You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1349 lines
45KB

  1. /*
  2. * Bink video decoder
  3. * Copyright (c) 2009 Konstantin Shishkov
  4. * Copyright (C) 2011 Peter Ross <pross@xvid.org>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "libavutil/attributes.h"
  23. #include "libavutil/imgutils.h"
  24. #include "libavutil/internal.h"
  25. #define BITSTREAM_READER_LE
  26. #include "avcodec.h"
  27. #include "binkdata.h"
  28. #include "binkdsp.h"
  29. #include "bitstream.h"
  30. #include "blockdsp.h"
  31. #include "hpeldsp.h"
  32. #include "internal.h"
  33. #include "mathops.h"
  34. #define BINK_FLAG_ALPHA 0x00100000
  35. #define BINK_FLAG_GRAY 0x00020000
  36. static VLC bink_trees[16];
  37. /**
  38. * IDs for different data types used in old version of Bink video codec
  39. */
  40. enum OldSources {
  41. BINKB_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
  42. BINKB_SRC_COLORS, ///< pixel values used for different block types
  43. BINKB_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
  44. BINKB_SRC_X_OFF, ///< X components of motion value
  45. BINKB_SRC_Y_OFF, ///< Y components of motion value
  46. BINKB_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
  47. BINKB_SRC_INTER_DC, ///< DC values for interblocks with DCT
  48. BINKB_SRC_INTRA_Q, ///< quantizer values for intrablocks with DCT
  49. BINKB_SRC_INTER_Q, ///< quantizer values for interblocks with DCT
  50. BINKB_SRC_INTER_COEFS, ///< number of coefficients for residue blocks
  51. BINKB_NB_SRC
  52. };
  53. static const int binkb_bundle_sizes[BINKB_NB_SRC] = {
  54. 4, 8, 8, 5, 5, 11, 11, 4, 4, 7
  55. };
  56. static const int binkb_bundle_signed[BINKB_NB_SRC] = {
  57. 0, 0, 0, 1, 1, 0, 1, 0, 0, 0
  58. };
  59. static int32_t binkb_intra_quant[16][64];
  60. static int32_t binkb_inter_quant[16][64];
  61. /**
  62. * IDs for different data types used in Bink video codec
  63. */
  64. enum Sources {
  65. BINK_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
  66. BINK_SRC_SUB_BLOCK_TYPES, ///< 16x16 block types (a subset of 8x8 block types)
  67. BINK_SRC_COLORS, ///< pixel values used for different block types
  68. BINK_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
  69. BINK_SRC_X_OFF, ///< X components of motion value
  70. BINK_SRC_Y_OFF, ///< Y components of motion value
  71. BINK_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
  72. BINK_SRC_INTER_DC, ///< DC values for interblocks with DCT
  73. BINK_SRC_RUN, ///< run lengths for special fill block
  74. BINK_NB_SRC
  75. };
  76. /**
  77. * data needed to decode 4-bit Huffman-coded value
  78. */
  79. typedef struct Tree {
  80. int vlc_num; ///< tree number (in bink_trees[])
  81. uint8_t syms[16]; ///< leaf value to symbol mapping
  82. } Tree;
  83. #define GET_HUFF(bc, tree) \
  84. (tree).syms[bitstream_read_vlc(bc, bink_trees[(tree).vlc_num].table, \
  85. bink_trees[(tree).vlc_num].bits, 1)]
  86. /**
  87. * data structure used for decoding single Bink data type
  88. */
  89. typedef struct Bundle {
  90. int len; ///< length of number of entries to decode (in bits)
  91. Tree tree; ///< Huffman tree-related data
  92. uint8_t *data; ///< buffer for decoded symbols
  93. uint8_t *data_end; ///< buffer end
  94. uint8_t *cur_dec; ///< pointer to the not yet decoded part of the buffer
  95. uint8_t *cur_ptr; ///< pointer to the data that is not read from buffer yet
  96. } Bundle;
  97. /*
  98. * Decoder context
  99. */
  100. typedef struct BinkContext {
  101. AVCodecContext *avctx;
  102. BlockDSPContext bdsp;
  103. HpelDSPContext hdsp;
  104. BinkDSPContext binkdsp;
  105. AVFrame *last;
  106. int version; ///< internal Bink file version
  107. int has_alpha;
  108. int swap_planes;
  109. Bundle bundle[BINKB_NB_SRC]; ///< bundles for decoding all data types
  110. Tree col_high[16]; ///< trees for decoding high nibble in "colours" data type
  111. int col_lastval; ///< value of last decoded high nibble in "colours" data type
  112. } BinkContext;
  113. /**
  114. * Bink video block types
  115. */
  116. enum BlockTypes {
  117. SKIP_BLOCK = 0, ///< skipped block
  118. SCALED_BLOCK, ///< block has size 16x16
  119. MOTION_BLOCK, ///< block is copied from previous frame with some offset
  120. RUN_BLOCK, ///< block is composed from runs of colours with custom scan order
  121. RESIDUE_BLOCK, ///< motion block with some difference added
  122. INTRA_BLOCK, ///< intra DCT block
  123. FILL_BLOCK, ///< block is filled with single colour
  124. INTER_BLOCK, ///< motion block with DCT applied to the difference
  125. PATTERN_BLOCK, ///< block is filled with two colours following custom pattern
  126. RAW_BLOCK, ///< uncoded 8x8 block
  127. };
  128. /**
  129. * Initialize length length in all bundles.
  130. *
  131. * @param c decoder context
  132. * @param width plane width
  133. * @param bw plane width in 8x8 blocks
  134. */
  135. static void init_lengths(BinkContext *c, int width, int bw)
  136. {
  137. width = FFALIGN(width, 8);
  138. c->bundle[BINK_SRC_BLOCK_TYPES].len = av_log2((width >> 3) + 511) + 1;
  139. c->bundle[BINK_SRC_SUB_BLOCK_TYPES].len = av_log2((width >> 4) + 511) + 1;
  140. c->bundle[BINK_SRC_COLORS].len = av_log2(bw*64 + 511) + 1;
  141. c->bundle[BINK_SRC_INTRA_DC].len =
  142. c->bundle[BINK_SRC_INTER_DC].len =
  143. c->bundle[BINK_SRC_X_OFF].len =
  144. c->bundle[BINK_SRC_Y_OFF].len = av_log2((width >> 3) + 511) + 1;
  145. c->bundle[BINK_SRC_PATTERN].len = av_log2((bw << 3) + 511) + 1;
  146. c->bundle[BINK_SRC_RUN].len = av_log2(bw*48 + 511) + 1;
  147. }
  148. /**
  149. * Allocate memory for bundles.
