You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

306 lines
9.2KB

  1. /*
  2. * AC-3 DSP functions
  3. * Copyright (c) 2011 Justin Ruggles
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "ac3.h"
  23. #include "ac3dsp.h"
  24. #include "mathops.h"
  25. static void ac3_exponent_min_c(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
  26. {
  27. int blk, i;
  28. if (!num_reuse_blocks)
  29. return;
  30. for (i = 0; i < nb_coefs; i++) {
  31. uint8_t min_exp = *exp;
  32. uint8_t *exp1 = exp + 256;
  33. for (blk = 0; blk < num_reuse_blocks; blk++) {
  34. uint8_t next_exp = *exp1;
  35. if (next_exp < min_exp)
  36. min_exp = next_exp;
  37. exp1 += 256;
  38. }
  39. *exp++ = min_exp;
  40. }
  41. }
  42. static int ac3_max_msb_abs_int16_c(const int16_t *src, int len)
  43. {
  44. int i, v = 0;
  45. for (i = 0; i < len; i++)
  46. v |= abs(src[i]);
  47. return v;
  48. }
  49. static void ac3_lshift_int16_c(int16_t *src, unsigned int len,
  50. unsigned int shift)
  51. {
  52. uint32_t *src32 = (uint32_t *)src;
  53. const uint32_t mask = ~(((1 << shift) - 1) << 16);
  54. int i;
  55. len >>= 1;
  56. for (i = 0; i < len; i += 8) {
  57. src32[i ] = (src32[i ] << shift) & mask;
  58. src32[i+1] = (src32[i+1] << shift) & mask;
  59. src32[i+2] = (src32[i+2] << shift) & mask;
  60. src32[i+3] = (src32[i+3] << shift) & mask;
  61. src32[i+4] = (src32[i+4] << shift) & mask;
  62. src32[i+5] = (src32[i+5] << shift) & mask;
  63. src32[i+6] = (src32[i+6] << shift) & mask;
  64. src32[i+7] = (src32[i+7] << shift) & mask;
  65. }
  66. }
  67. static void ac3_rshift_int32_c(int32_t *src, unsigned int len,
  68. unsigned int shift)
  69. {
  70. do {
  71. *src++ >>= shift;
  72. *src++ >>= shift;
  73. *src++ >>= shift;
  74. *src++ >>= shift;
  75. *src++ >>= shift;
  76. *src++ >>= shift;
  77. *src++ >>= shift;
  78. *src++ >>= shift;
  79. len -= 8;
  80. } while (len > 0);
  81. }
  82. static void float_to_fixed24_c(int32_t *dst, const float *src, unsigned int len)
  83. {
  84. const float scale = 1 << 24;
  85. do {
  86. *dst++ = lrintf(*src++ * scale);
  87. *dst++ = lrintf(*src++ * scale);
  88. *dst++ = lrintf(*src++ * scale);
  89. *dst++ = lrintf(*src++ * scale);
  90. *dst++ = lrintf(*src++ * scale);
  91. *dst++ = lrintf(*src++ * scale);
  92. *dst++ = lrintf(*src++ * scale);
  93. *dst++ = lrintf(*src++ * scale);
  94. len -= 8;
  95. } while (len > 0);
  96. }
  97. static void ac3_bit_alloc_calc_bap_c(int16_t *mask, int16_t *psd,
  98. int start, int end,
  99. int snr_offset, int floor,
  100. const uint8_t *bap_tab, uint8_t *bap)
  101. {
  102. int bin, band, band_end;
  103. /* special case, if snr offset is -960, set all bap's to zero */
  104. if (snr_offset == -960) {
  105. memset(bap, 0, AC3_MAX_COEFS);
  106. return;
  107. }
  108. bin = start;
  109. band = ff_ac3_bin_to_band_tab[start];
  110. do {
  111. int m = (FFMAX(mask[band] - snr_offset - floor, 0) & 0x1FE0) + floor;
  112. band_end = ff_ac3_band_start_tab[++band];
  113. band_end = FFMIN(band_end, end);
  114. for (; bin < band_end; bin++) {
  115. int address = av_clip_uintp2((psd[bin] - m) >> 5, 6);
  116. bap[bin] = bap_tab[address];
  117. }
  118. } while (end > band_end);
  119. }
  120. static void ac3_update_bap_counts_c(uint16_t mant_cnt[16], uint8_t *bap,
  121. int len)
  122. {
  123. while (len-- > 0)
  124. mant_cnt[bap[len]]++;
  125. }
  126. DECLARE_ALIGNED(16, const uint16_t, ff_ac3_bap_bits)[16] = {
  127. 0, 0, 0, 3, 0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
  128. };
  129. static int ac3_compute_mantissa_size_c(uint16_t mant_cnt[6][16])
  130. {
  131. int blk, bap;
  132. int bits = 0;
  133. for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
  134. // bap=1 : 3 mantissas in 5 bits
  135. bits += (mant_cnt[blk][1] / 3) * 5;
  136. // bap=2 : 3 mantissas in 7 bits
  137. // bap=4 : 2 mantissas in 7 bits
  138. bits += ((mant_cnt[blk][2] / 3) + (mant_cnt[blk][4] >> 1)) * 7;
  139. // bap=3 : 1 mantissa in 3 bits
  140. bits += mant_cnt[blk][3] * 3;
  141. // bap=5 to 15 : get bits per mantissa from table
  142. for (bap = 5; bap < 16; bap++)
  143. bits += mant_cnt[blk][bap] * ff_ac3_bap_bits[bap];
  144. }
