You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1820 lines
65KB

  1. /*
  2. * MPEG-4 ALS decoder
  3. * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG-4 ALS decoder
  24. * @author Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
  25. */
  26. #include <inttypes.h>
  27. #include "avcodec.h"
  28. #include "bitstream.h"
  29. #include "mpeg4audio.h"
  30. #include "bytestream.h"
  31. #include "bgmc.h"
  32. #include "bswapdsp.h"
  33. #include "internal.h"
  34. #include "unary.h"
  35. #include "libavutil/samplefmt.h"
  36. #include "libavutil/crc.h"
  37. #include <stdint.h>
  38. /** Rice parameters and corresponding index offsets for decoding the
  39. * indices of scaled PARCOR values. The table chosen is set globally
  40. * by the encoder and stored in ALSSpecificConfig.
  41. */
  42. static const int8_t parcor_rice_table[3][20][2] = {
  43. { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
  44. { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
  45. { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
  46. { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
  47. { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
  48. { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
  49. {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
  50. { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
  51. { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
  52. { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
  53. {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
  54. { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
  55. };
  56. /** Scaled PARCOR values used for the first two PARCOR coefficients.
  57. * To be indexed by the Rice coded indices.
  58. * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
  59. * Actual values are divided by 32 in order to be stored in 16 bits.
  60. */
  61. static const int16_t parcor_scaled_values[] = {
  62. -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
  63. -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
  64. -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
  65. -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
  66. -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
  67. -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
  68. -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
  69. -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
  70. -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
  71. -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
  72. -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
  73. -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
  74. -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
  75. -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
  76. -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
  77. -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
  78. -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
  79. -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
  80. -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
  81. -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
  82. -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
  83. -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
  84. -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
  85. 46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
  86. 143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
  87. 244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
  88. 349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
  89. 458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
  90. 571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
  91. 688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
  92. 810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
  93. 935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
  94. };
  95. /** Gain values of p(0) for long-term prediction.
  96. * To be indexed by the Rice coded indices.
  97. */
  98. static const uint8_t ltp_gain_values [4][4] = {
  99. { 0, 8, 16, 24},
  100. {32, 40, 48, 56},
  101. {64, 70, 76, 82},
  102. {88, 92, 96, 100}
  103. };
  104. /** Inter-channel weighting factors for multi-channel correlation.
  105. * To be indexed by the Rice coded indices.
  106. */
  107. static const int16_t mcc_weightings[] = {
  108. 204, 192, 179, 166, 153, 140, 128, 115,
  109. 102, 89, 76, 64, 51, 38, 25, 12,
  110. 0, -12, -25, -38, -51, -64, -76, -89,
  111. -102, -115, -128, -140, -153, -166, -179, -192
  112. };
  113. /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
  114. */
  115. static const uint8_t tail_code[16][6] = {
  116. { 74, 44, 25, 13, 7, 3},
  117. { 68, 42, 24, 13, 7, 3},
  118. { 58, 39, 23, 13, 7, 3},
  119. {126, 70, 37, 19, 10, 5},
  120. {132, 70, 37, 20, 10, 5},
  121. {124, 70, 38, 20, 10, 5},
  122. {120, 69, 37, 20, 11, 5},
  123. {116, 67, 37, 20, 11, 5},
  124. {108, 66, 36, 20, 10, 5},
  125. {102, 62, 36, 20, 10, 5},
  126. { 88, 58, 34, 19, 10, 5},
  127. {162, 89, 49, 25, 13, 7},
  128. {156, 87, 49, 26, 14, 7},
  129. {150, 86, 47, 26, 14, 7},
  130. {142, 84, 47, 26, 14, 7},
  131. {131, 79, 46, 26, 14, 7}
  132. };
  133. enum RA_Flag {
  134. RA_FLAG_NONE,
  135. RA_FLAG_FRAMES,
  136. RA_FLAG_HEADER
  137. };
  138. typedef struct ALSSpecificConfig {
  139. uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
  140. int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
  141. int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
  142. int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
  143. int frame_length; ///< frame length for each frame (last frame may differ)
  144. int ra_distance; ///< distance between RA frames (in frames, 0...255)
  145. enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
  146. int adapt_order; ///< adaptive order: 1 = on, 0 = off
  147. int coef_table; ///< table index of Rice code parameters
  148. int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
  149. int max_order; ///< maximum prediction order (0..1023)
  150. int block_switching; ///< number of block switching levels
  151. int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
  152. int sb_part; ///< sub-block partition
  153. int joint_stereo; ///< joint stereo: 1 = on, 0 = off
  154. int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
  155. int chan_config; ///< indicates that a chan_config_info field is present
  156. int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
  157. int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
  158. int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
  159. int *chan_pos; ///< original channel positions
  160. int crc_enabled; ///< enable Cyclic Redundancy Checksum
  161. } ALSSpecificConfig;
  162. typedef struct ALSChannelData {
  163. int stop_flag;
  164. int master_channel;
  165. int time_diff_flag;
  166. int time_diff_sign;
  167. int time_diff_index;
  168. int weighting[6];
  169. } ALSChannelData;
  170. typedef struct ALSDecContext {
  171. AVCodecContext *avctx;
  172. ALSSpecificConfig sconf;
  173. BitstreamContext bc;
  174. BswapDSPContext bdsp;
  175. const AVCRC *crc_table;
  176. uint32_t crc_org; ///< CRC value of the original input data
  177. uint32_t crc; ///< CRC value calculated from decoded data
  178. unsigned int cur_frame_length; ///< length of the current frame to decode
  179. unsigned int frame_id; ///< the frame ID / number of the current frame
  180. unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
  181. unsigned int num_blocks; ///< number of blocks used in the current frame
  182. unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
  183. uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
  184. int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
  185. int ltp_lag_length; ///< number of bits used for ltp lag value
  186. int *const_block; ///< contains const_block flags for all channels
  187. unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
  188. unsigned int *opt_order; ///< contains opt_order flags for all channels
  189. int *store_prev_samples; ///< contains store_prev_samples flags for all channels
  190. int *use_ltp; ///< contains use_ltp flags for all channels
  191. int *ltp_lag; ///< contains ltp lag values for all channels
  192. int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
  193. int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
  194. int32_t **quant_cof; ///< quantized parcor coefficients for a channel
  195. int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
  196. int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
  197. int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
  198. int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
  199. ALSChannelData **chan_data; ///< channel data for multi-channel correlation
  200. ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
  201. int *reverted_channels; ///< stores a flag for each reverted channel
  202. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  203. int32_t **raw_samples; ///< decoded raw samples for each channel
  204. int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
  205. uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
  206. } ALSDecContext;
  207. typedef struct ALSBlockData {
  208. unsigned int block_length; ///< number of samples within the block
  209. unsigned int ra_block; ///< if true, this is a random access block
  210. int *const_block; ///< if true, this is a constant value block
  211. int js_blocks; ///< true if this block contains a difference signal
  212. unsigned int *shift_lsbs; ///< shift of values for this block
  213. unsigned int *opt_order; ///< prediction order of this block
  214. int *store_prev_samples;///< if true, carryover samples have to be stored
  215. int *use_ltp; ///< if true, long-term prediction is used
  216. int *ltp_lag; ///< lag value for long-term prediction
  217. int *ltp_gain; ///< gain values for ltp 5-tap filter
  218. int32_t *quant_cof; ///< quantized parcor coefficients
  219. int32_t *lpc_cof; ///< coefficients of the direct form prediction
  220. int32_t *raw_samples; ///< decoded raw samples / residuals for this block
  221. int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
  222. int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
  223. } ALSBlockData;
  224. #ifdef DEBUG
  225. static av_cold void dprint_specific_config(ALSDecContext *ctx)
  226. {
  227. AVCodecContext *avctx = ctx->avctx;
  228. ALSSpecificConfig *sconf = &ctx->sconf;
  229. ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
  230. ff_dlog(avctx, "floating = %i\n", sconf->floating);
  231. ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
  232. ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
  233. ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
  234. ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
  235. ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
  236. ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
  237. ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
  238. ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
  239. ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
  240. ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
  241. ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
  242. ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
  243. ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
  244. ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
  245. ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
  246. ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
  247. }
  248. #else
  249. #define dprint_specific_config(x) do {} while(0)
  250. #endif
  251. /** Read an ALSSpecificConfig from a buffer into the output struct.
