You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1258 lines
46KB

  1. /*
  2. * AMR wideband decoder
  3. * Copyright (c) 2010 Marcelo Galvao Povoa
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AMR wideband decoder
  24. */
  25. #include "libavutil/channel_layout.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/float_dsp.h"
  28. #include "libavutil/lfg.h"
  29. #include "avcodec.h"
  30. #include "lsp.h"
  31. #include "celp_filters.h"
  32. #include "acelp_filters.h"
  33. #include "acelp_vectors.h"
  34. #include "acelp_pitch_delay.h"
  35. #include "internal.h"
  36. #define AMR_USE_16BIT_TABLES
  37. #include "amr.h"
  38. #include "amrwbdata.h"
  39. typedef struct AMRWBContext {
  40. AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
  41. enum Mode fr_cur_mode; ///< mode index of current frame
  42. uint8_t fr_quality; ///< frame quality index (FQI)
  43. float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
  44. float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
  45. float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
  46. double isp[4][LP_ORDER]; ///< ISP vectors from current frame
  47. double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
  48. float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
  49. uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
  50. uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
  51. float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
  52. float *excitation; ///< points to current excitation in excitation_buf[]
  53. float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
  54. float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
  55. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  56. float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
  57. float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
  58. float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
  59. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
  60. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  61. float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
  62. float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
  63. float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
  64. float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
  65. float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
  66. float demph_mem[1]; ///< previous value in the de-emphasis filter
  67. float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
  68. float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
  69. AVLFG prng; ///< random number generator for white noise excitation
  70. uint8_t first_frame; ///< flag active during decoding of the first frame
  71. } AMRWBContext;
  72. static av_cold int amrwb_decode_init(AVCodecContext *avctx)
  73. {
  74. AMRWBContext *ctx = avctx->priv_data;
  75. int i;
  76. if (avctx->channels > 1) {
  77. avpriv_report_missing_feature(avctx, "multi-channel AMR");
  78. return AVERROR_PATCHWELCOME;
  79. }
  80. avctx->channels = 1;
  81. avctx->channel_layout = AV_CH_LAYOUT_MONO;
  82. avctx->sample_rate = 16000;
  83. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  84. av_lfg_init(&ctx->prng, 1);
  85. ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
  86. ctx->first_frame = 1;
  87. for (i = 0; i < LP_ORDER; i++)
  88. ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
  89. for (i = 0; i < 4; i++)
  90. ctx->prediction_error[i] = MIN_ENERGY;
  91. return 0;
  92. }
  93. /**
  94. * Decode the frame header in the "MIME/storage" format. This format
  95. * is simpler and does not carry the auxiliary frame information.
  96. *
  97. * @param[in] ctx The Context
  98. * @param[in] buf Pointer to the input buffer
  99. *
  100. * @return The decoded header length in bytes
  101. */
  102. static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
  103. {
  104. /* Decode frame header (1st octet) */
  105. ctx->fr_cur_mode = buf[0] >> 3 & 0x0F;
  106. ctx->fr_quality = (buf[0] & 0x4) == 0x4;
  107. return 1;
  108. }
  109. /**
  110. * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
  111. *
  112. * @param[in] ind Array of 5 indexes
  113. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  114. */
  115. static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
  116. {
  117. int i;
  118. for (i = 0; i < 9; i++)
  119. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  120. for (i = 0; i < 7; i++)
  121. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  122. for (i = 0; i < 5; i++)
  123. isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
  124. for (i = 0; i < 4; i++)
  125. isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
  126. for (i = 0; i < 7; i++)
  127. isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
  128. }
  129. /**
  130. * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
  131. *
  132. * @param[in] ind Array of 7 indexes
  133. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  134. */
  135. static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
  136. {
  137. int i;
  138. for (i = 0; i < 9; i++)
  139. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  140. for (i = 0; i < 7; i++)
  141. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  142. for (i = 0; i < 3; i++)
  143. isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
  144. for (i = 0; i < 3; i++)
  145. isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
  146. for (i = 0; i < 3; i++)
  147. isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
  148. for (i = 0; i < 3; i++)
  149. isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
  150. for (i = 0; i < 4; i++)
  151. isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
  152. }
  153. /**
  154. * Apply mean and past ISF values using the prediction factor.
  155. * Updates past ISF vector.
  156. *
  157. * @param[in,out] isf_q Current quantized ISF
  158. * @param[in,out] isf_past Past quantized ISF
  159. */
  160. static void isf_add_mean_and_past(float *isf_q, float *isf_past)
  161. {
  162. int i;
  163. float tmp;
  164. for (i = 0; i < LP_ORDER; i++) {
  165. tmp = isf_q[i];
  166. isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
  167. isf_q[i] += PRED_FACTOR * isf_past[i];
  168. isf_past[i] = tmp;
  169. }
  170. }
  171. /**
  172. * Interpolate the fourth ISP vector from current and past frames
  173. * to obtain an ISP vector for each subframe.