  145. return bits;
  146. }
  147. static void ac3_extract_exponents_c(uint8_t *exp, int32_t *coef, int nb_coefs)
  148. {
  149. int i;
  150. for (i = 0; i < nb_coefs; i++) {
  151. int v = abs(coef[i]);
  152. exp[i] = v ? 23 - av_log2(v) : 24;
  153. }
  154. }
  155. static void ac3_downmix_5_to_2_symmetric_c(float **samples, float **matrix,
  156. int len)
  157. {
  158. int i;
  159. float v0, v1;
  160. float front_mix = matrix[0][0];
  161. float center_mix = matrix[0][1];
  162. float surround_mix = matrix[0][3];
  163. for (i = 0; i < len; i++) {
  164. v0 = samples[0][i] * front_mix +
  165. samples[1][i] * center_mix +
  166. samples[3][i] * surround_mix;
  167. v1 = samples[1][i] * center_mix +
  168. samples[2][i] * front_mix +
  169. samples[4][i] * surround_mix;
  170. samples[0][i] = v0;
  171. samples[1][i] = v1;
  172. }
  173. }
  174. static void ac3_downmix_5_to_1_symmetric_c(float **samples, float **matrix,
  175. int len)
  176. {
  177. int i;
  178. float front_mix = matrix[0][0];
  179. float center_mix = matrix[0][1];
  180. float surround_mix = matrix[0][3];
  181. for (i = 0; i < len; i++) {
  182. samples[0][i] = samples[0][i] * front_mix +
  183. samples[1][i] * center_mix +
  184. samples[2][i] * front_mix +
  185. samples[3][i] * surround_mix +
  186. samples[4][i] * surround_mix;
  187. }
  188. }
  189. static void ac3_downmix_c(float **samples, float **matrix,
  190. int out_ch, int in_ch, int len)
  191. {
  192. int i, j;
  193. float v0, v1;
  194. if (out_ch == 2) {
  195. for (i = 0; i < len; i++) {
  196. v0 = v1 = 0.0f;
  197. for (j = 0; j < in_ch; j++) {
  198. v0 += samples[j][i] * matrix[0][j];
  199. v1 += samples[j][i] * matrix[1][j];
  200. }
  201. samples[0][i] = v0;
  202. samples[1][i] = v1;
  203. }
  204. } else if (out_ch == 1) {
  205. for (i = 0; i < len; i++) {
  206. v0 = 0.0f;
  207. for (j = 0; j < in_ch; j++)
  208. v0 += samples[j][i] * matrix[0][j];
  209. samples[0][i] = v0;
  210. }
  211. }
  212. }
  213. static void apply_window_int16_c(int16_t *output, const int16_t *input,
  214. const int16_t *window, unsigned int len)
  215. {
  216. int i;
  217. int len2 = len >> 1;
  218. for (i = 0; i < len2; i++) {
  219. int16_t w = window[i];
  220. output[i] = (MUL16(input[i], w) + (1 << 14)) >> 15;
  221. output[len-i-1] = (MUL16(input[len-i-1], w) + (1 << 14)) >> 15;
  222. }
  223. }
  224. void ff_ac3dsp_downmix(AC3DSPContext *c, float **samples, float **matrix,
  225. int out_ch, int in_ch, int len)
  226. {
  227. if (c->in_channels != in_ch || c->out_channels != out_ch) {
  228. int **matrix_cmp = (int **)matrix;
  229. c->in_channels = in_ch;
  230. c->out_channels = out_ch;
  231. c->downmix = NULL;
  232. if (in_ch == 5 && out_ch == 2 &&
  233. !(matrix_cmp[1][0] | matrix_cmp[0][2] |
  234. matrix_cmp[1][3] | matrix_cmp[0][4] |
  235. (matrix_cmp[0][1] ^ matrix_cmp[1][1]) |
  236. (matrix_cmp[0][0] ^ matrix_cmp[1][2]))) {
  237. c->downmix = ac3_downmix_5_to_2_symmetric_c;
  238. } else if (in_ch == 5 && out_ch == 1 &&
  239. matrix_cmp[0][0] == matrix_cmp[0][2] &&
  240. matrix_cmp[0][3] == matrix_cmp[0][4]) {
  241. c->downmix = ac3_downmix_5_to_1_symmetric_c;
  242. }
  243. if (ARCH_X86)
  244. ff_ac3dsp_set_downmix_x86(c);
  245. }
  246. if (c->downmix)
  247. c->downmix(samples, matrix, len);
  248. else
  249. ac3_downmix_c(samples, matrix, out_ch, in_ch, len);
  250. }
  251. av_cold void ff_ac3dsp_init(AC3DSPContext *c, int bit_exact)
  252. {
  253. c->ac3_exponent_min = ac3_exponent_min_c;
  254. c->ac3_max_msb_abs_int16 = ac3_max_msb_abs_int16_c;
  255. c->ac3_lshift_int16 = ac3_lshift_int16_c;
  256. c->ac3_rshift_int32 = ac3_rshift_int32_c;
  257. c->float_to_fixed24 = float_to_fixed24_c;
  258. c->bit_alloc_calc_bap = ac3_bit_alloc_calc_bap_c;
  259. c->update_bap_counts = ac3_update_bap_counts_c;
  260. c->compute_mantissa_size = ac3_compute_mantissa_size_c;
  261. c->extract_exponents = ac3_extract_exponents_c;
  262. c->in_channels = 0;
  263. c->out_channels = 0;
  264. c->downmix = NULL;
  265. c->apply_window_int16 = apply_window_int16_c;
  266. if (ARCH_ARM)
  267. ff_ac3dsp_init_arm(c, bit_exact);
  268. if (ARCH_X86)
  269. ff_ac3dsp_init_x86(c, bit_exact);
  270. }