
  403. chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx & 7, my & 7);
  404. }
  405. static inline void mc_part_std(AVSContext *h, int chroma_height, int delta,
  406. uint8_t *dest_y,
  407. uint8_t *dest_cb,
  408. uint8_t *dest_cr,
  409. int x_offset, int y_offset,
  410. qpel_mc_func *qpix_put,
  411. h264_chroma_mc_func chroma_put,
  412. qpel_mc_func *qpix_avg,
  413. h264_chroma_mc_func chroma_avg,
  414. cavs_vector *mv)
  415. {
  416. qpel_mc_func *qpix_op = qpix_put;
  417. h264_chroma_mc_func chroma_op = chroma_put;
  418. dest_y += x_offset * 2 + y_offset * h->l_stride * 2;
  419. dest_cb += x_offset + y_offset * h->c_stride;
  420. dest_cr += x_offset + y_offset * h->c_stride;
  421. x_offset += 8 * h->mbx;
  422. y_offset += 8 * h->mby;
  423. if (mv->ref >= 0) {
  424. AVFrame *ref = h->DPB[mv->ref].f;
  425. mc_dir_part(h, ref, chroma_height, delta, 0,
  426. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  427. qpix_op, chroma_op, mv);
  428. qpix_op = qpix_avg;
  429. chroma_op = chroma_avg;
  430. }
  431. if ((mv + MV_BWD_OFFS)->ref >= 0) {
  432. AVFrame *ref = h->DPB[0].f;
  433. mc_dir_part(h, ref, chroma_height, delta, 1,
  434. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  435. qpix_op, chroma_op, mv + MV_BWD_OFFS);
  436. }
  437. }
  438. void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type)
  439. {
  440. if (ff_cavs_partition_flags[mb_type] == 0) { // 16x16
  441. mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0,
  442. h->cdsp.put_cavs_qpel_pixels_tab[0],
  443. h->h264chroma.put_h264_chroma_pixels_tab[0],
  444. h->cdsp.avg_cavs_qpel_pixels_tab[0],
  445. h->h264chroma.avg_h264_chroma_pixels_tab[0],
  446. &h->mv[MV_FWD_X0]);
  447. } else {
  448. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0,
  449. h->cdsp.put_cavs_qpel_pixels_tab[1],
  450. h->h264chroma.put_h264_chroma_pixels_tab[1],
  451. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  452. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  453. &h->mv[MV_FWD_X0]);
  454. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0,
  455. h->cdsp.put_cavs_qpel_pixels_tab[1],
  456. h->h264chroma.put_h264_chroma_pixels_tab[1],
  457. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  458. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  459. &h->mv[MV_FWD_X1]);
  460. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4,
  461. h->cdsp.put_cavs_qpel_pixels_tab[1],
  462. h->h264chroma.put_h264_chroma_pixels_tab[1],
  463. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  464. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  465. &h->mv[MV_FWD_X2]);
  466. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4,
  467. h->cdsp.put_cavs_qpel_pixels_tab[1],
  468. h->h264chroma.put_h264_chroma_pixels_tab[1],
  469. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  470. h->h264chroma.avg_h264_chroma_pixels_tab[1],
  471. &h->mv[MV_FWD_X3]);
  472. }
  473. }
  474. /*****************************************************************************
  475. *
  476. * motion vector prediction
  477. *
  478. ****************************************************************************/
  479. static inline void scale_mv(AVSContext *h, int *d_x, int *d_y,
  480. cavs_vector *src, int distp)
  481. {
  482. int den = h->scale_den[src->ref];
  483. *d_x = (src->x * distp * den + 256 + FF_SIGNBIT(src->x)) >> 9;