  174. *
  175. * @param[in,out] isp_q ISPs for each subframe
  176. * @param[in] isp4_past Past ISP for subframe 4
  177. */
  178. static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
  179. {
  180. int i, k;
  181. for (k = 0; k < 3; k++) {
  182. float c = isfp_inter[k];
  183. for (i = 0; i < LP_ORDER; i++)
  184. isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
  185. }
  186. }
  187. /**
  188. * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
  189. * Calculate integer lag and fractional lag always using 1/4 resolution.
  190. * In 1st and 3rd subframes the index is relative to last subframe integer lag.
  191. *
  192. * @param[out] lag_int Decoded integer pitch lag
  193. * @param[out] lag_frac Decoded fractional pitch lag
  194. * @param[in] pitch_index Adaptive codebook pitch index
  195. * @param[in,out] base_lag_int Base integer lag used in relative subframes
  196. * @param[in] subframe Current subframe index (0 to 3)
  197. */
  198. static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
  199. uint8_t *base_lag_int, int subframe)
  200. {
  201. if (subframe == 0 || subframe == 2) {
  202. if (pitch_index < 376) {
  203. *lag_int = (pitch_index + 137) >> 2;
  204. *lag_frac = pitch_index - (*lag_int << 2) + 136;
  205. } else if (pitch_index < 440) {
  206. *lag_int = (pitch_index + 257 - 376) >> 1;
  207. *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
  208. /* the actual resolution is 1/2 but expressed as 1/4 */
  209. } else {
  210. *lag_int = pitch_index - 280;
  211. *lag_frac = 0;
  212. }
  213. /* minimum lag for next subframe */
  214. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  215. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  216. // XXX: the spec states clearly that *base_lag_int should be
  217. // the nearest integer to *lag_int (minus 8), but the ref code
  218. // actually always uses its floor, I'm following the latter
  219. } else {
  220. *lag_int = (pitch_index + 1) >> 2;
  221. *lag_frac = pitch_index - (*lag_int << 2);
  222. *lag_int += *base_lag_int;
  223. }
  224. }
  225. /**
  226. * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
  227. * The description is analogous to decode_pitch_lag_high, but in 6k60 the
  228. * relative index is used for all subframes except the first.
  229. */
  230. static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
  231. uint8_t *base_lag_int, int subframe, enum Mode mode)
  232. {
  233. if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
  234. if (pitch_index < 116) {
  235. *lag_int = (pitch_index + 69) >> 1;
  236. *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
  237. } else {
  238. *lag_int = pitch_index - 24;
  239. *lag_frac = 0;
  240. }
  241. // XXX: same problem as before
  242. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  243. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  244. } else {
  245. *lag_int = (pitch_index + 1) >> 1;
  246. *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
  247. *lag_int += *base_lag_int;
  248. }
  249. }
  250. /**
  251. * Find the pitch vector by interpolating the past excitation at the
  252. * pitch delay, which is obtained in this function.
  253. *
  254. * @param[in,out] ctx The context
  255. * @param[in] amr_subframe Current subframe data
  256. * @param[in] subframe Current subframe index (0 to 3)
  257. */
  258. static void decode_pitch_vector(AMRWBContext *ctx,
  259. const AMRWBSubFrame *amr_subframe,
  260. const int subframe)
  261. {
  262. int pitch_lag_int, pitch_lag_frac;
  263. int i;
  264. float *exc = ctx->excitation;
  265. enum Mode mode = ctx->fr_cur_mode;
  266. if (mode <= MODE_8k85) {
  267. decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  268. &ctx->base_pitch_lag, subframe, mode);
  269. } else
  270. decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  271. &ctx->base_pitch_lag, subframe);
  272. ctx->pitch_lag_int = pitch_lag_int;
  273. pitch_lag_int += pitch_lag_frac > 0;
  274. /* Calculate the pitch vector by interpolating the past excitation at the
  275. pitch lag using a hamming windowed sinc function */
  276. ff_acelp_interpolatef(exc, exc + 1 - pitch_lag_int,
  277. ac_inter, 4,
  278. pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
  279. LP_ORDER, AMRWB_SFR_SIZE + 1);
  280. /* Check which pitch signal path should be used
  281. * 6k60 and 8k85 modes have the ltp flag set to 0 */
  282. if (amr_subframe->ltp) {
  283. memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
  284. } else {
  285. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  286. ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
  287. 0.18 * exc[i + 1];
  288. memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
  289. }
  290. }
  291. /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
  292. #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
  293. /** Get the bit at specified position */
  294. #define BIT_POS(x, p) (((x) >> (p)) & 1)
  295. /**
  296. * The next six functions decode_[i]p_track decode exactly i pulses
  297. * positions and amplitudes (-1 or 1) in a subframe track using
  298. * an encoded pulse indexing (TS 26.190 section 5.8.2).