  252. */
  253. static av_cold int read_specific_config(ALSDecContext *ctx)
  254. {
  255. BitstreamContext bc;
  256. uint64_t ht_size;
  257. int i, config_offset;
  258. MPEG4AudioConfig m4ac;
  259. ALSSpecificConfig *sconf = &ctx->sconf;
  260. AVCodecContext *avctx = ctx->avctx;
  261. uint32_t als_id, header_size, trailer_size;
  262. bitstream_init8(&bc, avctx->extradata, avctx->extradata_size);
  263. config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
  264. avctx->extradata_size * 8, 1);
  265. if (config_offset < 0)
  266. return AVERROR_INVALIDDATA;
  267. bitstream_skip(&bc, config_offset);
  268. if (bitstream_bits_left(&bc) < (30 << 3))
  269. return AVERROR_INVALIDDATA;
  270. // read the fixed items
  271. als_id = bitstream_read(&bc, 32);
  272. avctx->sample_rate = m4ac.sample_rate;
  273. bitstream_skip(&bc, 32); // sample rate already known
  274. sconf->samples = bitstream_read(&bc, 32);
  275. avctx->channels = m4ac.channels;
  276. bitstream_skip(&bc, 16); // number of channels already known
  277. bitstream_skip(&bc, 3); // skip file_type
  278. sconf->resolution = bitstream_read(&bc, 3);
  279. sconf->floating = bitstream_read_bit(&bc);
  280. sconf->msb_first = bitstream_read_bit(&bc);
  281. sconf->frame_length = bitstream_read(&bc, 16) + 1;
  282. sconf->ra_distance = bitstream_read(&bc, 8);
  283. sconf->ra_flag = bitstream_read(&bc, 2);
  284. sconf->adapt_order = bitstream_read_bit(&bc);
  285. sconf->coef_table = bitstream_read(&bc, 2);
  286. sconf->long_term_prediction = bitstream_read_bit(&bc);
  287. sconf->max_order = bitstream_read(&bc, 10);
  288. sconf->block_switching = bitstream_read(&bc, 2);
  289. sconf->bgmc = bitstream_read_bit(&bc);
  290. sconf->sb_part = bitstream_read_bit(&bc);
  291. sconf->joint_stereo = bitstream_read_bit(&bc);
  292. sconf->mc_coding = bitstream_read_bit(&bc);
  293. sconf->chan_config = bitstream_read_bit(&bc);
  294. sconf->chan_sort = bitstream_read_bit(&bc);
  295. sconf->crc_enabled = bitstream_read_bit(&bc);
  296. sconf->rlslms = bitstream_read_bit(&bc);
  297. bitstream_skip(&bc, 5); // skip 5 reserved bits
  298. bitstream_skip(&bc, 1); // skip aux_data_enabled
  299. // check for ALSSpecificConfig struct
  300. if (als_id != MKBETAG('A','L','S','\0'))
  301. return AVERROR_INVALIDDATA;
  302. ctx->cur_frame_length = sconf->frame_length;
  303. // read channel config
  304. if (sconf->chan_config)
  305. sconf->chan_config_info = bitstream_read(&bc, 16);
  306. // TODO: use this to set avctx->channel_layout
  307. // read channel sorting
  308. if (sconf->chan_sort && avctx->channels > 1) {
  309. int chan_pos_bits = av_ceil_log2(avctx->channels);
  310. int bits_needed = avctx->channels * chan_pos_bits + 7;
  311. if (bitstream_bits_left(&bc) < bits_needed)
  312. return AVERROR_INVALIDDATA;
  313. if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
  314. return AVERROR(ENOMEM);
  315. for (i = 0; i < avctx->channels; i++)
  316. sconf->chan_pos[i] = bitstream_read(&bc, chan_pos_bits);
  317. bitstream_align(&bc);
  318. // TODO: use this to actually do channel sorting
  319. } else {
  320. sconf->chan_sort = 0;
  321. }
  322. // read fixed header and trailer sizes,
  323. // if size = 0xFFFFFFFF then there is no data field!
  324. if (bitstream_bits_left(&bc) < 64)
  325. return AVERROR_INVALIDDATA;
  326. header_size = bitstream_read(&bc, 32);
  327. trailer_size = bitstream_read(&bc, 32);
  328. if (header_size == 0xFFFFFFFF)
  329. header_size = 0;
  330. if (trailer_size == 0xFFFFFFFF)
  331. trailer_size = 0;
  332. ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
  333. // skip the header and trailer data
  334. if (bitstream_bits_left(&bc) < ht_size)
  335. return AVERROR_INVALIDDATA;
  336. if (ht_size > INT32_MAX)
  337. return AVERROR_PATCHWELCOME;
  338. bitstream_skip(&bc, ht_size);
  339. // initialize CRC calculation
  340. if (sconf->crc_enabled) {
  341. if (bitstream_bits_left(&bc) < 32)
  342. return AVERROR_INVALIDDATA;
  343. if (avctx->err_recognition & AV_EF_CRCCHECK) {
  344. ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
  345. ctx->crc = 0xFFFFFFFF;
  346. ctx->crc_org = ~bitstream_read(&bc, 32);
  347. } else
  348. bitstream_skip(&bc, 32);
  349. }
  350. // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
  351. dprint_specific_config(ctx);
  352. return 0;
  353. }
  354. /** Check the ALSSpecificConfig for unsupported features.
  355. */
  356. static int check_specific_config(ALSDecContext *ctx)
  357. {
  358. ALSSpecificConfig *sconf = &ctx->sconf;
  359. int error = 0;
  360. // report unsupported feature and set error value
  361. #define MISSING_ERR(cond, str, errval) \
  362. { \
  363. if (cond) { \
  364. avpriv_report_missing_feature(ctx->avctx, \
  365. str); \
  366. error = errval; \
  367. } \
  368. }
  369. MISSING_ERR(sconf->floating, "Floating point decoding", AVERROR_PATCHWELCOME);
  370. MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
  371. MISSING_ERR(sconf->chan_sort, "Channel sorting", 0);
  372. return error;
  373. }
  374. /** Parse the bs_info field to extract the block partitioning used in
  375. * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
  376. */
  377. static void parse_bs_info(const uint32_t bs_info, unsigned int n,
  378. unsigned int div, unsigned int **div_blocks,
  379. unsigned int *num_blocks)
  380. {
  381. if (n < 31 && ((bs_info << n) & 0x40000000)) {
  382. // if the level is valid and the investigated bit n is set
  383. // then recursively check both children at bits (2n+1) and (2n+2)
  384. n *= 2;
  385. div += 1;
  386. parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
  387. parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
  388. } else {
  389. // else the bit is not set or the last level has been reached
  390. // (bit implicitly not set)
  391. **div_blocks = div;
  392. (*div_blocks)++;
  393. (*num_blocks)++;
  394. }
  395. }
  396. /** Read and decode a Rice codeword.