  484. *d_y = (src->y * distp * den + 256 + FF_SIGNBIT(src->y)) >> 9;
  485. }
  486. static inline void mv_pred_median(AVSContext *h,
  487. cavs_vector *mvP,
  488. cavs_vector *mvA,
  489. cavs_vector *mvB,
  490. cavs_vector *mvC)
  491. {
  492. int ax, ay, bx, by, cx, cy;
  493. int len_ab, len_bc, len_ca, len_mid;
  494. /* scale candidates according to their temporal span */
  495. scale_mv(h, &ax, &ay, mvA, mvP->dist);
  496. scale_mv(h, &bx, &by, mvB, mvP->dist);
  497. scale_mv(h, &cx, &cy, mvC, mvP->dist);
  498. /* find the geometrical median of the three candidates */
  499. len_ab = abs(ax - bx) + abs(ay - by);
  500. len_bc = abs(bx - cx) + abs(by - cy);
  501. len_ca = abs(cx - ax) + abs(cy - ay);
  502. len_mid = mid_pred(len_ab, len_bc, len_ca);
  503. if (len_mid == len_ab) {
  504. mvP->x = cx;
  505. mvP->y = cy;
  506. } else if (len_mid == len_bc) {
  507. mvP->x = ax;
  508. mvP->y = ay;
  509. } else {
  510. mvP->x = bx;
  511. mvP->y = by;
  512. }
  513. }
  514. void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC,
  515. enum cavs_mv_pred mode, enum cavs_block size, int ref)
  516. {
  517. cavs_vector *mvP = &h->mv[nP];
  518. cavs_vector *mvA = &h->mv[nP-1];
  519. cavs_vector *mvB = &h->mv[nP-4];
  520. cavs_vector *mvC = &h->mv[nC];
  521. const cavs_vector *mvP2 = NULL;
  522. mvP->ref = ref;
  523. mvP->dist = h->dist[mvP->ref];
  524. if (mvC->ref == NOT_AVAIL)
  525. mvC = &h->mv[nP - 5]; // set to top-left (mvD)
  526. if (mode == MV_PRED_PSKIP &&
  527. (mvA->ref == NOT_AVAIL ||
  528. mvB->ref == NOT_AVAIL ||
  529. (mvA->x | mvA->y | mvA->ref) == 0 ||
  530. (mvB->x | mvB->y | mvB->ref) == 0)) {
  531. mvP2 = &un_mv;
  532. /* if there is only one suitable candidate, take it */
  533. } else if (mvA->ref >= 0 && mvB->ref < 0 && mvC->ref < 0) {
  534. mvP2 = mvA;
  535. } else if (mvA->ref < 0 && mvB->ref >= 0 && mvC->ref < 0) {
  536. mvP2 = mvB;
  537. } else if (mvA->ref < 0 && mvB->ref < 0 && mvC->ref >= 0) {
  538. mvP2 = mvC;
  539. } else if (mode == MV_PRED_LEFT && mvA->ref == ref) {
  540. mvP2 = mvA;
  541. } else if (mode == MV_PRED_TOP && mvB->ref == ref) {
  542. mvP2 = mvB;
  543. } else if (mode == MV_PRED_TOPRIGHT && mvC->ref == ref) {
  544. mvP2 = mvC;
  545. }
  546. if (mvP2) {
  547. mvP->x = mvP2->x;
  548. mvP->y = mvP2->y;
  549. } else
  550. mv_pred_median(h, mvP, mvA, mvB, mvC);
  551. if (mode < MV_PRED_PSKIP) {
  552. mvP->x += get_se_golomb(&h->bc);
  553. mvP->y += get_se_golomb(&h->bc);
  554. }
  555. set_mvs(mvP, size);
  556. }
  557. /*****************************************************************************
  558. *
  559. * macroblock level
  560. *
  561. ****************************************************************************/
  562. /**
  563. * initialise predictors for motion vectors and intra prediction
  564. */
  565. void ff_cavs_init_mb(AVSContext *h)
  566. {
  567. int i;
  568. /* copy predictors from top line (MB B and C) into cache */
  569. for (i = 0; i < 3; i++) {
  570. h->mv[MV_FWD_B2 + i] = h->top_mv[0][h->mbx * 2 + i];
  571. h->mv[MV_BWD_B2 + i] = h->top_mv[1][h->mbx * 2 + i];
  572. }
  573. h->pred_mode_Y[1] = h->top_pred_Y[h->mbx * 2 + 0];
  574. h->pred_mode_Y[2] = h->top_pred_Y[h->mbx * 2 + 1];
  575. /* clear top predictors if MB B is not available */
  576. if (!(h->flags & B_AVAIL)) {
  577. h->mv[MV_FWD_B2] = un_mv;
  578. h->mv[MV_FWD_B3] = un_mv;