  299. *
  300. * The results are given in out[], in which a negative number means
  301. * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
  302. *
  303. * @param[out] out Output buffer (writes i elements)
  304. * @param[in] code Pulse index (no. of bits varies, see below)
  305. * @param[in] m (log2) Number of potential positions
  306. * @param[in] off Offset for decoded positions
  307. */
  308. static inline void decode_1p_track(int *out, int code, int m, int off)
  309. {
  310. int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
  311. out[0] = BIT_POS(code, m) ? -pos : pos;
  312. }
  313. static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
  314. {
  315. int pos0 = BIT_STR(code, m, m) + off;
  316. int pos1 = BIT_STR(code, 0, m) + off;
  317. out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
  318. out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
  319. out[1] = pos0 > pos1 ? -out[1] : out[1];
  320. }
  321. static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
  322. {
  323. int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
  324. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  325. m - 1, off + half_2p);
  326. decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
  327. }
  328. static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
  329. {
  330. int half_4p, subhalf_2p;
  331. int b_offset = 1 << (m - 1);
  332. switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
  333. case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
  334. half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
  335. subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
  336. decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
  337. m - 2, off + half_4p + subhalf_2p);
  338. decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
  339. m - 1, off + half_4p);
  340. break;
  341. case 1: /* 1 pulse in A, 3 pulses in B */
  342. decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
  343. m - 1, off);
  344. decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
  345. m - 1, off + b_offset);
  346. break;
  347. case 2: /* 2 pulses in each half */
  348. decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
  349. m - 1, off);
  350. decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
  351. m - 1, off + b_offset);
  352. break;
  353. case 3: /* 3 pulses in A, 1 pulse in B */
  354. decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
  355. m - 1, off);
  356. decode_1p_track(out + 3, BIT_STR(code, 0, m),
  357. m - 1, off + b_offset);
  358. break;
  359. }
  360. }
  361. static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
  362. {
  363. int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
  364. decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
  365. m - 1, off + half_3p);
  366. decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
  367. }
  368. static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
  369. {
  370. int b_offset = 1 << (m - 1);
  371. /* which half has more pulses in cases 0 to 2 */
  372. int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
  373. int half_other = b_offset - half_more;
  374. switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
  375. case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
  376. decode_1p_track(out, BIT_STR(code, 0, m),
  377. m - 1, off + half_more);
  378. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  379. m - 1, off + half_more);
  380. break;
  381. case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
  382. decode_1p_track(out, BIT_STR(code, 0, m),
  383. m - 1, off + half_other);
  384. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  385. m - 1, off + half_more);
  386. break;
  387. case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
  388. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  389. m - 1, off + half_other);
  390. decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
  391. m - 1, off + half_more);
  392. break;
  393. case 3: /* 3 pulses in A, 3 pulses in B */
  394. decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
  395. m - 1, off);
  396. decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
  397. m - 1, off + b_offset);
  398. break;
  399. }
  400. }
  401. /**
  402. * Decode the algebraic codebook index to pulse positions and signs,
  403. * then construct the algebraic codebook vector.
  404. *
  405. * @param[out] fixed_vector Buffer for the fixed codebook excitation
  406. * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
  407. * @param[in] pulse_lo LSBs part of the pulse index array
  408. * @param[in] mode Mode of the current frame
  409. */
  410. static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
  411. const uint16_t *pulse_lo, const enum Mode mode)
  412. {
  413. /* sig_pos stores for each track the decoded pulse position indexes
  414. * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
  415. int sig_pos[4][6];
  416. int spacing = (mode == MODE_6k60) ? 2 : 4;
  417. int i, j;
  418. switch (mode) {
  419. case MODE_6k60:
  420. for (i = 0; i < 2; i++)
  421. decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
  422. break;
  423. case MODE_8k85:
  424. for (i = 0; i < 4; i++)
  425. decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
  426. break;
  427. case MODE_12k65:
  428. for (i = 0; i < 4; i++)
  429. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  430. break;
  431. case MODE_14k25:
  432. for (i = 0; i < 2; i++)
  433. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  434. for (i = 2; i < 4; i++)
  435. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  436. break;
  437. case MODE_15k85:
  438. for (i = 0; i < 4; i++)
  439. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  440. break;
  441. case MODE_18k25:
  442. for (i = 0; i < 4; i++)
  443. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  444. ((int) pulse_hi[i] << 14), 4, 1);
  445. break;
  446. case MODE_19k85:
  447. for (i = 0; i < 2; i++)
  448. decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
  449. ((int) pulse_hi[i] << 10), 4, 1);
  450. for (i = 2; i < 4; i++)
  451. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  452. ((int) pulse_hi[i] << 14), 4, 1);
  453. break;
  454. case MODE_23k05:
  455. case MODE_23k85:
  456. for (i = 0; i < 4; i++)
  457. decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
  458. ((int) pulse_hi[i] << 11), 4, 1);
  459. break;
  460. }
  461. memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
  462. for (i = 0; i < 4; i++)
  463. for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
  464. int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
  465. fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
  466. }
  467. }
  468. /**
  469. * Decode pitch gain and fixed gain correction factor.