  150. *
  151. * @param c decoder context
  152. */
  153. static av_cold void init_bundles(BinkContext *c)
  154. {
  155. int bw, bh, blocks;
  156. int i;
  157. bw = (c->avctx->width + 7) >> 3;
  158. bh = (c->avctx->height + 7) >> 3;
  159. blocks = bw * bh;
  160. for (i = 0; i < BINKB_NB_SRC; i++) {
  161. c->bundle[i].data = av_malloc(blocks * 64);
  162. c->bundle[i].data_end = c->bundle[i].data + blocks * 64;
  163. }
  164. }
  165. /**
  166. * Free memory used by bundles.
  167. *
  168. * @param c decoder context
  169. */
  170. static av_cold void free_bundles(BinkContext *c)
  171. {
  172. int i;
  173. for (i = 0; i < BINKB_NB_SRC; i++)
  174. av_freep(&c->bundle[i].data);
  175. }
  176. /**
  177. * Merge two consequent lists of equal size depending on bits read.
  178. *
  179. * @param bc context for reading bits
  180. * @param dst buffer where merged list will be written to
  181. * @param src pointer to the head of the first list (the second lists starts at src+size)
  182. * @param size input lists size
  183. */
  184. static void merge(BitstreamContext *bc, uint8_t *dst, uint8_t *src, int size)
  185. {
  186. uint8_t *src2 = src + size;
  187. int size2 = size;
  188. do {
  189. if (!bitstream_read_bit(bc)) {
  190. *dst++ = *src++;
  191. size--;
  192. } else {
  193. *dst++ = *src2++;
  194. size2--;
  195. }
  196. } while (size && size2);
  197. while (size--)
  198. *dst++ = *src++;
  199. while (size2--)
  200. *dst++ = *src2++;
  201. }
  202. /**
  203. * Read information about Huffman tree used to decode data.
  204. *
  205. * @param bc context for reading bits
  206. * @param tree pointer for storing tree data
  207. */
  208. static void read_tree(BitstreamContext *bc, Tree *tree)
  209. {
  210. uint8_t tmp1[16] = { 0 }, tmp2[16], *in = tmp1, *out = tmp2;
  211. int i, t, len;
  212. tree->vlc_num = bitstream_read(bc, 4);
  213. if (!tree->vlc_num) {
  214. for (i = 0; i < 16; i++)
  215. tree->syms[i] = i;
  216. return;
  217. }
  218. if (bitstream_read_bit(bc)) {
  219. len = bitstream_read(bc, 3);
  220. for (i = 0; i <= len; i++) {
  221. tree->syms[i] = bitstream_read(bc, 4);
  222. tmp1[tree->syms[i]] = 1;
  223. }
  224. for (i = 0; i < 16 && len < 16 - 1; i++)
  225. if (!tmp1[i])
  226. tree->syms[++len] = i;
  227. } else {
  228. len = bitstream_read(bc, 2);
  229. for (i = 0; i < 16; i++)
  230. in[i] = i;
  231. for (i = 0; i <= len; i++) {
  232. int size = 1 << i;
  233. for (t = 0; t < 16; t += size << 1)
  234. merge(bc, out + t, in + t, size);
  235. FFSWAP(uint8_t*, in, out);
  236. }
  237. memcpy(tree->syms, in, 16);
  238. }
  239. }
  240. /**
  241. * Prepare bundle for decoding data.
  242. *
  243. * @param bc context for reading bits
  244. * @param c decoder context
  245. * @param bundle_num number of the bundle to initialize
  246. */
  247. static void read_bundle(BitstreamContext *bc, BinkContext *c, int bundle_num)
  248. {
  249. int i;
  250. if (bundle_num == BINK_SRC_COLORS) {
  251. for (i = 0; i < 16; i++)
  252. read_tree(bc, &c->col_high[i]);
  253. c->col_lastval = 0;
  254. }
  255. if (bundle_num != BINK_SRC_INTRA_DC && bundle_num != BINK_SRC_INTER_DC)
  256. read_tree(bc, &c->bundle[bundle_num].tree);
  257. c->bundle[bundle_num].cur_dec =
  258. c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
  259. }
  260. /**
  261. * common check before starting decoding bundle data
  262. *
  263. * @param bc context for reading bits
  264. * @param b bundle
  265. * @param t variable where number of elements to decode will be stored
  266. */
  267. #define CHECK_READ_VAL(bc, b, t) \
  268. if (!b->cur_dec || (b->cur_dec > b->cur_ptr)) \
  269. return 0; \
  270. t = bitstream_read(bc, b->len); \
  271. if (!t) { \
  272. b->cur_dec = NULL; \
  273. return 0; \
  274. } \
  275. static int read_runs(AVCodecContext *avctx, BitstreamContext *bc, Bundle *b)
  276. {
  277. int t, v;
  278. const uint8_t *dec_end;
  279. CHECK_READ_VAL(bc, b, t);
  280. dec_end = b->cur_dec + t;
  281. if (dec_end > b->data_end) {
  282. av_log(avctx, AV_LOG_ERROR, "Run value went out of bounds\n");
  283. return AVERROR_INVALIDDATA;
  284. }
  285. if (bitstream_read_bit(bc)) {
  286. v = bitstream_read(bc, 4);
  287. memset(b->cur_dec, v, t);
  288. b->cur_dec += t;
  289. } else {
  290. while (b->cur_dec < dec_end)
  291. *b->cur_dec++ = GET_HUFF(bc, b->tree);
  292. }
  293. return 0;
  294. }
  295. static int read_motion_values(AVCodecContext *avctx, BitstreamContext *bc, Bundle *b)
  296. {
  297. int t, v;
  298. const uint8_t *dec_end;