  579. h->mv[MV_BWD_B2] = un_mv;
  580. h->mv[MV_BWD_B3] = un_mv;
  581. h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
  582. h->flags &= ~(C_AVAIL | D_AVAIL);
  583. } else if (h->mbx) {
  584. h->flags |= D_AVAIL;
  585. }
  586. if (h->mbx == h->mb_width - 1) // MB C not available
  587. h->flags &= ~C_AVAIL;
  588. /* clear top-right predictors if MB C is not available */
  589. if (!(h->flags & C_AVAIL)) {
  590. h->mv[MV_FWD_C2] = un_mv;
  591. h->mv[MV_BWD_C2] = un_mv;
  592. }
  593. /* clear top-left predictors if MB D is not available */
  594. if (!(h->flags & D_AVAIL)) {
  595. h->mv[MV_FWD_D3] = un_mv;
  596. h->mv[MV_BWD_D3] = un_mv;
  597. }
  598. }
  599. /**
  600. * save predictors for later macroblocks and increase
  601. * macroblock address
  602. * @return 0 if end of frame is reached, 1 otherwise
  603. */
  604. int ff_cavs_next_mb(AVSContext *h)
  605. {
  606. int i;
  607. h->flags |= A_AVAIL;
  608. h->cy += 16;
  609. h->cu += 8;
  610. h->cv += 8;
  611. /* copy mvs as predictors to the left */
  612. for (i = 0; i <= 20; i += 4)
  613. h->mv[i] = h->mv[i + 2];
  614. /* copy bottom mvs from cache to top line */
  615. h->top_mv[0][h->mbx * 2 + 0] = h->mv[MV_FWD_X2];
  616. h->top_mv[0][h->mbx * 2 + 1] = h->mv[MV_FWD_X3];
  617. h->top_mv[1][h->mbx * 2 + 0] = h->mv[MV_BWD_X2];
  618. h->top_mv[1][h->mbx * 2 + 1] = h->mv[MV_BWD_X3];
  619. /* next MB address */
  620. h->mbidx++;
  621. h->mbx++;
  622. if (h->mbx == h->mb_width) { // New mb line
  623. h->flags = B_AVAIL | C_AVAIL;
  624. /* clear left pred_modes */
  625. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  626. /* clear left mv predictors */
  627. for (i = 0; i <= 20; i += 4)
  628. h->mv[i] = un_mv;
  629. h->mbx = 0;
  630. h->mby++;
  631. /* re-calculate sample pointers */
  632. h->cy = h->cur.f->data[0] + h->mby * 16 * h->l_stride;
  633. h->cu = h->cur.f->data[1] + h->mby * 8 * h->c_stride;
  634. h->cv = h->cur.f->data[2] + h->mby * 8 * h->c_stride;
  635. if (h->mby == h->mb_height) { // Frame end
  636. return 0;
  637. }
  638. }
  639. return 1;
  640. }
  641. /*****************************************************************************
  642. *
  643. * frame level
  644. *
  645. ****************************************************************************/
  646. void ff_cavs_init_pic(AVSContext *h)
  647. {
  648. int i;
  649. /* clear some predictors */
  650. for (i = 0; i <= 20; i += 4)
  651. h->mv[i] = un_mv;
  652. h->mv[MV_BWD_X0] = ff_cavs_dir_mv;
  653. set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
  654. h->mv[MV_FWD_X0] = ff_cavs_dir_mv;
  655. set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
  656. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  657. h->cy = h->cur.f->data[0];
  658. h->cu = h->cur.f->data[1];
  659. h->cv = h->cur.f->data[2];
  660. h->l_stride = h->cur.f->linesize[0];
  661. h->c_stride = h->cur.f->linesize[1];
  662. h->luma_scan[2] = 8 * h->l_stride;
  663. h->luma_scan[3] = 8 * h->l_stride + 8;
  664. h->mbx = h->mby = h->mbidx = 0;
  665. h->flags = 0;
  666. }
  667. /*****************************************************************************
  668. *
  669. * headers and interface
  670. *
  671. ****************************************************************************/
  672. /**
  673. * some predictions require data from the top-neighbouring macroblock.