  397. */
  398. static int32_t decode_rice(BitstreamContext *bc, unsigned int k)
  399. {
  400. int max = bitstream_bits_left(bc) - k;
  401. int q = get_unary(bc, 0, max);
  402. int r = k ? bitstream_read_bit(bc) : !(q & 1);
  403. if (k > 1) {
  404. q <<= (k - 1);
  405. q += bitstream_read(bc, k - 1);
  406. } else if (!k) {
  407. q >>= 1;
  408. }
  409. return r ? q : ~q;
  410. }
  411. /** Convert PARCOR coefficient k to direct filter coefficient.
  412. */
  413. static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
  414. {
  415. int i, j;
  416. for (i = 0, j = k - 1; i < j; i++, j--) {
  417. int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  418. cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
  419. cof[i] += tmp1;
  420. }
  421. if (i == j)
  422. cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
  423. cof[k] = par[k];
  424. }
  425. /** Read block switching field if necessary and set actual block sizes.
  426. * Also assure that the block sizes of the last frame correspond to the
  427. * actual number of samples.
  428. */
  429. static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
  430. uint32_t *bs_info)
  431. {
  432. ALSSpecificConfig *sconf = &ctx->sconf;
  433. BitstreamContext *bc = &ctx->bc;
  434. unsigned int *ptr_div_blocks = div_blocks;
  435. unsigned int b;
  436. if (sconf->block_switching) {
  437. unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
  438. *bs_info = bitstream_read(bc, bs_info_len);
  439. *bs_info <<= (32 - bs_info_len);
  440. }
  441. ctx->num_blocks = 0;
  442. parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
  443. // The last frame may have an overdetermined block structure given in
  444. // the bitstream. In that case the defined block structure would need
  445. // more samples than available to be consistent.
  446. // The block structure is actually used but the block sizes are adapted
  447. // to fit the actual number of available samples.
  448. // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
  449. // This results in the actual block sizes: 2 2 1 0.
  450. // This is not specified in 14496-3 but actually done by the reference
  451. // codec RM22 revision 2.
  452. // This appears to happen in case of an odd number of samples in the last
  453. // frame which is actually not allowed by the block length switching part
  454. // of 14496-3.
  455. // The ALS conformance files feature an odd number of samples in the last
  456. // frame.
  457. for (b = 0; b < ctx->num_blocks; b++)
  458. div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
  459. if (ctx->cur_frame_length != ctx->sconf.frame_length) {
  460. unsigned int remaining = ctx->cur_frame_length;
  461. for (b = 0; b < ctx->num_blocks; b++) {
  462. if (remaining <= div_blocks[b]) {
  463. div_blocks[b] = remaining;
  464. ctx->num_blocks = b + 1;
  465. break;
  466. }
  467. remaining -= div_blocks[b];
  468. }
  469. }
  470. }
  471. /** Read the block data for a constant block
  472. */
  473. static void read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  474. {
  475. ALSSpecificConfig *sconf = &ctx->sconf;
  476. AVCodecContext *avctx = ctx->avctx;
  477. BitstreamContext *bc = &ctx->bc;
  478. *bd->raw_samples = 0;
  479. *bd->const_block = bitstream_read_bit(bc); // 1 = constant value, 0 = zero block (silence)
  480. bd->js_blocks = bitstream_read_bit(bc);
  481. // skip 5 reserved bits
  482. bitstream_skip(bc, 5);
  483. if (*bd->const_block) {
  484. unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
  485. *bd->raw_samples = bitstream_read_signed(bc, const_val_bits);
  486. }
  487. // ensure constant block decoding by reusing this field
  488. *bd->const_block = 1;
  489. }
  490. /** Decode the block data for a constant block
  491. */
  492. static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  493. {
  494. int smp = bd->block_length - 1;
  495. int32_t val = *bd->raw_samples;
  496. int32_t *dst = bd->raw_samples + 1;
  497. // write raw samples into buffer
  498. for (; smp; smp--)
  499. *dst++ = val;
  500. }
  501. /** Read the block data for a non-constant block
  502. */
  503. static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  504. {
  505. ALSSpecificConfig *sconf = &ctx->sconf;
  506. AVCodecContext *avctx = ctx->avctx;
  507. BitstreamContext *bc = &ctx->bc;
  508. unsigned int k;
  509. unsigned int s[8];
  510. unsigned int sx[8];
  511. unsigned int sub_blocks, log2_sub_blocks, sb_length;
  512. unsigned int start = 0;
  513. unsigned int opt_order;
  514. int sb;
  515. int32_t *quant_cof = bd->quant_cof;
  516. int32_t *current_res;
  517. // ensure variable block decoding by reusing this field
  518. *bd->const_block = 0;
  519. *bd->opt_order = 1;
  520. bd->js_blocks = bitstream_read_bit(bc);
  521. opt_order = *bd->opt_order;
  522. // determine the number of subblocks for entropy decoding
  523. if (!sconf->bgmc && !sconf->sb_part) {
  524. log2_sub_blocks = 0;
  525. } else {
  526. if (sconf->bgmc && sconf->sb_part)
  527. log2_sub_blocks = bitstream_read(bc, 2);
  528. else
  529. log2_sub_blocks = 2 * bitstream_read_bit(bc);
  530. }
  531. sub_blocks = 1 << log2_sub_blocks;
  532. // do not continue in case of a damaged stream since
  533. // block_length must be evenly divisible by sub_blocks
  534. if (bd->block_length & (sub_blocks - 1)) {
  535. av_log(avctx, AV_LOG_WARNING,
  536. "Block length is not evenly divisible by the number of subblocks.\n");
  537. return AVERROR_INVALIDDATA;
  538. }
  539. sb_length = bd->block_length >> log2_sub_blocks;
  540. if (sconf->bgmc) {
  541. s[0] = bitstream_read(bc, 8 + (sconf->resolution > 1));
  542. for (k = 1; k < sub_blocks; k++)
  543. s[k] = s[k - 1] + decode_rice(bc, 2);
  544. for (k = 0; k < sub_blocks; k++) {
  545. sx[k] = s[k] & 0x0F;
  546. s [k] >>= 4;
  547. }
  548. } else {
  549. s[0] = bitstream_read(bc, 4 + (sconf->resolution > 1));
  550. for (k = 1; k < sub_blocks; k++)
  551. s[k] = s[k - 1] + decode_rice(bc, 0);
  552. }
  553. for (k = 1; k < sub_blocks; k++)
  554. if (s[k] > 32) {
  555. av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
  556. return AVERROR_INVALIDDATA;
  557. }
  558. if (bitstream_read_bit(bc))
  559. *bd->shift_lsbs = bitstream_read(bc, 4) + 1;
  560. *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
  561. if (!sconf->rlslms) {
  562. if (sconf->adapt_order && sconf->max_order) {
  563. int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
  564. 2, sconf->max_order + 1));
  565. *bd->opt_order = bitstream_read(bc, opt_order_length);
  566. if (*bd->opt_order > sconf->max_order) {
  567. *bd->opt_order = sconf->max_order;
  568. av_log(avctx, AV_LOG_ERROR, "Predictor order too large!\n");
  569. return AVERROR_INVALIDDATA;
  570. }
  571. } else {
  572. *bd->opt_order = sconf->max_order;
  573. }
  574. opt_order = *bd->opt_order;
  575. if (opt_order) {
  576. int add_base;
  577. if (sconf->coef_table == 3) {
  578. add_base = 0x7F;
  579. // read coefficient 0
  580. quant_cof[0] = 32 * parcor_scaled_values[bitstream_read(bc, 7)];
  581. // read coefficient 1
  582. if (opt_order > 1)
  583. quant_cof[1] = -32 * parcor_scaled_values[bitstream_read(bc, 7)];
  584. // read coefficients 2 to opt_order
  585. for (k = 2; k < opt_order; k++)
  586. quant_cof[k] = bitstream_read(bc, 7);
  587. } else {
  588. int k_max;