  299. CHECK_READ_VAL(bc, b, t);
  300. dec_end = b->cur_dec + t;
  301. if (dec_end > b->data_end) {
  302. av_log(avctx, AV_LOG_ERROR, "Too many motion values\n");
  303. return AVERROR_INVALIDDATA;
  304. }
  305. if (bitstream_read_bit(bc)) {
  306. v = bitstream_read(bc, 4);
  307. if (v) {
  308. v = bitstream_apply_sign(bc, v);
  309. }
  310. memset(b->cur_dec, v, t);
  311. b->cur_dec += t;
  312. } else {
  313. while (b->cur_dec < dec_end) {
  314. v = GET_HUFF(bc, b->tree);
  315. if (v) {
  316. v = bitstream_apply_sign(bc, v);
  317. }
  318. *b->cur_dec++ = v;
  319. }
  320. }
  321. return 0;
  322. }
  323. static const uint8_t bink_rlelens[4] = { 4, 8, 12, 32 };
  324. static int read_block_types(AVCodecContext *avctx, BitstreamContext *bc, Bundle *b)
  325. {
  326. int t, v;
  327. int last = 0;
  328. const uint8_t *dec_end;
  329. CHECK_READ_VAL(bc, b, t);
  330. dec_end = b->cur_dec + t;
  331. if (dec_end > b->data_end) {
  332. av_log(avctx, AV_LOG_ERROR, "Too many block type values\n");
  333. return AVERROR_INVALIDDATA;
  334. }
  335. if (bitstream_read_bit(bc)) {
  336. v = bitstream_read(bc, 4);
  337. memset(b->cur_dec, v, t);
  338. b->cur_dec += t;
  339. } else {
  340. while (b->cur_dec < dec_end) {
  341. v = GET_HUFF(bc, b->tree);
  342. if (v < 12) {
  343. last = v;
  344. *b->cur_dec++ = v;
  345. } else {
  346. int run = bink_rlelens[v - 12];
  347. if (dec_end - b->cur_dec < run)
  348. return AVERROR_INVALIDDATA;
  349. memset(b->cur_dec, last, run);
  350. b->cur_dec += run;
  351. }
  352. }
  353. }
  354. return 0;
  355. }
  356. static int read_patterns(AVCodecContext *avctx, BitstreamContext *bc, Bundle *b)
  357. {
  358. int t, v;
  359. const uint8_t *dec_end;
  360. CHECK_READ_VAL(bc, b, t);
  361. dec_end = b->cur_dec + t;
  362. if (dec_end > b->data_end) {
  363. av_log(avctx, AV_LOG_ERROR, "Too many pattern values\n");
  364. return AVERROR_INVALIDDATA;
  365. }
  366. while (b->cur_dec < dec_end) {
  367. v = GET_HUFF(bc, b->tree);
  368. v |= GET_HUFF(bc, b->tree) << 4;
  369. *b->cur_dec++ = v;
  370. }
  371. return 0;
  372. }
  373. static int read_colors(BitstreamContext *bc, Bundle *b, BinkContext *c)
  374. {
  375. int t, sign, v;
  376. const uint8_t *dec_end;
  377. CHECK_READ_VAL(bc, b, t);
  378. dec_end = b->cur_dec + t;
  379. if (dec_end > b->data_end) {
  380. av_log(c->avctx, AV_LOG_ERROR, "Too many color values\n");
  381. return AVERROR_INVALIDDATA;
  382. }
  383. if (bitstream_read_bit(bc)) {
  384. c->col_lastval = GET_HUFF(bc, c->col_high[c->col_lastval]);
  385. v = GET_HUFF(bc, b->tree);
  386. v = (c->col_lastval << 4) | v;
  387. if (c->version < 'i') {
  388. sign = ((int8_t) v) >> 7;
  389. v = ((v & 0x7F) ^ sign) - sign;
  390. v += 0x80;
  391. }
  392. memset(b->cur_dec, v, t);
  393. b->cur_dec += t;
  394. } else {
  395. while (b->cur_dec < dec_end) {
  396. c->col_lastval = GET_HUFF(bc, c->col_high[c->col_lastval]);
  397. v = GET_HUFF(bc, b->tree);
  398. v = (c->col_lastval << 4) | v;
  399. if (c->version < 'i') {
  400. sign = ((int8_t) v) >> 7;
  401. v = ((v & 0x7F) ^ sign) - sign;
  402. v += 0x80;
  403. }
  404. *b->cur_dec++ = v;
  405. }
  406. }
  407. return 0;
  408. }
  409. /** number of bits used to store first DC value in bundle */
  410. #define DC_START_BITS 11
  411. static int read_dcs(AVCodecContext *avctx, BitstreamContext *bc, Bundle *b,
  412. int start_bits, int has_sign)
  413. {
  414. int i, j, len, len2, bsize, v, v2;
  415. int16_t *dst = (int16_t*)b->cur_dec;
  416. int16_t *dst_end = (int16_t*)b->data_end;
  417. CHECK_READ_VAL(bc, b, len);
  418. v = bitstream_read(bc, start_bits - has_sign);
  419. if (v && has_sign) {
  420. v = bitstream_apply_sign(bc, v);
  421. }
  422. if (dst_end - dst < 1)
  423. return AVERROR_INVALIDDATA;
  424. *dst++ = v;
  425. len--;
  426. for (i = 0; i < len; i += 8) {
  427. len2 = FFMIN(len - i, 8);
  428. if (dst_end - dst < len2)
  429. return AVERROR_INVALIDDATA;
  430. bsize = bitstream_read(bc, 4);
  431. if (bsize) {
  432. for (j = 0; j < len2; j++) {
  433. v2 = bitstream_read(bc, bsize);
  434. if (v2) {
  435. v2 = bitstream_apply_sign(bc, v2);
  436. }
  437. v += v2;
  438. *dst++ = v;
  439. if (v < -32768 || v > 32767) {
  440. av_log(avctx, AV_LOG_ERROR, "DC value went out of bounds: %d\n", v);
  441. return AVERROR_INVALIDDATA;
  442. }
  443. }
  444. } else {
  445. for (j = 0; j < len2; j++)
  446. *dst++ = v;
  447. }
  448. }
  449. b->cur_dec = (uint8_t*)dst;
  450. return 0;
  451. }
  452. /**
  453. * Retrieve next value from bundle.