  470. *
  471. * @param[in] vq_gain Vector-quantized index for gains
  472. * @param[in] mode Mode of the current frame
  473. * @param[out] fixed_gain_factor Decoded fixed gain correction factor
  474. * @param[out] pitch_gain Decoded pitch gain
  475. */
  476. static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
  477. float *fixed_gain_factor, float *pitch_gain)
  478. {
  479. const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
  480. qua_gain_7b[vq_gain]);
  481. *pitch_gain = gains[0] * (1.0f / (1 << 14));
  482. *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
  483. }
  484. /**
  485. * Apply pitch sharpening filters to the fixed codebook vector.
  486. *
  487. * @param[in] ctx The context
  488. * @param[in,out] fixed_vector Fixed codebook excitation
  489. */
  490. // XXX: Spec states this procedure should be applied when the pitch
  491. // lag is less than 64, but this checking seems absent in reference and AMR-NB
  492. static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
  493. {
  494. int i;
  495. /* Tilt part */
  496. for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
  497. fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
  498. /* Periodicity enhancement part */
  499. for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
  500. fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
  501. }
  502. /**
  503. * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
  504. *
  505. * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
  506. * @param[in] p_gain, f_gain Pitch and fixed gains
  507. */
  508. // XXX: There is something wrong with the precision here! The magnitudes
  509. // of the energies are not correct. Please check the reference code carefully
  510. static float voice_factor(float *p_vector, float p_gain,
  511. float *f_vector, float f_gain)
  512. {
  513. double p_ener = (double) avpriv_scalarproduct_float_c(p_vector, p_vector,
  514. AMRWB_SFR_SIZE) *
  515. p_gain * p_gain;
  516. double f_ener = (double) avpriv_scalarproduct_float_c(f_vector, f_vector,
  517. AMRWB_SFR_SIZE) *
  518. f_gain * f_gain;
  519. return (p_ener - f_ener) / (p_ener + f_ener);
  520. }
  521. /**
  522. * Reduce fixed vector sparseness by smoothing with one of three IR filters,
  523. * also known as "adaptive phase dispersion".
  524. *
  525. * @param[in] ctx The context
  526. * @param[in,out] fixed_vector Unfiltered fixed vector
  527. * @param[out] buf Space for modified vector if necessary
  528. *
  529. * @return The potentially overwritten filtered fixed vector address
  530. */
  531. static float *anti_sparseness(AMRWBContext *ctx,
  532. float *fixed_vector, float *buf)
  533. {
  534. int ir_filter_nr;
  535. if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
  536. return fixed_vector;
  537. if (ctx->pitch_gain[0] < 0.6) {
  538. ir_filter_nr = 0; // strong filtering
  539. } else if (ctx->pitch_gain[0] < 0.9) {
  540. ir_filter_nr = 1; // medium filtering
  541. } else
  542. ir_filter_nr = 2; // no filtering
  543. /* detect 'onset' */
  544. if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
  545. if (ir_filter_nr < 2)
  546. ir_filter_nr++;
  547. } else {
  548. int i, count = 0;
  549. for (i = 0; i < 6; i++)
  550. if (ctx->pitch_gain[i] < 0.6)
  551. count++;
  552. if (count > 2)
  553. ir_filter_nr = 0;
  554. if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
  555. ir_filter_nr--;
  556. }
  557. /* update ir filter strength history */
  558. ctx->prev_ir_filter_nr = ir_filter_nr;
  559. ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
  560. if (ir_filter_nr < 2) {
  561. int i;
  562. const float *coef = ir_filters_lookup[ir_filter_nr];
  563. /* Circular convolution code in the reference
  564. * decoder was modified to avoid using one
  565. * extra array. The filtered vector is given by:
  566. *
  567. * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
  568. */
  569. memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
  570. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  571. if (fixed_vector[i])
  572. ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
  573. AMRWB_SFR_SIZE);
  574. fixed_vector = buf;
  575. }
  576. return fixed_vector;
  577. }
  578. /**
  579. * Calculate a stability factor {teta} based on distance between
  580. * current and past isf. A value of 1 shows maximum signal stability.