  589. add_base = 1;
  590. // read coefficient 0 to 19
  591. k_max = FFMIN(opt_order, 20);
  592. for (k = 0; k < k_max; k++) {
  593. int rice_param = parcor_rice_table[sconf->coef_table][k][1];
  594. int offset = parcor_rice_table[sconf->coef_table][k][0];
  595. quant_cof[k] = decode_rice(bc, rice_param) + offset;
  596. if (quant_cof[k] < -64 || quant_cof[k] > 63) {
  597. av_log(avctx, AV_LOG_ERROR,
  598. "quant_cof %"PRIu32" is out of range\n",
  599. quant_cof[k]);
  600. return AVERROR_INVALIDDATA;
  601. }
  602. }
  603. // read coefficients 20 to 126
  604. k_max = FFMIN(opt_order, 127);
  605. for (; k < k_max; k++)
  606. quant_cof[k] = decode_rice(bc, 2) + (k & 1);
  607. // read coefficients 127 to opt_order
  608. for (; k < opt_order; k++)
  609. quant_cof[k] = decode_rice(bc, 1);
  610. quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
  611. if (opt_order > 1)
  612. quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
  613. }
  614. for (k = 2; k < opt_order; k++)
  615. quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
  616. }
  617. }
  618. // read LTP gain and lag values
  619. if (sconf->long_term_prediction) {
  620. *bd->use_ltp = bitstream_read_bit(bc);
  621. if (*bd->use_ltp) {
  622. int r, c;
  623. bd->ltp_gain[0] = decode_rice(bc, 1) << 3;
  624. bd->ltp_gain[1] = decode_rice(bc, 2) << 3;
  625. r = get_unary(bc, 0, 3);
  626. c = bitstream_read(bc, 2);
  627. bd->ltp_gain[2] = ltp_gain_values[r][c];
  628. bd->ltp_gain[3] = decode_rice(bc, 2) << 3;
  629. bd->ltp_gain[4] = decode_rice(bc, 1) << 3;
  630. *bd->ltp_lag = bitstream_read(bc, ctx->ltp_lag_length);
  631. *bd->ltp_lag += FFMAX(4, opt_order + 1);
  632. }
  633. }
  634. // read first value and residuals in case of a random access block
  635. if (bd->ra_block) {
  636. if (opt_order)
  637. bd->raw_samples[0] = decode_rice(bc, avctx->bits_per_raw_sample - 4);
  638. if (opt_order > 1)
  639. bd->raw_samples[1] = decode_rice(bc, FFMIN(s[0] + 3, ctx->s_max));
  640. if (opt_order > 2)
  641. bd->raw_samples[2] = decode_rice(bc, FFMIN(s[0] + 1, ctx->s_max));
  642. start = FFMIN(opt_order, 3);
  643. }
  644. // read all residuals
  645. if (sconf->bgmc) {
  646. int delta[8];
  647. unsigned int k [8];
  648. unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
  649. // read most significant bits
  650. unsigned int high;
  651. unsigned int low;
  652. unsigned int value;
  653. ff_bgmc_decode_init(bc, &high, &low, &value);
  654. current_res = bd->raw_samples + start;
  655. for (sb = 0; sb < sub_blocks; sb++) {
  656. unsigned int sb_len = sb_length - (sb ? 0 : start);
  657. k [sb] = s[sb] > b ? s[sb] - b : 0;
  658. delta[sb] = 5 - s[sb] + k[sb];
  659. ff_bgmc_decode(bc, sb_len, current_res, delta[sb], sx[sb], &high,
  660. &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
  661. current_res += sb_len;
  662. }
  663. ff_bgmc_decode_end(bc);
  664. // read least significant bits and tails
  665. current_res = bd->raw_samples + start;
  666. for (sb = 0; sb < sub_blocks; sb++, start = 0) {
  667. unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
  668. unsigned int cur_k = k[sb];
  669. unsigned int cur_s = s[sb];
  670. for (; start < sb_length; start++) {
  671. int32_t res = *current_res;
  672. if (res == cur_tail_code) {
  673. unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
  674. << (5 - delta[sb]);
  675. res = decode_rice(bc, cur_s);
  676. if (res >= 0) {
  677. res += (max_msb ) << cur_k;
  678. } else {
  679. res -= (max_msb - 1) << cur_k;
  680. }
  681. } else {
  682. if (res > cur_tail_code)
  683. res--;
  684. if (res & 1)
  685. res = -res;
  686. res >>= 1;
  687. if (cur_k) {
  688. res <<= cur_k;
  689. res |= bitstream_read(bc, cur_k);
  690. }
  691. }
  692. *current_res++ = res;
  693. }
  694. }
  695. } else {
  696. current_res = bd->raw_samples + start;
  697. for (sb = 0; sb < sub_blocks; sb++, start = 0)
  698. for (; start < sb_length; start++)
  699. *current_res++ = decode_rice(bc, s[sb]);
  700. }
  701. if (!sconf->mc_coding || ctx->js_switch)
  702. bitstream_align(bc);
  703. return 0;
  704. }
  705. /** Decode the block data for a non-constant block
  706. */
  707. static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
  708. {
  709. ALSSpecificConfig *sconf = &ctx->sconf;
  710. unsigned int block_length = bd->block_length;
  711. unsigned int smp = 0;
  712. unsigned int k;
  713. int opt_order = *bd->opt_order;
  714. int sb;
  715. int64_t y;
  716. int32_t *quant_cof = bd->quant_cof;
  717. int32_t *lpc_cof = bd->lpc_cof;
  718. int32_t *raw_samples = bd->raw_samples;
  719. int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
  720. int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
  721. // reverse long-term prediction
  722. if (*bd->use_ltp) {
  723. int ltp_smp;
  724. for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
  725. int center = ltp_smp - *bd->ltp_lag;
  726. int begin = FFMAX(0, center - 2);
  727. int end = center + 3;
  728. int tab = 5 - (end - begin);
  729. int base;
  730. y = 1 << 6;
  731. for (base = begin; base < end; base++, tab++)
  732. y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
  733. raw_samples[ltp_smp] += y >> 7;
  734. }
  735. }
  736. // reconstruct all samples from residuals
  737. if (bd->ra_block) {
  738. for (smp = 0; smp < opt_order; smp++) {
  739. y = 1 << 19;
  740. for (sb = 0; sb < smp; sb++)
  741. y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
  742. *raw_samples++ -= y >> 20;
  743. parcor_to_lpc(smp, quant_cof, lpc_cof);
  744. }
  745. } else {
  746. for (k = 0; k < opt_order; k++)
  747. parcor_to_lpc(k, quant_cof, lpc_cof);
  748. // store previous samples in case that they have to be altered
  749. if (*bd->store_prev_samples)
  750. memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
  751. sizeof(*bd->prev_raw_samples) * sconf->max_order);
  752. // reconstruct difference signal for prediction (joint-stereo)
  753. if (bd->js_blocks && bd->raw_other) {
  754. int32_t *left, *right;
  755. if (bd->raw_other > raw_samples) { // D = R - L
  756. left = raw_samples;
  757. right = bd->raw_other;
  758. } else { // D = R - L
  759. left = bd->raw_other;
  760. right = raw_samples;
  761. }
  762. for (sb = -1; sb >= -sconf->max_order; sb--)
  763. raw_samples[sb] = right[sb] - left[sb];
  764. }
  765. // reconstruct shifted signal
  766. if (*bd->shift_lsbs)
  767. for (sb = -1; sb >= -sconf->max_order; sb--)
  768. raw_samples[sb] >>= *bd->shift_lsbs;
  769. }
  770. // reverse linear prediction coefficients for efficiency
  771. lpc_cof = lpc_cof + opt_order;
  772. for (sb = 0; sb < opt_order; sb++)
  773. lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
  774. // reconstruct raw samples
  775. raw_samples = bd->raw_samples + smp;
  776. lpc_cof = lpc_cof_reversed + opt_order;
  777. for (; raw_samples < raw_samples_end; raw_samples++) {
  778. y = 1 << 19;
  779. for (sb = -opt_order; sb < 0; sb++)
  780. y += MUL64(lpc_cof[sb], raw_samples[sb]);
  781. *raw_samples -= y >> 20;
  782. }
  783. raw_samples = bd->raw_samples;
  784. // restore previous samples in case that they have been altered
  785. if (*bd->store_prev_samples)
  786. memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
  787. sizeof(*raw_samples) * sconf->max_order);
  788. return 0;
  789. }
  790. /** Read the block data.