  674. * this data has to be stored for one complete row of macroblocks
  675. * and this storage space is allocated here
  676. */
  677. void ff_cavs_init_top_lines(AVSContext *h)
  678. {
  679. /* alloc top line of predictors */
  680. h->top_qp = av_mallocz(h->mb_width);
  681. h->top_mv[0] = av_mallocz((h->mb_width * 2 + 1) * sizeof(cavs_vector));
  682. h->top_mv[1] = av_mallocz((h->mb_width * 2 + 1) * sizeof(cavs_vector));
  683. h->top_pred_Y = av_mallocz(h->mb_width * 2 * sizeof(*h->top_pred_Y));
  684. h->top_border_y = av_mallocz((h->mb_width + 1) * 16);
  685. h->top_border_u = av_mallocz(h->mb_width * 10);
  686. h->top_border_v = av_mallocz(h->mb_width * 10);
  687. /* alloc space for co-located MVs and types */
  688. h->col_mv = av_mallocz(h->mb_width * h->mb_height * 4 *
  689. sizeof(cavs_vector));
  690. h->col_type_base = av_mallocz(h->mb_width * h->mb_height);
  691. h->block = av_mallocz(64 * sizeof(int16_t));
  692. }
  693. av_cold int ff_cavs_init(AVCodecContext *avctx)
  694. {
  695. AVSContext *h = avctx->priv_data;
  696. ff_blockdsp_init(&h->bdsp);
  697. ff_h264chroma_init(&h->h264chroma, 8);
  698. ff_idctdsp_init(&h->idsp, avctx);
  699. ff_videodsp_init(&h->vdsp, 8);
  700. ff_cavsdsp_init(&h->cdsp, avctx);
  701. ff_init_scantable_permutation(h->idsp.idct_permutation,
  702. h->cdsp.idct_perm);
  703. ff_init_scantable(h->idsp.idct_permutation, &h->scantable, ff_zigzag_direct);
  704. h->avctx = avctx;
  705. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  706. h->cur.f = av_frame_alloc();
  707. h->DPB[0].f = av_frame_alloc();
  708. h->DPB[1].f = av_frame_alloc();
  709. if (!h->cur.f || !h->DPB[0].f || !h->DPB[1].f) {
  710. ff_cavs_end(avctx);
  711. return AVERROR(ENOMEM);
  712. }
  713. h->luma_scan[0] = 0;
  714. h->luma_scan[1] = 8;
  715. h->intra_pred_l[INTRA_L_VERT] = intra_pred_vert;
  716. h->intra_pred_l[INTRA_L_HORIZ] = intra_pred_horiz;
  717. h->intra_pred_l[INTRA_L_LP] = intra_pred_lp;
  718. h->intra_pred_l[INTRA_L_DOWN_LEFT] = intra_pred_down_left;
  719. h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
  720. h->intra_pred_l[INTRA_L_LP_LEFT] = intra_pred_lp_left;
  721. h->intra_pred_l[INTRA_L_LP_TOP] = intra_pred_lp_top;
  722. h->intra_pred_l[INTRA_L_DC_128] = intra_pred_dc_128;
  723. h->intra_pred_c[INTRA_C_LP] = intra_pred_lp;
  724. h->intra_pred_c[INTRA_C_HORIZ] = intra_pred_horiz;
  725. h->intra_pred_c[INTRA_C_VERT] = intra_pred_vert;
  726. h->intra_pred_c[INTRA_C_PLANE] = intra_pred_plane;
  727. h->intra_pred_c[INTRA_C_LP_LEFT] = intra_pred_lp_left;
  728. h->intra_pred_c[INTRA_C_LP_TOP] = intra_pred_lp_top;
  729. h->intra_pred_c[INTRA_C_DC_128] = intra_pred_dc_128;
  730. h->mv[7] = un_mv;
  731. h->mv[19] = un_mv;
  732. return 0;
  733. }
  734. av_cold int ff_cavs_end(AVCodecContext *avctx)
  735. {
  736. AVSContext *h = avctx->priv_data;
  737. av_frame_free(&h->cur.f);
  738. av_frame_free(&h->DPB[0].f);
  739. av_frame_free(&h->DPB[1].f);
  740. av_free(h->top_qp);
  741. av_free(h->top_mv[0]);
  742. av_free(h->top_mv[1]);
  743. av_free(h->top_pred_Y);
  744. av_free(h->top_border_y);
  745. av_free(h->top_border_u);
  746. av_free(h->top_border_v);
  747. av_free(h->col_mv);
  748. av_free(h->col_type_base);
  749. av_free(h->block);
  750. av_freep(&h->edge_emu_buffer);
  751. return 0;
  752. }