  581. */
  582. static float stability_factor(const float *isf, const float *isf_past)
  583. {
  584. int i;
  585. float acc = 0.0;
  586. for (i = 0; i < LP_ORDER - 1; i++)
  587. acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
  588. // XXX: This part is not so clear from the reference code
  589. // the result is more accurate changing the "/ 256" to "* 512"
  590. return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
  591. }
  592. /**
  593. * Apply a non-linear fixed gain smoothing in order to reduce
  594. * fluctuation in the energy of excitation.
  595. *
  596. * @param[in] fixed_gain Unsmoothed fixed gain
  597. * @param[in,out] prev_tr_gain Previous threshold gain (updated)
  598. * @param[in] voice_fac Frame voicing factor
  599. * @param[in] stab_fac Frame stability factor
  600. *
  601. * @return The smoothed gain
  602. */
  603. static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
  604. float voice_fac, float stab_fac)
  605. {
  606. float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
  607. float g0;
  608. // XXX: the following fixed-point constants used to in(de)crement
  609. // gain by 1.5dB were taken from the reference code, maybe it could
  610. // be simpler
  611. if (fixed_gain < *prev_tr_gain) {
  612. g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
  613. (6226 * (1.0f / (1 << 15)))); // +1.5 dB
  614. } else
  615. g0 = FFMAX(*prev_tr_gain, fixed_gain *
  616. (27536 * (1.0f / (1 << 15)))); // -1.5 dB
  617. *prev_tr_gain = g0; // update next frame threshold
  618. return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
  619. }
  620. /**
  621. * Filter the fixed_vector to emphasize the higher frequencies.
  622. *
  623. * @param[in,out] fixed_vector Fixed codebook vector
  624. * @param[in] voice_fac Frame voicing factor
  625. */
  626. static void pitch_enhancer(float *fixed_vector, float voice_fac)
  627. {
  628. int i;
  629. float cpe = 0.125 * (1 + voice_fac);
  630. float last = fixed_vector[0]; // holds c(i - 1)
  631. fixed_vector[0] -= cpe * fixed_vector[1];
  632. for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
  633. float cur = fixed_vector[i];
  634. fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
  635. last = cur;
  636. }
  637. fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
  638. }
  639. /**
  640. * Conduct 16th order linear predictive coding synthesis from excitation.
  641. *
  642. * @param[in] ctx Pointer to the AMRWBContext
  643. * @param[in] lpc Pointer to the LPC coefficients
  644. * @param[out] excitation Buffer for synthesis final excitation
  645. * @param[in] fixed_gain Fixed codebook gain for synthesis
  646. * @param[in] fixed_vector Algebraic codebook vector
  647. * @param[in,out] samples Pointer to the output samples and memory
  648. */
  649. static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
  650. float fixed_gain, const float *fixed_vector,
  651. float *samples)
  652. {
  653. ff_weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
  654. ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
  655. /* emphasize pitch vector contribution in low bitrate modes */
  656. if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
  657. int i;
  658. float energy = avpriv_scalarproduct_float_c(excitation, excitation,
  659. AMRWB_SFR_SIZE);
  660. // XXX: Weird part in both ref code and spec. A unknown parameter
  661. // {beta} seems to be identical to the current pitch gain
  662. float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
  663. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  664. excitation[i] += pitch_factor * ctx->pitch_vector[i];
  665. ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
  666. energy, AMRWB_SFR_SIZE);
  667. }
  668. ff_celp_lp_synthesis_filterf(samples, lpc, excitation,
  669. AMRWB_SFR_SIZE, LP_ORDER);
  670. }
  671. /**
  672. * Apply to synthesis a de-emphasis filter of the form:
  673. * H(z) = 1 / (1 - m * z^-1)
  674. *
  675. * @param[out] out Output buffer
  676. * @param[in] in Input samples array with in[-1]
  677. * @param[in] m Filter coefficient
  678. * @param[in,out] mem State from last filtering
  679. */
  680. static void de_emphasis(float *out, float *in, float m, float mem[1])
  681. {
  682. int i;
  683. out[0] = in[0] + m * mem[0];
  684. for (i = 1; i < AMRWB_SFR_SIZE; i++)
  685. out[i] = in[i] + out[i - 1] * m;
  686. mem[0] = out[AMRWB_SFR_SIZE - 1];
  687. }
  688. /**
  689. * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
  690. * a FIR interpolation filter. Uses past data from before *in address.