  791. */
  792. static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
  793. {
  794. int ret = 0;
  795. BitstreamContext *bc = &ctx->bc;
  796. *bd->shift_lsbs = 0;
  797. // read block type flag and read the samples accordingly
  798. if (bitstream_read_bit(bc)) {
  799. ret = read_var_block_data(ctx, bd);
  800. } else {
  801. read_const_block_data(ctx, bd);
  802. }
  803. return ret;
  804. }
  805. /** Decode the block data.
  806. */
  807. static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  808. {
  809. unsigned int smp;
  810. int ret = 0;
  811. // read block type flag and read the samples accordingly
  812. if (*bd->const_block)
  813. decode_const_block_data(ctx, bd);
  814. else
  815. ret = decode_var_block_data(ctx, bd); // always return 0
  816. if (ret < 0)
  817. return ret;
  818. // TODO: read RLSLMS extension data
  819. if (*bd->shift_lsbs)
  820. for (smp = 0; smp < bd->block_length; smp++)
  821. bd->raw_samples[smp] <<= *bd->shift_lsbs;
  822. return 0;
  823. }
  824. /** Read and decode block data successively.
  825. */
  826. static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
  827. {
  828. int ret;
  829. if ((ret = read_block(ctx, bd)) < 0)
  830. return ret;
  831. return decode_block(ctx, bd);
  832. }
  833. /** Compute the number of samples left to decode for the current frame and
  834. * sets these samples to zero.
  835. */
  836. static void zero_remaining(unsigned int b, unsigned int b_max,
  837. const unsigned int *div_blocks, int32_t *buf)
  838. {
  839. unsigned int count = 0;
  840. for (; b < b_max; b++)
  841. count += div_blocks[b];
  842. if (count)
  843. memset(buf, 0, sizeof(*buf) * count);
  844. }
  845. /** Decode blocks independently.
  846. */
  847. static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
  848. unsigned int c, const unsigned int *div_blocks,
  849. unsigned int *js_blocks)
  850. {
  851. int ret;
  852. unsigned int b;
  853. ALSBlockData bd = { 0 };
  854. bd.ra_block = ra_frame;
  855. bd.const_block = ctx->const_block;
  856. bd.shift_lsbs = ctx->shift_lsbs;
  857. bd.opt_order = ctx->opt_order;
  858. bd.store_prev_samples = ctx->store_prev_samples;
  859. bd.use_ltp = ctx->use_ltp;
  860. bd.ltp_lag = ctx->ltp_lag;
  861. bd.ltp_gain = ctx->ltp_gain[0];
  862. bd.quant_cof = ctx->quant_cof[0];
  863. bd.lpc_cof = ctx->lpc_cof[0];
  864. bd.prev_raw_samples = ctx->prev_raw_samples;
  865. bd.raw_samples = ctx->raw_samples[c];
  866. for (b = 0; b < ctx->num_blocks; b++) {
  867. bd.block_length = div_blocks[b];
  868. if ((ret = read_decode_block(ctx, &bd)) < 0) {
  869. // damaged block, write zero for the rest of the frame
  870. zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
  871. return ret;
  872. }
  873. bd.raw_samples += div_blocks[b];
  874. bd.ra_block = 0;
  875. }
  876. return 0;
  877. }
  878. /** Decode blocks dependently.
  879. */
  880. static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
  881. unsigned int c, const unsigned int *div_blocks,
  882. unsigned int *js_blocks)
  883. {
  884. ALSSpecificConfig *sconf = &ctx->sconf;
  885. unsigned int offset = 0;
  886. unsigned int b;
  887. int ret;
  888. ALSBlockData bd[2] = { { 0 } };
  889. bd[0].ra_block = ra_frame;
  890. bd[0].const_block = ctx->const_block;
  891. bd[0].shift_lsbs = ctx->shift_lsbs;
  892. bd[0].opt_order = ctx->opt_order;
  893. bd[0].store_prev_samples = ctx->store_prev_samples;
  894. bd[0].use_ltp = ctx->use_ltp;
  895. bd[0].ltp_lag = ctx->ltp_lag;
  896. bd[0].ltp_gain = ctx->ltp_gain[0];
  897. bd[0].quant_cof = ctx->quant_cof[0];
  898. bd[0].lpc_cof = ctx->lpc_cof[0];
  899. bd[0].prev_raw_samples = ctx->prev_raw_samples;
  900. bd[0].js_blocks = *js_blocks;
  901. bd[1].ra_block = ra_frame;
  902. bd[1].const_block = ctx->const_block;
  903. bd[1].shift_lsbs = ctx->shift_lsbs;
  904. bd[1].opt_order = ctx->opt_order;
  905. bd[1].store_prev_samples = ctx->store_prev_samples;
  906. bd[1].use_ltp = ctx->use_ltp;
  907. bd[1].ltp_lag = ctx->ltp_lag;
  908. bd[1].ltp_gain = ctx->ltp_gain[0];
  909. bd[1].quant_cof = ctx->quant_cof[0];
  910. bd[1].lpc_cof = ctx->lpc_cof[0];
  911. bd[1].prev_raw_samples = ctx->prev_raw_samples;
  912. bd[1].js_blocks = *(js_blocks + 1);
  913. // decode all blocks
  914. for (b = 0; b < ctx->num_blocks; b++) {
  915. unsigned int s;
  916. bd[0].block_length = div_blocks[b];
  917. bd[1].block_length = div_blocks[b];
  918. bd[0].raw_samples = ctx->raw_samples[c ] + offset;
  919. bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
  920. bd[0].raw_other = bd[1].raw_samples;
  921. bd[1].raw_other = bd[0].raw_samples;
  922. if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
  923. (ret = read_decode_block(ctx, &bd[1])) < 0)
  924. goto fail;
  925. // reconstruct joint-stereo blocks
  926. if (bd[0].js_blocks) {
  927. if (bd[1].js_blocks)
  928. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair!\n");
  929. for (s = 0; s < div_blocks[b]; s++)
  930. bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
  931. } else if (bd[1].js_blocks) {
  932. for (s = 0; s < div_blocks[b]; s++)
  933. bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
  934. }
  935. offset += div_blocks[b];
  936. bd[0].ra_block = 0;
  937. bd[1].ra_block = 0;
  938. }
  939. // store carryover raw samples,
  940. // the others channel raw samples are stored by the calling function.
  941. memmove(ctx->raw_samples[c] - sconf->max_order,
  942. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  943. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  944. return 0;
  945. fail:
  946. // damaged block, write zero for the rest of the frame
  947. zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
  948. zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
  949. return ret;
  950. }
  951. static inline int als_weighting(BitstreamContext *bc, int k, int off)
  952. {
  953. int idx = av_clip(decode_rice(bc, k) + off,
  954. 0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
  955. return mcc_weightings[idx];
  956. }
  957. /** Read the channel data.