  454. *
  455. * @param c decoder context
  456. * @param bundle bundle number
  457. */
  458. static inline int get_value(BinkContext *c, int bundle)
  459. {
  460. int ret;
  461. if (bundle < BINK_SRC_X_OFF || bundle == BINK_SRC_RUN)
  462. return *c->bundle[bundle].cur_ptr++;
  463. if (bundle == BINK_SRC_X_OFF || bundle == BINK_SRC_Y_OFF)
  464. return (int8_t)*c->bundle[bundle].cur_ptr++;
  465. ret = *(int16_t*)c->bundle[bundle].cur_ptr;
  466. c->bundle[bundle].cur_ptr += 2;
  467. return ret;
  468. }
  469. static av_cold void binkb_init_bundle(BinkContext *c, int bundle_num)
  470. {
  471. c->bundle[bundle_num].cur_dec =
  472. c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
  473. c->bundle[bundle_num].len = 13;
  474. }
  475. static av_cold void binkb_init_bundles(BinkContext *c)
  476. {
  477. int i;
  478. for (i = 0; i < BINKB_NB_SRC; i++)
  479. binkb_init_bundle(c, i);
  480. }
  481. static int binkb_read_bundle(BinkContext *c, BitstreamContext *bc, int bundle_num)
  482. {
  483. const int bits = binkb_bundle_sizes[bundle_num];
  484. const int mask = 1 << (bits - 1);
  485. const int issigned = binkb_bundle_signed[bundle_num];
  486. Bundle *b = &c->bundle[bundle_num];
  487. int i, len;
  488. CHECK_READ_VAL(bc, b, len);
  489. if (b->data_end - b->cur_dec < len * (1 + (bits > 8)))
  490. return AVERROR_INVALIDDATA;
  491. if (bits <= 8) {
  492. if (!issigned) {
  493. for (i = 0; i < len; i++)
  494. *b->cur_dec++ = bitstream_read(bc, bits);
  495. } else {
  496. for (i = 0; i < len; i++)
  497. *b->cur_dec++ = bitstream_read(bc, bits) - mask;
  498. }
  499. } else {
  500. int16_t *dst = (int16_t*)b->cur_dec;
  501. if (!issigned) {
  502. for (i = 0; i < len; i++)
  503. *dst++ = bitstream_read(bc, bits);
  504. } else {
  505. for (i = 0; i < len; i++)
  506. *dst++ = bitstream_read(bc, bits) - mask;
  507. }
  508. b->cur_dec = (uint8_t*)dst;
  509. }
  510. return 0;
  511. }
  512. static inline int binkb_get_value(BinkContext *c, int bundle_num)
  513. {
  514. int16_t ret;
  515. const int bits = binkb_bundle_sizes[bundle_num];
  516. if (bits <= 8) {
  517. int val = *c->bundle[bundle_num].cur_ptr++;
  518. return binkb_bundle_signed[bundle_num] ? (int8_t)val : val;
  519. }
  520. ret = *(int16_t*)c->bundle[bundle_num].cur_ptr;
  521. c->bundle[bundle_num].cur_ptr += 2;
  522. return ret;
  523. }
  524. /**
  525. * Read 8x8 block of DCT coefficients.
  526. *
  527. * @param bc context for reading bits
  528. * @param block place for storing coefficients
  529. * @param scan scan order table
  530. * @param quant_matrices quantization matrices
  531. * @return 0 for success, negative value in other cases
  532. */
  533. static int read_dct_coeffs(BitstreamContext *bc, int32_t block[64],
  534. const uint8_t *scan,
  535. const int32_t quant_matrices[16][64], int q)
  536. {
  537. int coef_list[128];
  538. int mode_list[128];
  539. int i, t, bits, ccoef, mode;
  540. int list_start = 64, list_end = 64, list_pos;
  541. int coef_count = 0;
  542. int coef_idx[64];
  543. int quant_idx;
  544. const int32_t *quant;
  545. coef_list[list_end] = 4; mode_list[list_end++] = 0;
  546. coef_list[list_end] = 24; mode_list[list_end++] = 0;
  547. coef_list[list_end] = 44; mode_list[list_end++] = 0;
  548. coef_list[list_end] = 1; mode_list[list_end++] = 3;
  549. coef_list[list_end] = 2; mode_list[list_end++] = 3;
  550. coef_list[list_end] = 3; mode_list[list_end++] = 3;
  551. for (bits = bitstream_read(bc, 4) - 1; bits >= 0; bits--) {
  552. list_pos = list_start;
  553. while (list_pos < list_end) {
  554. if (!(mode_list[list_pos] | coef_list[list_pos]) || !bitstream_read_bit(bc)) {
  555. list_pos++;
  556. continue;
  557. }
  558. ccoef = coef_list[list_pos];
  559. mode = mode_list[list_pos];
  560. switch (mode) {
  561. case 0:
  562. coef_list[list_pos] = ccoef + 4;
  563. mode_list[list_pos] = 1;
  564. case 2:
  565. if (mode == 2) {
  566. coef_list[list_pos] = 0;
  567. mode_list[list_pos++] = 0;
  568. }
  569. for (i = 0; i < 4; i++, ccoef++) {
  570. if (bitstream_read_bit(bc)) {
  571. coef_list[--list_start] = ccoef;
  572. mode_list[ list_start] = 3;
  573. } else {
  574. if (!bits) {
  575. t = 1 - (bitstream_read_bit(bc) << 1);
  576. } else {
  577. t = bitstream_read(bc, bits) | 1 << bits;
  578. t = bitstream_apply_sign(bc, t);
  579. }
  580. block[scan[ccoef]] = t;
  581. coef_idx[coef_count++] = ccoef;
  582. }
  583. }
  584. break;
  585. case 1:
  586. mode_list[list_pos] = 2;
  587. for (i = 0; i < 3; i++) {
  588. ccoef += 4;
  589. coef_list[list_end] = ccoef;
  590. mode_list[list_end++] = 2;
  591. }
  592. break;
  593. case 3:
  594. if (!bits) {
  595. t = 1 - (bitstream_read_bit(bc) << 1);
  596. } else {
  597. t = bitstream_read(bc, bits) | 1 << bits;
  598. t = bitstream_apply_sign(bc, t);
  599. }
  600. block[scan[ccoef]] = t;
  601. coef_idx[coef_count++] = ccoef;
  602. coef_list[list_pos] = 0;
  603. mode_list[list_pos++] = 0;
  604. break;
  605. }
  606. }
  607. }
  608. if (q == -1) {
  609. quant_idx = bitstream_read(bc, 4);
  610. } else {
  611. quant_idx = q;
  612. }
  613. if (quant_idx >= 16)
  614. return AVERROR_INVALIDDATA;
  615. quant = quant_matrices[quant_idx];
  616. block[0] = (block[0] * quant[0]) >> 11;
  617. for (i = 0; i < coef_count; i++) {
  618. int idx = coef_idx[i];
  619. block[scan[idx]] = (block[scan[idx]] * quant[idx]) >> 11;
  620. }
  621. return 0;
  622. }
  623. /**
  624. * Read 8x8 block with residue after motion compensation.