  691. *
  692. * @param[out] out Buffer for interpolated signal
  693. * @param[in] in Current signal data (length 0.8*o_size)
  694. * @param[in] o_size Output signal length
  695. */
  696. static void upsample_5_4(float *out, const float *in, int o_size)
  697. {
  698. const float *in0 = in - UPS_FIR_SIZE + 1;
  699. int i, j, k;
  700. int int_part = 0, frac_part;
  701. i = 0;
  702. for (j = 0; j < o_size / 5; j++) {
  703. out[i] = in[int_part];
  704. frac_part = 4;
  705. i++;
  706. for (k = 1; k < 5; k++) {
  707. out[i] = avpriv_scalarproduct_float_c(in0 + int_part,
  708. upsample_fir[4 - frac_part],
  709. UPS_MEM_SIZE);
  710. int_part++;
  711. frac_part--;
  712. i++;
  713. }
  714. }
  715. }
  716. /**
  717. * Calculate the high-band gain based on encoded index (23k85 mode) or
  718. * on the low-band speech signal and the Voice Activity Detection flag.
  719. *
  720. * @param[in] ctx The context
  721. * @param[in] synth LB speech synthesis at 12.8k
  722. * @param[in] hb_idx Gain index for mode 23k85 only
  723. * @param[in] vad VAD flag for the frame
  724. */
  725. static float find_hb_gain(AMRWBContext *ctx, const float *synth,
  726. uint16_t hb_idx, uint8_t vad)
  727. {
  728. int wsp = (vad > 0);
  729. float tilt;
  730. if (ctx->fr_cur_mode == MODE_23k85)
  731. return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
  732. tilt = avpriv_scalarproduct_float_c(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
  733. avpriv_scalarproduct_float_c(synth, synth, AMRWB_SFR_SIZE);
  734. /* return gain bounded by [0.1, 1.0] */
  735. return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
  736. }
  737. /**
  738. * Generate the high-band excitation with the same energy from the lower
  739. * one and scaled by the given gain.
  740. *
  741. * @param[in] ctx The context
  742. * @param[out] hb_exc Buffer for the excitation
  743. * @param[in] synth_exc Low-band excitation used for synthesis
  744. * @param[in] hb_gain Wanted excitation gain
  745. */
  746. static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
  747. const float *synth_exc, float hb_gain)
  748. {
  749. int i;
  750. float energy = avpriv_scalarproduct_float_c(synth_exc, synth_exc,
  751. AMRWB_SFR_SIZE);
  752. /* Generate a white-noise excitation */
  753. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  754. hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
  755. ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
  756. energy * hb_gain * hb_gain,
  757. AMRWB_SFR_SIZE_16k);
  758. }
  759. /**
  760. * Calculate the auto-correlation for the ISF difference vector.
  761. */
  762. static float auto_correlation(float *diff_isf, float mean, int lag)
  763. {
  764. int i;
  765. float sum = 0.0;
  766. for (i = 7; i < LP_ORDER - 2; i++) {
  767. float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
  768. sum += prod * prod;
  769. }
  770. return sum;
  771. }
  772. /**
  773. * Extrapolate a ISF vector to the 16kHz range (20th order LP)
  774. * used at mode 6k60 LP filter for the high frequency band.
  775. *
  776. * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
  777. * values on input
  778. */
  779. static void extrapolate_isf(float isf[LP_ORDER_16k])
  780. {
  781. float diff_isf[LP_ORDER - 2], diff_mean;
  782. float corr_lag[3];
  783. float est, scale;
  784. int i, j, i_max_corr;
  785. isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
  786. /* Calculate the difference vector */
  787. for (i = 0; i < LP_ORDER - 2; i++)
  788. diff_isf[i] = isf[i + 1] - isf[i];
  789. diff_mean = 0.0;
  790. for (i = 2; i < LP_ORDER - 2; i++)
  791. diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
  792. /* Find which is the maximum autocorrelation */
  793. i_max_corr = 0;
  794. for (i = 0; i < 3; i++) {
  795. corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
  796. if (corr_lag[i] > corr_lag[i_max_corr])
  797. i_max_corr = i;
  798. }
  799. i_max_corr++;
  800. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  801. isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
  802. - isf[i - 2 - i_max_corr];
  803. /* Calculate an estimate for ISF(18) and scale ISF based on the error */
  804. est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
  805. scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
  806. (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
  807. for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
  808. diff_isf[j] = scale * (isf[i] - isf[i - 1]);
  809. /* Stability insurance */
  810. for (i = 1; i < LP_ORDER_16k - LP_ORDER; i++)
  811. if (diff_isf[i] + diff_isf[i - 1] < 5.0) {
  812. if (diff_isf[i] > diff_isf[i - 1]) {
  813. diff_isf[i - 1] = 5.0 - diff_isf[i];
  814. } else
  815. diff_isf[i] = 5.0 - diff_isf[i - 1];
  816. }
  817. for (i = LP_ORDER - 1, j = 0; i < LP_ORDER_16k - 1; i++, j++)
  818. isf[i] = isf[i - 1] + diff_isf[j] * (1.0f / (1 << 15));
  819. /* Scale the ISF vector for 16000 Hz */
  820. for (i = 0; i < LP_ORDER_16k - 1; i++)
  821. isf[i] *= 0.8;
  822. }
  823. /**
  824. * Spectral expand the LP coefficients using the equation:
  825. * y[i] = x[i] * (gamma ** i)
  826. *
  827. * @param[out] out Output buffer (may use input array)
  828. * @param[in] lpc LP coefficients array
  829. * @param[in] gamma Weighting factor
  830. * @param[in] size LP array size
  831. */
  832. static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
  833. {
  834. int i;
  835. float fac = gamma;
  836. for (i = 0; i < size; i++) {
  837. out[i] = lpc[i] * fac;
  838. fac *= gamma;
  839. }
  840. }
  841. /**
  842. * Conduct 20th order linear predictive coding synthesis for the high
  843. * frequency band excitation at 16kHz.