  958. */
  959. static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
  960. {
  961. BitstreamContext *bc = &ctx->bc;
  962. ALSChannelData *current = cd;
  963. unsigned int channels = ctx->avctx->channels;
  964. int entries = 0;
  965. while (entries < channels && !(current->stop_flag = bitstream_read_bit(bc))) {
  966. current->master_channel = bitstream_read(bc, av_ceil_log2(channels));
  967. if (current->master_channel >= channels) {
  968. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel!\n");
  969. return AVERROR_INVALIDDATA;
  970. }
  971. if (current->master_channel != c) {
  972. current->time_diff_flag = bitstream_read_bit(bc);
  973. current->weighting[0] = als_weighting(bc, 1, 16);
  974. current->weighting[1] = als_weighting(bc, 2, 14);
  975. current->weighting[2] = als_weighting(bc, 1, 16);
  976. if (current->time_diff_flag) {
  977. current->weighting[3] = als_weighting(bc, 1, 16);
  978. current->weighting[4] = als_weighting(bc, 1, 16);
  979. current->weighting[5] = als_weighting(bc, 1, 16);
  980. current->time_diff_sign = bitstream_read_bit(bc);
  981. current->time_diff_index = bitstream_read(bc, ctx->ltp_lag_length - 3) + 3;
  982. }
  983. }
  984. current++;
  985. entries++;
  986. }
  987. if (entries == channels) {
  988. av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data!\n");
  989. return AVERROR_INVALIDDATA;
  990. }
  991. bitstream_align(bc);
  992. return 0;
  993. }
  994. /** Recursively reverts the inter-channel correlation for a block.
  995. */
  996. static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
  997. ALSChannelData **cd, int *reverted,
  998. unsigned int offset, int c)
  999. {
  1000. ALSChannelData *ch = cd[c];
  1001. unsigned int dep = 0;
  1002. unsigned int channels = ctx->avctx->channels;
  1003. unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
  1004. if (reverted[c])
  1005. return 0;
  1006. reverted[c] = 1;
  1007. while (dep < channels && !ch[dep].stop_flag) {
  1008. revert_channel_correlation(ctx, bd, cd, reverted, offset,
  1009. ch[dep].master_channel);
  1010. dep++;
  1011. }
  1012. if (dep == channels) {
  1013. av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation!\n");
  1014. return AVERROR_INVALIDDATA;
  1015. }
  1016. bd->const_block = ctx->const_block + c;
  1017. bd->shift_lsbs = ctx->shift_lsbs + c;
  1018. bd->opt_order = ctx->opt_order + c;
  1019. bd->store_prev_samples = ctx->store_prev_samples + c;
  1020. bd->use_ltp = ctx->use_ltp + c;
  1021. bd->ltp_lag = ctx->ltp_lag + c;
  1022. bd->ltp_gain = ctx->ltp_gain[c];
  1023. bd->lpc_cof = ctx->lpc_cof[c];
  1024. bd->quant_cof = ctx->quant_cof[c];
  1025. bd->raw_samples = ctx->raw_samples[c] + offset;
  1026. dep = 0;
  1027. while (!ch[dep].stop_flag) {
  1028. ptrdiff_t smp;
  1029. ptrdiff_t begin = 1;
  1030. ptrdiff_t end = bd->block_length - 1;
  1031. int64_t y;
  1032. int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
  1033. if (ch[dep].time_diff_flag) {
  1034. int t = ch[dep].time_diff_index;
  1035. if (ch[dep].time_diff_sign) {
  1036. t = -t;
  1037. begin -= t;
  1038. } else {
  1039. end -= t;
  1040. }
  1041. if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
  1042. FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
  1043. av_log(ctx->avctx, AV_LOG_ERROR,
  1044. "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
  1045. master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
  1046. ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
  1047. return AVERROR_INVALIDDATA;
  1048. }
  1049. for (smp = begin; smp < end; smp++) {
  1050. y = (1 << 6) +
  1051. MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
  1052. MUL64(ch[dep].weighting[1], master[smp ]) +
  1053. MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
  1054. MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
  1055. MUL64(ch[dep].weighting[4], master[smp + t]) +
  1056. MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
  1057. bd->raw_samples[smp] += y >> 7;
  1058. }
  1059. } else {
  1060. if (begin - 1 < ctx->raw_buffer - master ||
  1061. end + 1 > ctx->raw_buffer + channels * channel_size - master) {
  1062. av_log(ctx->avctx, AV_LOG_ERROR,
  1063. "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
  1064. master + begin - 1, master + end + 1,
  1065. ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
  1066. return AVERROR_INVALIDDATA;
  1067. }
  1068. for (smp = begin; smp < end; smp++) {
  1069. y = (1 << 6) +
  1070. MUL64(ch[dep].weighting[0], master[smp - 1]) +
  1071. MUL64(ch[dep].weighting[1], master[smp ]) +
  1072. MUL64(ch[dep].weighting[2], master[smp + 1]);
  1073. bd->raw_samples[smp] += y >> 7;
  1074. }
  1075. }
  1076. dep++;
  1077. }
  1078. return 0;
  1079. }
  1080. /** Read the frame data.
  1081. */
  1082. static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
  1083. {
  1084. ALSSpecificConfig *sconf = &ctx->sconf;
  1085. AVCodecContext *avctx = ctx->avctx;
  1086. BitstreamContext *bc = &ctx->bc;
  1087. unsigned int div_blocks[32]; ///< block sizes.
  1088. unsigned int c;
  1089. unsigned int js_blocks[2];
  1090. uint32_t bs_info = 0;
  1091. int ret;
  1092. // skip the size of the ra unit if present in the frame
  1093. if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
  1094. bitstream_skip(bc, 32);
  1095. if (sconf->mc_coding && sconf->joint_stereo) {
  1096. ctx->js_switch = bitstream_read_bit(bc);
  1097. bitstream_align(bc);
  1098. }
  1099. if (!sconf->mc_coding || ctx->js_switch) {
  1100. int independent_bs = !sconf->joint_stereo;
  1101. for (c = 0; c < avctx->channels; c++) {
  1102. js_blocks[0] = 0;
  1103. js_blocks[1] = 0;
  1104. get_block_sizes(ctx, div_blocks, &bs_info);
  1105. // if joint_stereo and block_switching is set, independent decoding
  1106. // is signaled via the first bit of bs_info
  1107. if (sconf->joint_stereo && sconf->block_switching)
  1108. if (bs_info >> 31)
  1109. independent_bs = 2;
  1110. // if this is the last channel, it has to be decoded independently
  1111. if (c == avctx->channels - 1)
  1112. independent_bs = 1;
  1113. if (independent_bs) {
  1114. ret = decode_blocks_ind(ctx, ra_frame, c,
  1115. div_blocks, js_blocks);
  1116. if (ret < 0)
  1117. return ret;
  1118. independent_bs--;
  1119. } else {
  1120. ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
  1121. if (ret < 0)
  1122. return ret;
  1123. c++;
  1124. }
  1125. // store carryover raw samples
  1126. memmove(ctx->raw_samples[c] - sconf->max_order,
  1127. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1128. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1129. }
  1130. } else { // multi-channel coding
  1131. ALSBlockData bd = { 0 };
  1132. int b, ret;