  625. *
  626. * @param bc context for reading bits
  627. * @param block place to store read data
  628. * @param masks_count number of masks to decode
  629. * @return 0 on success, negative value in other cases
  630. */
  631. static int read_residue(BitstreamContext *bc, int16_t block[64], int masks_count)
  632. {
  633. int coef_list[128];
  634. int mode_list[128];
  635. int i, mask, ccoef, mode;
  636. int list_start = 64, list_end = 64, list_pos;
  637. int nz_coeff[64];
  638. int nz_coeff_count = 0;
  639. coef_list[list_end] = 4; mode_list[list_end++] = 0;
  640. coef_list[list_end] = 24; mode_list[list_end++] = 0;
  641. coef_list[list_end] = 44; mode_list[list_end++] = 0;
  642. coef_list[list_end] = 0; mode_list[list_end++] = 2;
  643. for (mask = 1 << bitstream_read(bc, 3); mask; mask >>= 1) {
  644. for (i = 0; i < nz_coeff_count; i++) {
  645. if (!bitstream_read_bit(bc))
  646. continue;
  647. if (block[nz_coeff[i]] < 0)
  648. block[nz_coeff[i]] -= mask;
  649. else
  650. block[nz_coeff[i]] += mask;
  651. masks_count--;
  652. if (masks_count < 0)
  653. return 0;
  654. }
  655. list_pos = list_start;
  656. while (list_pos < list_end) {
  657. if (!(coef_list[list_pos] | mode_list[list_pos]) || !bitstream_read_bit(bc)) {
  658. list_pos++;
  659. continue;
  660. }
  661. ccoef = coef_list[list_pos];
  662. mode = mode_list[list_pos];
  663. switch (mode) {
  664. case 0:
  665. coef_list[list_pos] = ccoef + 4;
  666. mode_list[list_pos] = 1;
  667. case 2:
  668. if (mode == 2) {
  669. coef_list[list_pos] = 0;
  670. mode_list[list_pos++] = 0;
  671. }
  672. for (i = 0; i < 4; i++, ccoef++) {
  673. if (bitstream_read_bit(bc)) {
  674. coef_list[--list_start] = ccoef;
  675. mode_list[ list_start] = 3;
  676. } else {
  677. nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
  678. block[bink_scan[ccoef]] = bitstream_apply_sign(bc, mask);
  679. masks_count--;
  680. if (masks_count < 0)
  681. return 0;
  682. }
  683. }
  684. break;
  685. case 1:
  686. mode_list[list_pos] = 2;
  687. for (i = 0; i < 3; i++) {
  688. ccoef += 4;
  689. coef_list[list_end] = ccoef;
  690. mode_list[list_end++] = 2;
  691. }
  692. break;
  693. case 3:
  694. nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
  695. block[bink_scan[ccoef]] = bitstream_apply_sign(bc, mask);
  696. coef_list[list_pos] = 0;
  697. mode_list[list_pos++] = 0;
  698. masks_count--;
  699. if (masks_count < 0)
  700. return 0;
  701. break;
  702. }
  703. }
  704. }
  705. return 0;
  706. }
  707. /**
  708. * Copy 8x8 block from source to destination, where src and dst may be overlapped
  709. */
  710. static inline void put_pixels8x8_overlapped(uint8_t *dst, uint8_t *src, int stride)
  711. {
  712. uint8_t tmp[64];
  713. int i;
  714. for (i = 0; i < 8; i++)
  715. memcpy(tmp + i*8, src + i*stride, 8);
  716. for (i = 0; i < 8; i++)
  717. memcpy(dst + i*stride, tmp + i*8, 8);
  718. }
  719. static int binkb_decode_plane(BinkContext *c, AVFrame *frame, BitstreamContext *bc,
  720. int plane_idx, int is_key, int is_chroma)
  721. {
  722. int blk, ret;
  723. int i, j, bx, by;
  724. uint8_t *dst, *ref, *ref_start, *ref_end;
  725. int v, col[2];
  726. const uint8_t *scan;
  727. int xoff, yoff;
  728. LOCAL_ALIGNED_16(int16_t, block, [64]);
  729. LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
  730. int coordmap[64];
  731. int ybias = is_key ? -15 : 0;
  732. int qp;
  733. const int stride = frame->linesize[plane_idx];
  734. int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
  735. int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
  736. binkb_init_bundles(c);
  737. ref_start = frame->data[plane_idx];
  738. ref_end = frame->data[plane_idx] + (bh * frame->linesize[plane_idx] + bw) * 8;
  739. for (i = 0; i < 64; i++)
  740. coordmap[i] = (i & 7) + (i >> 3) * stride;
  741. for (by = 0; by < bh; by++) {
  742. for (i = 0; i < BINKB_NB_SRC; i++) {
  743. if ((ret = binkb_read_bundle(c, bc, i)) < 0)
  744. return ret;
  745. }
  746. dst = frame->data[plane_idx] + 8*by*stride;
  747. for (bx = 0; bx < bw; bx++, dst += 8) {
  748. blk = binkb_get_value(c, BINKB_SRC_BLOCK_TYPES);
  749. switch (blk) {
  750. case 0:
  751. break;
  752. case 1:
  753. scan = bink_patterns[bitstream_read(bc, 4)];
  754. i = 0;
  755. do {
  756. int mode = bitstream_read_bit(bc);
  757. int run = bitstream_read(bc, binkb_runbits[i]) + 1;
  758. i += run;
  759. if (i > 64) {
  760. av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
  761. return AVERROR_INVALIDDATA;
  762. }
  763. if (mode) {
  764. v = binkb_get_value(c, BINKB_SRC_COLORS);
  765. for (j = 0; j < run; j++)
  766. dst[coordmap[*scan++]] = v;
  767. } else {
  768. for (j = 0; j < run; j++)
  769. dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
  770. }
  771. } while (i < 63);
  772. if (i == 63)
  773. dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
  774. break;
  775. case 2:
  776. memset(dctblock, 0, sizeof(*dctblock) * 64);
  777. dctblock[0] = binkb_get_value(c, BINKB_SRC_INTRA_DC);
  778. qp = binkb_get_value(c, BINKB_SRC_INTRA_Q);
  779. read_dct_coeffs(bc, dctblock, bink_scan, binkb_intra_quant, qp);
  780. c->binkdsp.idct_put(dst, stride, dctblock);
  781. break;
  782. case 3:
  783. xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