  844. *
  845. * @param[in] ctx The context
  846. * @param[in] subframe Current subframe index (0 to 3)
  847. * @param[in,out] samples Pointer to the output speech samples
  848. * @param[in] exc Generated white-noise scaled excitation
  849. * @param[in] isf Current frame isf vector
  850. * @param[in] isf_past Past frame final isf vector
  851. */
  852. static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
  853. const float *exc, const float *isf, const float *isf_past)
  854. {
  855. float hb_lpc[LP_ORDER_16k];
  856. enum Mode mode = ctx->fr_cur_mode;
  857. if (mode == MODE_6k60) {
  858. float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
  859. double e_isp[LP_ORDER_16k];
  860. ff_weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
  861. 1.0 - isfp_inter[subframe], LP_ORDER);
  862. extrapolate_isf(e_isf);
  863. e_isf[LP_ORDER_16k - 1] *= 2.0;
  864. ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
  865. ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
  866. lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
  867. } else {
  868. lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
  869. }
  870. ff_celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
  871. (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
  872. }
  873. /**
  874. * Apply a 15th order filter to high-band samples.
  875. * The filter characteristic depends on the given coefficients.
  876. *
  877. * @param[out] out Buffer for filtered output
  878. * @param[in] fir_coef Filter coefficients
  879. * @param[in,out] mem State from last filtering (updated)
  880. * @param[in] in Input speech data (high-band)
  881. *
  882. * @remark It is safe to pass the same array in in and out parameters
  883. */
  884. static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
  885. float mem[HB_FIR_SIZE], const float *in)
  886. {
  887. int i, j;
  888. float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
  889. memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
  890. memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
  891. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
  892. out[i] = 0.0;
  893. for (j = 0; j <= HB_FIR_SIZE; j++)
  894. out[i] += data[i + j] * fir_coef[j];
  895. }
  896. memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
  897. }
  898. /**
  899. * Update context state before the next subframe.
  900. */
  901. static void update_sub_state(AMRWBContext *ctx)
  902. {
  903. memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
  904. (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
  905. memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
  906. memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
  907. memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
  908. LP_ORDER * sizeof(float));
  909. memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
  910. UPS_MEM_SIZE * sizeof(float));
  911. memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
  912. LP_ORDER_16k * sizeof(float));
  913. }
  914. static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
  915. int *got_frame_ptr, AVPacket *avpkt)
  916. {
  917. AMRWBContext *ctx = avctx->priv_data;
  918. AVFrame *frame = data;
  919. AMRWBFrame *cf = &ctx->frame;
  920. const uint8_t *buf = avpkt->data;
  921. int buf_size = avpkt->size;
  922. int expected_fr_size, header_size;
  923. float *buf_out;
  924. float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
  925. float fixed_gain_factor; // fixed gain correction factor (gamma)
  926. float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  927. float synth_fixed_gain; // the fixed gain that synthesis should use
  928. float voice_fac, stab_fac; // parameters used for gain smoothing
  929. float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
  930. float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
  931. float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
  932. float hb_gain;
  933. int sub, i, ret;
  934. /* get output buffer */
  935. frame->nb_samples = 4 * AMRWB_SFR_SIZE_16k;
  936. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  937. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  938. return ret;
  939. }
  940. buf_out = (float *)frame->data[0];
  941. header_size = decode_mime_header(ctx, buf);
  942. if (ctx->fr_cur_mode > MODE_SID) {
  943. av_log(avctx, AV_LOG_ERROR,
  944. "Invalid mode %d\n", ctx->fr_cur_mode);
  945. return AVERROR_INVALIDDATA;
  946. }
  947. expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
  948. if (buf_size < expected_fr_size) {
  949. av_log(avctx, AV_LOG_ERROR,
  950. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  951. *got_frame_ptr = 0;
  952. return AVERROR_INVALIDDATA;
  953. }
  954. if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
  955. av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
  956. if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */
  957. avpriv_request_sample(avctx, "SID mode");
  958. return AVERROR_PATCHWELCOME;