  1133. int *reverted_channels = ctx->reverted_channels;
  1134. unsigned int offset = 0;
  1135. for (c = 0; c < avctx->channels; c++)
  1136. if (ctx->chan_data[c] < ctx->chan_data_buffer) {
  1137. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data!\n");
  1138. return AVERROR_INVALIDDATA;
  1139. }
  1140. memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
  1141. bd.ra_block = ra_frame;
  1142. bd.prev_raw_samples = ctx->prev_raw_samples;
  1143. get_block_sizes(ctx, div_blocks, &bs_info);
  1144. for (b = 0; b < ctx->num_blocks; b++) {
  1145. bd.block_length = div_blocks[b];
  1146. if (bd.block_length <= 0) {
  1147. av_log(ctx->avctx, AV_LOG_WARNING,
  1148. "Invalid block length %u in channel data!\n",
  1149. bd.block_length);
  1150. continue;
  1151. }
  1152. for (c = 0; c < avctx->channels; c++) {
  1153. bd.const_block = ctx->const_block + c;
  1154. bd.shift_lsbs = ctx->shift_lsbs + c;
  1155. bd.opt_order = ctx->opt_order + c;
  1156. bd.store_prev_samples = ctx->store_prev_samples + c;
  1157. bd.use_ltp = ctx->use_ltp + c;
  1158. bd.ltp_lag = ctx->ltp_lag + c;
  1159. bd.ltp_gain = ctx->ltp_gain[c];
  1160. bd.lpc_cof = ctx->lpc_cof[c];
  1161. bd.quant_cof = ctx->quant_cof[c];
  1162. bd.raw_samples = ctx->raw_samples[c] + offset;
  1163. bd.raw_other = NULL;
  1164. if ((ret = read_block(ctx, &bd)) < 0)
  1165. return ret;
  1166. if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
  1167. return ret;
  1168. }
  1169. for (c = 0; c < avctx->channels; c++) {
  1170. ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
  1171. reverted_channels, offset, c);
  1172. if (ret < 0)
  1173. return ret;
  1174. }
  1175. for (c = 0; c < avctx->channels; c++) {
  1176. bd.const_block = ctx->const_block + c;
  1177. bd.shift_lsbs = ctx->shift_lsbs + c;
  1178. bd.opt_order = ctx->opt_order + c;
  1179. bd.store_prev_samples = ctx->store_prev_samples + c;
  1180. bd.use_ltp = ctx->use_ltp + c;
  1181. bd.ltp_lag = ctx->ltp_lag + c;
  1182. bd.ltp_gain = ctx->ltp_gain[c];
  1183. bd.lpc_cof = ctx->lpc_cof[c];
  1184. bd.quant_cof = ctx->quant_cof[c];
  1185. bd.raw_samples = ctx->raw_samples[c] + offset;
  1186. if ((ret = decode_block(ctx, &bd)) < 0)
  1187. return ret;
  1188. }
  1189. memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
  1190. offset += div_blocks[b];
  1191. bd.ra_block = 0;
  1192. }
  1193. // store carryover raw samples
  1194. for (c = 0; c < avctx->channels; c++)
  1195. memmove(ctx->raw_samples[c] - sconf->max_order,
  1196. ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
  1197. sizeof(*ctx->raw_samples[c]) * sconf->max_order);
  1198. }
  1199. // TODO: read_diff_float_data
  1200. return 0;
  1201. }
  1202. /** Decode an ALS frame.
  1203. */
  1204. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
  1205. AVPacket *avpkt)
  1206. {
  1207. ALSDecContext *ctx = avctx->priv_data;
  1208. AVFrame *frame = data;
  1209. ALSSpecificConfig *sconf = &ctx->sconf;
  1210. const uint8_t *buffer = avpkt->data;
  1211. int buffer_size = avpkt->size;
  1212. int invalid_frame, ret;
  1213. unsigned int c, sample, ra_frame, bytes_read, shift;
  1214. bitstream_init8(&ctx->bc, buffer, buffer_size);
  1215. // In the case that the distance between random access frames is set to zero
  1216. // (sconf->ra_distance == 0) no frame is treated as a random access frame.
  1217. // For the first frame, if prediction is used, all samples used from the
  1218. // previous frame are assumed to be zero.
  1219. ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
  1220. // the last frame to decode might have a different length
  1221. if (sconf->samples != 0xFFFFFFFF)
  1222. ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
  1223. sconf->frame_length);
  1224. else
  1225. ctx->cur_frame_length = sconf->frame_length;
  1226. // decode the frame data
  1227. if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
  1228. av_log(ctx->avctx, AV_LOG_WARNING,
  1229. "Reading frame data failed. Skipping RA unit.\n");
  1230. ctx->frame_id++;
  1231. /* get output buffer */
  1232. frame->nb_samples = ctx->cur_frame_length;
  1233. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  1234. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1235. return ret;
  1236. }
  1237. // transform decoded frame into output format
  1238. #define INTERLEAVE_OUTPUT(bps) \
  1239. { \
  1240. int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
  1241. shift = bps - ctx->avctx->bits_per_raw_sample; \
  1242. for (sample = 0; sample < ctx->cur_frame_length; sample++) \
  1243. for (c = 0; c < avctx->channels; c++) \
  1244. *dest++ = ctx->raw_samples[c][sample] << shift; \
  1245. }
  1246. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1247. INTERLEAVE_OUTPUT(16)
  1248. } else {
  1249. INTERLEAVE_OUTPUT(32)
  1250. }
  1251. // update CRC
  1252. if (sconf->crc_enabled && (avctx->err_recognition & AV_EF_CRCCHECK)) {
  1253. int swap = HAVE_BIGENDIAN != sconf->msb_first;
  1254. if (ctx->avctx->bits_per_raw_sample == 24) {
  1255. int32_t *src = (int32_t *)frame->data[0];
  1256. for (sample = 0;
  1257. sample < ctx->cur_frame_length * avctx->channels;
  1258. sample++) {
  1259. int32_t v;
  1260. if (swap)
  1261. v = av_bswap32(src[sample]);
  1262. else
  1263. v = src[sample];
  1264. if (!HAVE_BIGENDIAN)
  1265. v >>= 8;
  1266. ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
  1267. }
  1268. } else {
  1269. uint8_t *crc_source;
  1270. if (swap) {
  1271. if (ctx->avctx->bits_per_raw_sample <= 16) {
  1272. int16_t *src = (int16_t*) frame->data[0];
  1273. int16_t *dest = (int16_t*) ctx->crc_buffer;
  1274. for (sample = 0;
  1275. sample < ctx->cur_frame_length * avctx->channels;
  1276. sample++)
  1277. *dest++ = av_bswap16(src[sample]);
  1278. } else {
  1279. ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
  1280. (uint32_t *) frame->data[0],
  1281. ctx->cur_frame_length * avctx->channels);
  1282. }
  1283. crc_source = ctx->crc_buffer;
  1284. } else {
  1285. crc_source = frame->data[0];
  1286. }
  1287. ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
  1288. ctx->cur_frame_length * avctx->channels *
  1289. av_get_bytes_per_sample(avctx->sample_fmt));
  1290. }
  1291. // check CRC sums if this is the last frame
  1292. if (ctx->cur_frame_length != sconf->frame_length &&
  1293. ctx->crc_org != ctx->crc) {
  1294. av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
  1295. if (avctx->err_recognition & AV_EF_EXPLODE)
  1296. return AVERROR_INVALIDDATA;
  1297. }
  1298. }
  1299. *got_frame_ptr = 1;
  1300. bytes_read = invalid_frame ? buffer_size :
  1301. (bitstream_tell(&ctx->bc) + 7) >> 3;
  1302. return bytes_read;
  1303. }
  1304. /** Uninitialize the ALS decoder.