  784. yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
  785. ref = dst + xoff + yoff * stride;
  786. if (ref < ref_start || ref + 8*stride > ref_end) {
  787. av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
  788. } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
  789. c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  790. } else {
  791. put_pixels8x8_overlapped(dst, ref, stride);
  792. }
  793. c->bdsp.clear_block(block);
  794. v = binkb_get_value(c, BINKB_SRC_INTER_COEFS);
  795. read_residue(bc, block, v);
  796. c->binkdsp.add_pixels8(dst, block, stride);
  797. break;
  798. case 4:
  799. xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
  800. yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
  801. ref = dst + xoff + yoff * stride;
  802. if (ref < ref_start || ref + 8 * stride > ref_end) {
  803. av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
  804. } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
  805. c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  806. } else {
  807. put_pixels8x8_overlapped(dst, ref, stride);
  808. }
  809. memset(dctblock, 0, sizeof(*dctblock) * 64);
  810. dctblock[0] = binkb_get_value(c, BINKB_SRC_INTER_DC);
  811. qp = binkb_get_value(c, BINKB_SRC_INTER_Q);
  812. read_dct_coeffs(bc, dctblock, bink_scan, binkb_inter_quant, qp);
  813. c->binkdsp.idct_add(dst, stride, dctblock);
  814. break;
  815. case 5:
  816. v = binkb_get_value(c, BINKB_SRC_COLORS);
  817. c->bdsp.fill_block_tab[1](dst, v, stride, 8);
  818. break;
  819. case 6:
  820. for (i = 0; i < 2; i++)
  821. col[i] = binkb_get_value(c, BINKB_SRC_COLORS);
  822. for (i = 0; i < 8; i++) {
  823. v = binkb_get_value(c, BINKB_SRC_PATTERN);
  824. for (j = 0; j < 8; j++, v >>= 1)
  825. dst[i*stride + j] = col[v & 1];
  826. }
  827. break;
  828. case 7:
  829. xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
  830. yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
  831. ref = dst + xoff + yoff * stride;
  832. if (ref < ref_start || ref + 8 * stride > ref_end) {
  833. av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
  834. } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
  835. c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  836. } else {
  837. put_pixels8x8_overlapped(dst, ref, stride);
  838. }
  839. break;
  840. case 8:
  841. for (i = 0; i < 8; i++)
  842. memcpy(dst + i*stride, c->bundle[BINKB_SRC_COLORS].cur_ptr + i*8, 8);
  843. c->bundle[BINKB_SRC_COLORS].cur_ptr += 64;
  844. break;
  845. default:
  846. av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
  847. return AVERROR_INVALIDDATA;
  848. }
  849. }
  850. }
  851. if (bitstream_tell(bc) & 0x1F) // next plane data starts at 32-bit boundary
  852. bitstream_skip(bc, 32 - (bitstream_tell(bc) & 0x1F));
  853. return 0;
  854. }
  855. static int bink_put_pixels(BinkContext *c,
  856. uint8_t *dst, uint8_t *prev, int stride,
  857. uint8_t *ref_start,
  858. uint8_t *ref_end)
  859. {
  860. int xoff = get_value(c, BINK_SRC_X_OFF);
  861. int yoff = get_value(c, BINK_SRC_Y_OFF);
  862. uint8_t *ref = prev + xoff + yoff * stride;
  863. if (ref < ref_start || ref > ref_end) {
  864. av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
  865. xoff, yoff);
  866. return AVERROR_INVALIDDATA;
  867. }
  868. c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  869. return 0;
  870. }
  871. static int bink_decode_plane(BinkContext *c, AVFrame *frame, BitstreamContext *bc,
  872. int plane_idx, int is_chroma)
  873. {
  874. int blk, ret;
  875. int i, j, bx, by;
  876. uint8_t *dst, *prev, *ref_start, *ref_end;
  877. int v, col[2];
  878. const uint8_t *scan;
  879. LOCAL_ALIGNED_16(int16_t, block, [64]);
  880. LOCAL_ALIGNED_16(uint8_t, ublock, [64]);
  881. LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
  882. int coordmap[64];
  883. const int stride = frame->linesize[plane_idx];
  884. int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
  885. int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
  886. int width = c->avctx->width >> is_chroma;
  887. init_lengths(c, FFMAX(width, 8), bw);
  888. for (i = 0; i < BINK_NB_SRC; i++)
  889. read_bundle(bc, c, i);
  890. ref_start = c->last->data[plane_idx] ? c->last->data[plane_idx]
  891. : frame->data[plane_idx];
  892. ref_end = ref_start
  893. + (bw - 1 + c->last->linesize[plane_idx] * (bh - 1)) * 8;
  894. for (i = 0; i < 64; i++)
  895. coordmap[i] = (i & 7) + (i >> 3) * stride;
  896. for (by = 0; by < bh; by++) {
  897. if ((ret = read_block_types(c->avctx, bc, &c->bundle[BINK_SRC_BLOCK_TYPES])) < 0)
  898. return ret;
  899. if ((ret = read_block_types(c->avctx, bc, &c->bundle[BINK_SRC_SUB_BLOCK_TYPES])) < 0)
  900. return ret;
  901. if ((ret = read_colors(bc, &c->bundle[BINK_SRC_COLORS], c)) < 0)
  902. return ret;
  903. if ((ret = read_patterns(c->avctx, bc, &c->bundle[BINK_SRC_PATTERN])) < 0)
  904. return ret;
  905. if ((ret = read_motion_values(c->avctx, bc, &c->bundle[BINK_SRC_X_OFF])) < 0)
  906. return ret;
  907. if ((ret = read_motion_values(c->avctx, bc, &c->bundle[BINK_SRC_Y_OFF])) < 0)
  908. return ret;
  909. if ((ret = read_dcs(c->avctx, bc, &c->bundle[BINK_SRC_INTRA_DC], DC_START_BITS, 0)) < 0)
  910. return ret;
  911. if ((ret = read_dcs(c->avctx, bc, &c->bundle[BINK_SRC_INTER_DC], DC_START_BITS, 1)) < 0)
  912. return ret;