  959. }
  960. ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
  961. buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
  962. /* Decode the quantized ISF vector */
  963. if (ctx->fr_cur_mode == MODE_6k60) {
  964. decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
  965. } else {
  966. decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
  967. }
  968. isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
  969. ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
  970. stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
  971. ctx->isf_cur[LP_ORDER - 1] *= 2.0;
  972. ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
  973. /* Generate a ISP vector for each subframe */
  974. if (ctx->first_frame) {
  975. ctx->first_frame = 0;
  976. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
  977. }
  978. interpolate_isp(ctx->isp, ctx->isp_sub4_past);
  979. for (sub = 0; sub < 4; sub++)
  980. ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
  981. for (sub = 0; sub < 4; sub++) {
  982. const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
  983. float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
  984. /* Decode adaptive codebook (pitch vector) */
  985. decode_pitch_vector(ctx, cur_subframe, sub);
  986. /* Decode innovative codebook (fixed vector) */
  987. decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
  988. cur_subframe->pul_il, ctx->fr_cur_mode);
  989. pitch_sharpening(ctx, ctx->fixed_vector);
  990. decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
  991. &fixed_gain_factor, &ctx->pitch_gain[0]);
  992. ctx->fixed_gain[0] =
  993. ff_amr_set_fixed_gain(fixed_gain_factor,
  994. avpriv_scalarproduct_float_c(ctx->fixed_vector,
  995. ctx->fixed_vector,
  996. AMRWB_SFR_SIZE) /
  997. AMRWB_SFR_SIZE,
  998. ctx->prediction_error,
  999. ENERGY_MEAN, energy_pred_fac);
  1000. /* Calculate voice factor and store tilt for next subframe */
  1001. voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
  1002. ctx->fixed_vector, ctx->fixed_gain[0]);
  1003. ctx->tilt_coef = voice_fac * 0.25 + 0.25;
  1004. /* Construct current excitation */
  1005. for (i = 0; i < AMRWB_SFR_SIZE; i++) {
  1006. ctx->excitation[i] *= ctx->pitch_gain[0];
  1007. ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
  1008. ctx->excitation[i] = truncf(ctx->excitation[i]);
  1009. }
  1010. /* Post-processing of excitation elements */
  1011. synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
  1012. voice_fac, stab_fac);
  1013. synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
  1014. spare_vector);
  1015. pitch_enhancer(synth_fixed_vector, voice_fac);
  1016. synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
  1017. synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
  1018. /* Synthesis speech post-processing */
  1019. de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
  1020. &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
  1021. ff_acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
  1022. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
  1023. hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
  1024. upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
  1025. AMRWB_SFR_SIZE_16k);
  1026. /* High frequency band (6.4 - 7.0 kHz) generation part */
  1027. ff_acelp_apply_order_2_transfer_function(hb_samples,
  1028. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
  1029. hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
  1030. hb_gain = find_hb_gain(ctx, hb_samples,
  1031. cur_subframe->hb_gain, cf->vad);
  1032. scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
  1033. hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
  1034. hb_exc, ctx->isf_cur, ctx->isf_past_final);
  1035. /* High-band post-processing filters */
  1036. hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
  1037. &ctx->samples_hb[LP_ORDER_16k]);
  1038. if (ctx->fr_cur_mode == MODE_23k85)
  1039. hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
  1040. hb_samples);
  1041. /* Add the low and high frequency bands */
  1042. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  1043. sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
  1044. /* Update buffers and history */
  1045. update_sub_state(ctx);
  1046. }
  1047. /* update state for next frame */
  1048. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
  1049. memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
  1050. *got_frame_ptr = 1;
  1051. return expected_fr_size;
  1052. }
  1053. AVCodec ff_amrwb_decoder = {
  1054. .name = "amrwb",
  1055. .long_name = NULL_IF_CONFIG_SMALL("AMR-WB (Adaptive Multi-Rate WideBand)"),
  1056. .type = AVMEDIA_TYPE_AUDIO,
  1057. .id = AV_CODEC_ID_AMR_WB,
  1058. .priv_data_size = sizeof(AMRWBContext),
  1059. .init = amrwb_decode_init,
  1060. .decode = amrwb_decode_frame,
  1061. .capabilities = AV_CODEC_CAP_DR1,
  1062. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  1063. AV_SAMPLE_FMT_NONE },
  1064. };