  1305. */
  1306. static av_cold int decode_end(AVCodecContext *avctx)
  1307. {
  1308. ALSDecContext *ctx = avctx->priv_data;
  1309. av_freep(&ctx->sconf.chan_pos);
  1310. ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1311. av_freep(&ctx->const_block);
  1312. av_freep(&ctx->shift_lsbs);
  1313. av_freep(&ctx->opt_order);
  1314. av_freep(&ctx->store_prev_samples);
  1315. av_freep(&ctx->use_ltp);
  1316. av_freep(&ctx->ltp_lag);
  1317. av_freep(&ctx->ltp_gain);
  1318. av_freep(&ctx->ltp_gain_buffer);
  1319. av_freep(&ctx->quant_cof);
  1320. av_freep(&ctx->lpc_cof);
  1321. av_freep(&ctx->quant_cof_buffer);
  1322. av_freep(&ctx->lpc_cof_buffer);
  1323. av_freep(&ctx->lpc_cof_reversed_buffer);
  1324. av_freep(&ctx->prev_raw_samples);
  1325. av_freep(&ctx->raw_samples);
  1326. av_freep(&ctx->raw_buffer);
  1327. av_freep(&ctx->chan_data);
  1328. av_freep(&ctx->chan_data_buffer);
  1329. av_freep(&ctx->reverted_channels);
  1330. av_freep(&ctx->crc_buffer);
  1331. return 0;
  1332. }
  1333. /** Initialize the ALS decoder.
  1334. */
  1335. static av_cold int decode_init(AVCodecContext *avctx)
  1336. {
  1337. unsigned int c;
  1338. unsigned int channel_size;
  1339. int num_buffers, ret;
  1340. ALSDecContext *ctx = avctx->priv_data;
  1341. ALSSpecificConfig *sconf = &ctx->sconf;
  1342. ctx->avctx = avctx;
  1343. if (!avctx->extradata) {
  1344. av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
  1345. return AVERROR_INVALIDDATA;
  1346. }
  1347. if ((ret = read_specific_config(ctx)) < 0) {
  1348. av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
  1349. goto fail;
  1350. }
  1351. if ((ret = check_specific_config(ctx)) < 0) {
  1352. goto fail;
  1353. }
  1354. if (sconf->bgmc) {
  1355. ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
  1356. if (ret < 0)
  1357. goto fail;
  1358. }
  1359. if (sconf->floating) {
  1360. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1361. avctx->bits_per_raw_sample = 32;
  1362. } else {
  1363. avctx->sample_fmt = sconf->resolution > 1
  1364. ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
  1365. avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
  1366. if (avctx->bits_per_raw_sample > 32) {
  1367. av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
  1368. avctx->bits_per_raw_sample);
  1369. ret = AVERROR_INVALIDDATA;
  1370. goto fail;
  1371. }
  1372. }
  1373. // set maximum Rice parameter for progressive decoding based on resolution
  1374. // This is not specified in 14496-3 but actually done by the reference
  1375. // codec RM22 revision 2.
  1376. ctx->s_max = sconf->resolution > 1 ? 31 : 15;
  1377. // set lag value for long-term prediction
  1378. ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
  1379. (avctx->sample_rate >= 192000);
  1380. // allocate quantized parcor coefficient buffer
  1381. num_buffers = sconf->mc_coding ? avctx->channels : 1;
  1382. ctx->quant_cof = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
  1383. ctx->lpc_cof = av_malloc(sizeof(*ctx->lpc_cof) * num_buffers);
  1384. ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
  1385. num_buffers * sconf->max_order);
  1386. ctx->lpc_cof_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1387. num_buffers * sconf->max_order);
  1388. ctx->lpc_cof_reversed_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
  1389. sconf->max_order);
  1390. if (!ctx->quant_cof || !ctx->lpc_cof ||
  1391. !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
  1392. !ctx->lpc_cof_reversed_buffer) {
  1393. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1394. ret = AVERROR(ENOMEM);
  1395. goto fail;
  1396. }
  1397. // assign quantized parcor coefficient buffers
  1398. for (c = 0; c < num_buffers; c++) {
  1399. ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
  1400. ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
  1401. }
  1402. // allocate and assign lag and gain data buffer for ltp mode
  1403. ctx->const_block = av_malloc (sizeof(*ctx->const_block) * num_buffers);
  1404. ctx->shift_lsbs = av_malloc (sizeof(*ctx->shift_lsbs) * num_buffers);
  1405. ctx->opt_order = av_malloc (sizeof(*ctx->opt_order) * num_buffers);
  1406. ctx->store_prev_samples = av_malloc(sizeof(*ctx->store_prev_samples) * num_buffers);
  1407. ctx->use_ltp = av_mallocz(sizeof(*ctx->use_ltp) * num_buffers);
  1408. ctx->ltp_lag = av_malloc (sizeof(*ctx->ltp_lag) * num_buffers);
  1409. ctx->ltp_gain = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
  1410. ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
  1411. num_buffers * 5);
  1412. if (!ctx->const_block || !ctx->shift_lsbs ||
  1413. !ctx->opt_order || !ctx->store_prev_samples ||
  1414. !ctx->use_ltp || !ctx->ltp_lag ||
  1415. !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
  1416. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1417. ret = AVERROR(ENOMEM);
  1418. goto fail;
  1419. }
  1420. for (c = 0; c < num_buffers; c++)
  1421. ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
  1422. // allocate and assign channel data buffer for mcc mode
  1423. if (sconf->mc_coding) {
  1424. ctx->chan_data_buffer = av_malloc(sizeof(*ctx->chan_data_buffer) *
  1425. num_buffers * num_buffers);
  1426. ctx->chan_data = av_malloc(sizeof(*ctx->chan_data) *
  1427. num_buffers);
  1428. ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
  1429. num_buffers);
  1430. if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
  1431. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1432. ret = AVERROR(ENOMEM);
  1433. goto fail;
  1434. }
  1435. for (c = 0; c < num_buffers; c++)
  1436. ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
  1437. } else {
  1438. ctx->chan_data = NULL;
  1439. ctx->chan_data_buffer = NULL;
  1440. ctx->reverted_channels = NULL;
  1441. }
  1442. channel_size = sconf->frame_length + sconf->max_order;
  1443. ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
  1444. ctx->raw_buffer = av_mallocz(sizeof(*ctx-> raw_buffer) * avctx->channels * channel_size);
  1445. ctx->raw_samples = av_malloc (sizeof(*ctx-> raw_samples) * avctx->channels);
  1446. // allocate previous raw sample buffer
  1447. if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
  1448. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1449. ret = AVERROR(ENOMEM);
  1450. goto fail;
  1451. }
  1452. // assign raw samples buffers
  1453. ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
  1454. for (c = 1; c < avctx->channels; c++)
  1455. ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
  1456. // allocate crc buffer
  1457. if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
  1458. (avctx->err_recognition & AV_EF_CRCCHECK)) {
  1459. ctx->crc_buffer = av_malloc(sizeof(*ctx->crc_buffer) *
  1460. ctx->cur_frame_length *
  1461. avctx->channels *
  1462. av_get_bytes_per_sample(avctx->sample_fmt));
  1463. if (!ctx->crc_buffer) {
  1464. av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
  1465. ret = AVERROR(ENOMEM);
  1466. goto fail;
  1467. }
  1468. }
  1469. ff_bswapdsp_init(&ctx->bdsp);
  1470. return 0;
  1471. fail:
  1472. decode_end(avctx);
  1473. return ret;
  1474. }
  1475. /** Flush (reset) the frame ID after seeking.
  1476. */
  1477. static av_cold void flush(AVCodecContext *avctx)
  1478. {
  1479. ALSDecContext *ctx = avctx->priv_data;
  1480. ctx->frame_id = 0;
  1481. }
  1482. AVCodec ff_als_decoder = {
  1483. .name = "als",
  1484. .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
  1485. .type = AVMEDIA_TYPE_AUDIO,
  1486. .id = AV_CODEC_ID_MP4ALS,
  1487. .priv_data_size = sizeof(ALSDecContext),
  1488. .init = decode_init,
  1489. .close = decode_end,
  1490. .decode = decode_frame,
  1491. .flush = flush,
  1492. .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
  1493. };