  913. if ((ret = read_runs(c->avctx, bc, &c->bundle[BINK_SRC_RUN])) < 0)
  914. return ret;
  915. if (by == bh)
  916. break;
  917. dst = frame->data[plane_idx] + 8*by*stride;
  918. prev = (c->last->data[plane_idx] ? c->last->data[plane_idx]
  919. : frame->data[plane_idx]) + 8*by*stride;
  920. for (bx = 0; bx < bw; bx++, dst += 8, prev += 8) {
  921. blk = get_value(c, BINK_SRC_BLOCK_TYPES);
  922. // 16x16 block type on odd line means part of the already decoded block, so skip it
  923. if ((by & 1) && blk == SCALED_BLOCK) {
  924. bx++;
  925. dst += 8;
  926. prev += 8;
  927. continue;
  928. }
  929. switch (blk) {
  930. case SKIP_BLOCK:
  931. c->hdsp.put_pixels_tab[1][0](dst, prev, stride, 8);
  932. break;
  933. case SCALED_BLOCK:
  934. blk = get_value(c, BINK_SRC_SUB_BLOCK_TYPES);
  935. switch (blk) {
  936. case RUN_BLOCK:
  937. scan = bink_patterns[bitstream_read(bc, 4)];
  938. i = 0;
  939. do {
  940. int run = get_value(c, BINK_SRC_RUN) + 1;
  941. i += run;
  942. if (i > 64) {
  943. av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
  944. return AVERROR_INVALIDDATA;
  945. }
  946. if (bitstream_read_bit(bc)) {
  947. v = get_value(c, BINK_SRC_COLORS);
  948. for (j = 0; j < run; j++)
  949. ublock[*scan++] = v;
  950. } else {
  951. for (j = 0; j < run; j++)
  952. ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
  953. }
  954. } while (i < 63);
  955. if (i == 63)
  956. ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
  957. break;
  958. case INTRA_BLOCK:
  959. memset(dctblock, 0, sizeof(*dctblock) * 64);
  960. dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
  961. read_dct_coeffs(bc, dctblock, bink_scan, bink_intra_quant, -1);
  962. c->binkdsp.idct_put(ublock, 8, dctblock);
  963. break;
  964. case FILL_BLOCK:
  965. v = get_value(c, BINK_SRC_COLORS);
  966. c->bdsp.fill_block_tab[0](dst, v, stride, 16);
  967. break;
  968. case PATTERN_BLOCK:
  969. for (i = 0; i < 2; i++)
  970. col[i] = get_value(c, BINK_SRC_COLORS);
  971. for (j = 0; j < 8; j++) {
  972. v = get_value(c, BINK_SRC_PATTERN);
  973. for (i = 0; i < 8; i++, v >>= 1)
  974. ublock[i + j*8] = col[v & 1];
  975. }
  976. break;
  977. case RAW_BLOCK:
  978. for (j = 0; j < 8; j++)
  979. for (i = 0; i < 8; i++)
  980. ublock[i + j*8] = get_value(c, BINK_SRC_COLORS);
  981. break;
  982. default:
  983. av_log(c->avctx, AV_LOG_ERROR, "Incorrect 16x16 block type %d\n", blk);
  984. return AVERROR_INVALIDDATA;
  985. }
  986. if (blk != FILL_BLOCK)
  987. c->binkdsp.scale_block(ublock, dst, stride);
  988. bx++;
  989. dst += 8;
  990. prev += 8;
  991. break;
  992. case MOTION_BLOCK:
  993. ret = bink_put_pixels(c, dst, prev, stride,
  994. ref_start, ref_end);
  995. if (ret < 0)
  996. return ret;
  997. break;
  998. case RUN_BLOCK:
  999. scan = bink_patterns[bitstream_read(bc, 4)];
  1000. i = 0;
  1001. do {
  1002. int run = get_value(c, BINK_SRC_RUN) + 1;
  1003. i += run;
  1004. if (i > 64) {
  1005. av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
  1006. return AVERROR_INVALIDDATA;
  1007. }
  1008. if (bitstream_read_bit(bc)) {
  1009. v = get_value(c, BINK_SRC_COLORS);
  1010. for (j = 0; j < run; j++)
  1011. dst[coordmap[*scan++]] = v;
  1012. } else {
  1013. for (j = 0; j < run; j++)
  1014. dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
  1015. }
  1016. } while (i < 63);
  1017. if (i == 63)
  1018. dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
  1019. break;
  1020. case RESIDUE_BLOCK:
  1021. ret = bink_put_pixels(c, dst, prev, stride,
  1022. ref_start, ref_end);
  1023. if (ret < 0)
  1024. return ret;
  1025. c->bdsp.clear_block(block);
  1026. v = bitstream_read(bc, 7);
  1027. read_residue(bc, block, v);
  1028. c->binkdsp.add_pixels8(dst, block, stride);
  1029. break;
  1030. case INTRA_BLOCK:
  1031. memset(dctblock, 0, sizeof(*dctblock) * 64);
  1032. dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
  1033. read_dct_coeffs(bc, dctblock, bink_scan, bink_intra_quant, -1);
  1034. c->binkdsp.idct_put(dst, stride, dctblock);
  1035. break;
  1036. case FILL_BLOCK:
  1037. v = get_value(c, BINK_SRC_COLORS);
  1038. c->bdsp.fill_block_tab[1](dst, v, stride, 8);
  1039. break;
  1040. case INTER_BLOCK:
  1041. ret = bink_put_pixels(c, dst, prev, stride,
  1042. ref_start, ref_end);
  1043. if (ret < 0)
  1044. return ret;
  1045. memset(dctblock, 0, sizeof(*dctblock) * 64);
  1046. dctblock[0] = get_value(c, BINK_SRC_INTER_DC);
  1047. read_dct_coeffs(bc, dctblock, bink_scan, bink_inter_quant, -1);
  1048. c->binkdsp.idct_add(dst, stride, dctblock);
  1049. break;
  1050. case PATTERN_BLOCK:
  1051. for (i = 0; i < 2; i++)
  1052. col[i] = get_value(c, BINK_SRC_COLORS);
  1053. for (i = 0; i < 8; i++) {
  1054. v = get_value(c, BINK_SRC_PATTERN);
  1055. for (j = 0; j < 8; j++, v >>= 1)
  1056. dst[i*stride + j] = col[v & 1];
  1057. }
  1058. break;
  1059. case RAW_BLOCK:
  1060. for (i = 0; i < 8; i++)
  1061. memcpy(dst + i*stride, c->bundle[BINK_SRC_COLORS].cur_ptr + i*8, 8);
  1062. c->bundle[BINK_SRC_COLORS].cur_ptr += 64;
  1063. break;
  1064. default:
  1065. av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
  1066. return AVERROR_INVALIDDATA;
  1067. }
  1068. }
  1069. }
  1070. if (bitstream_tell(bc) & 0x1F) // next plane data starts at 32-bit boundary
  1071. bitstream_skip(bc, 32 - (bitstream_tell(bc) & 0x1F));
  1072. return 0;
  1073. }
  1074. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
  1075. {
  1076. BinkContext * const c = avctx->priv_data;
  1077. AVFrame *frame = data;
  1078. BitstreamContext bc;
  1079. int plane, plane_idx, ret;
  1080. int bits_count = pkt->size << 3;
  1081. if (c->version > 'b') {
  1082. if ((ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0) {
  1083. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1084. return ret;
  1085. }
  1086. } else {
  1087. if ((ret = ff_reget_buffer(avctx, c->last)) < 0) {
  1088. av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
  1089. return ret;
  1090. }
  1091. if ((ret = av_frame_ref(frame, c->last)) < 0)
  1092. return ret;
  1093. }
  1094. bitstream_init(&bc, pkt->data, bits_count);
  1095. if (c->has_alpha) {
  1096. if (c->version >= 'i')
  1097. bitstream_skip(&bc, 32);
  1098. if ((ret = bink_decode_plane(c, frame, &bc, 3, 0)) < 0)
  1099. return ret;
  1100. }
  1101. if (c->version >= 'i')
  1102. bitstream_skip(&bc, 32);
  1103. for (plane = 0; plane < 3; plane++) {
  1104. plane_idx = (!plane || !c->swap_planes) ? plane : (plane ^ 3);
  1105. if (c->version > 'b') {
  1106. if ((ret = bink_decode_plane(c, frame, &bc, plane_idx, !!plane)) < 0)
  1107. return ret;
  1108. } else {
  1109. if ((ret = binkb_decode_plane(c, frame, &bc, plane_idx,
  1110. !avctx->frame_number, !!plane)) < 0)
  1111. return ret;
  1112. }
  1113. if (bitstream_tell(&bc) >= bits_count)
  1114. break;
  1115. }
  1116. emms_c();
  1117. if (c->version > 'b') {
  1118. av_frame_unref(c->last);
  1119. if ((ret = av_frame_ref(c->last, frame)) < 0)
  1120. return ret;
  1121. }
  1122. *got_frame = 1;
  1123. /* always report that the buffer was completely consumed */
  1124. return pkt->size;
  1125. }
  1126. /**
  1127. * Calculate quantization tables for version b
  1128. */
  1129. static av_cold void binkb_calc_quant(void)
  1130. {
  1131. uint8_t inv_bink_scan[64];
  1132. double s[64];
  1133. int i, j;
  1134. for (j = 0; j < 8; j++) {
  1135. for (i = 0; i < 8; i++) {
  1136. if (j && j != 4)
  1137. if (i && i != 4)
  1138. s[j*8 + i] = cos(j * M_PI/16.0) * cos(i * M_PI/16.0) * 2.0;
  1139. else
  1140. s[j*8 + i] = cos(j * M_PI/16.0) * sqrt(2.0);
  1141. else
  1142. if (i && i != 4)
  1143. s[j*8 + i] = cos(i * M_PI/16.0) * sqrt(2.0);
  1144. else
  1145. s[j*8 + i] = 1.0;
  1146. }
  1147. }
  1148. for (i = 0; i < 64; i++)
  1149. inv_bink_scan[bink_scan[i]] = i;
  1150. for (j = 0; j < 16; j++) {
  1151. for (i = 0; i < 64; i++) {
  1152. int k = inv_bink_scan[i];
  1153. if (s[i] == 1.0) {
  1154. binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] *
  1155. binkb_num[j]/binkb_den[j];
  1156. binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] *
  1157. binkb_num[j]/binkb_den[j];
  1158. } else {
  1159. binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] * s[i] *
  1160. binkb_num[j]/(double)binkb_den[j];
  1161. binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] * s[i] *
  1162. binkb_num[j]/(double)binkb_den[j];
  1163. }
  1164. }
  1165. }
  1166. }
  1167. static av_cold int decode_init(AVCodecContext *avctx)
  1168. {
  1169. BinkContext * const c = avctx->priv_data;
  1170. static VLC_TYPE table[16 * 128][2];
  1171. static int binkb_initialised = 0;
  1172. int i, ret;
  1173. int flags;
  1174. c->version = avctx->codec_tag >> 24;
  1175. if (avctx->extradata_size < 4) {
  1176. av_log(avctx, AV_LOG_ERROR, "Extradata missing or too short\n");
  1177. return AVERROR_INVALIDDATA;
  1178. }
  1179. flags = AV_RL32(avctx->extradata);
  1180. c->has_alpha = flags & BINK_FLAG_ALPHA;
  1181. c->swap_planes = c->version >= 'h';
  1182. if (!bink_trees[15].table) {
  1183. for (i = 0; i < 16; i++) {
  1184. const int maxbits = bink_tree_lens[i][15];
  1185. bink_trees[i].table = table + i*128;
  1186. bink_trees[i].table_allocated = 1 << maxbits;
  1187. init_vlc(&bink_trees[i], maxbits, 16,
  1188. bink_tree_lens[i], 1, 1,
  1189. bink_tree_bits[i], 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  1190. }
  1191. }
  1192. c->avctx = avctx;
  1193. c->last = av_frame_alloc();
  1194. if (!c->last)
  1195. return AVERROR(ENOMEM);
  1196. if ((ret = av_image_check_size(avctx->width, avctx->height, 0, avctx)) < 0)
  1197. return ret;
  1198. avctx->pix_fmt = c->has_alpha ? AV_PIX_FMT_YUVA420P : AV_PIX_FMT_YUV420P;
  1199. ff_blockdsp_init(&c->bdsp);
  1200. ff_hpeldsp_init(&c->hdsp, avctx->flags);
  1201. ff_binkdsp_init(&c->binkdsp);
  1202. init_bundles(c);
  1203. if (c->version == 'b') {
  1204. if (!binkb_initialised) {
  1205. binkb_calc_quant();
  1206. binkb_initialised = 1;
  1207. }
  1208. }
  1209. return 0;
  1210. }
  1211. static av_cold int decode_end(AVCodecContext *avctx)
  1212. {
  1213. BinkContext * const c = avctx->priv_data;
  1214. av_frame_free(&c->last);
  1215. free_bundles(c);
  1216. return 0;
  1217. }
  1218. AVCodec ff_bink_decoder = {
  1219. .name = "binkvideo",
  1220. .long_name = NULL_IF_CONFIG_SMALL("Bink video"),
  1221. .type = AVMEDIA_TYPE_VIDEO,
  1222. .id = AV_CODEC_ID_BINKVIDEO,
  1223. .priv_data_size = sizeof(BinkContext),
  1224. .init = decode_init,
  1225. .close = decode_end,
  1226. .decode = decode_frame,
  1227. .capabilities = AV_CODEC_CAP_DR1,
  1228. };