You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1729 lines
64KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include "aacps.h"
  33. #include "sbrdsp.h"
  34. #include "libavutil/internal.h"
  35. #include "libavutil/libm.h"
  36. #include <stdint.h>
  37. #include <float.h>
  38. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  39. #define NOISE_FLOOR_OFFSET 6.0f
  40. /**
  41. * SBR VLC tables
  42. */
  43. enum {
  44. T_HUFFMAN_ENV_1_5DB,
  45. F_HUFFMAN_ENV_1_5DB,
  46. T_HUFFMAN_ENV_BAL_1_5DB,
  47. F_HUFFMAN_ENV_BAL_1_5DB,
  48. T_HUFFMAN_ENV_3_0DB,
  49. F_HUFFMAN_ENV_3_0DB,
  50. T_HUFFMAN_ENV_BAL_3_0DB,
  51. F_HUFFMAN_ENV_BAL_3_0DB,
  52. T_HUFFMAN_NOISE_3_0DB,
  53. T_HUFFMAN_NOISE_BAL_3_0DB,
  54. };
  55. /**
  56. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  57. */
  58. enum {
  59. FIXFIX,
  60. FIXVAR,
  61. VARFIX,
  62. VARVAR,
  63. };
  64. enum {
  65. EXTENSION_ID_PS = 2,
  66. };
  67. static VLC vlc_sbr[10];
  68. static const int8_t vlc_sbr_lav[10] =
  69. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  70. #define SBR_INIT_VLC_STATIC(num, size) \
  71. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  72. sbr_tmp[num].sbr_bits , 1, 1, \
  73. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  74. size)
  75. #define SBR_VLC_ROW(name) \
  76. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  77. av_cold void ff_aac_sbr_init(void)
  78. {
  79. int n;
  80. static const struct {
  81. const void *sbr_codes, *sbr_bits;
  82. const unsigned int table_size, elem_size;
  83. } sbr_tmp[] = {
  84. SBR_VLC_ROW(t_huffman_env_1_5dB),
  85. SBR_VLC_ROW(f_huffman_env_1_5dB),
  86. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  87. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  88. SBR_VLC_ROW(t_huffman_env_3_0dB),
  89. SBR_VLC_ROW(f_huffman_env_3_0dB),
  90. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  91. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  92. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  93. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  94. };
  95. // SBR VLC table initialization
  96. SBR_INIT_VLC_STATIC(0, 1098);
  97. SBR_INIT_VLC_STATIC(1, 1092);
  98. SBR_INIT_VLC_STATIC(2, 768);
  99. SBR_INIT_VLC_STATIC(3, 1026);
  100. SBR_INIT_VLC_STATIC(4, 1058);
  101. SBR_INIT_VLC_STATIC(5, 1052);
  102. SBR_INIT_VLC_STATIC(6, 544);
  103. SBR_INIT_VLC_STATIC(7, 544);
  104. SBR_INIT_VLC_STATIC(8, 592);
  105. SBR_INIT_VLC_STATIC(9, 512);
  106. for (n = 1; n < 320; n++)
  107. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  108. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  109. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  110. for (n = 0; n < 320; n++)
  111. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  112. ff_ps_init();
  113. }
  114. /** Places SBR in pure upsampling mode. */
  115. static void sbr_turnoff(SpectralBandReplication *sbr) {
  116. sbr->start = 0;
  117. // Init defaults used in pure upsampling mode
  118. sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  119. sbr->m[1] = 0;
  120. // Reset values for first SBR header
  121. sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
  122. memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
  123. }
  124. av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
  125. {
  126. sbr->kx[0] = sbr->kx[1];
  127. sbr_turnoff(sbr);
  128. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  129. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  130. /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
  131. * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
  132. * and scale back down at synthesis. */
  133. ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
  134. ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
  135. ff_ps_ctx_init(&sbr->ps);
  136. ff_sbrdsp_init(&sbr->dsp);
  137. }
  138. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  139. {
  140. ff_mdct_end(&sbr->mdct);
  141. ff_mdct_end(&sbr->mdct_ana);
  142. }
  143. static int qsort_comparison_function_int16(const void *a, const void *b)
  144. {
  145. return *(const int16_t *)a - *(const int16_t *)b;
  146. }
  147. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  148. {
  149. int i;
  150. for (i = 0; i <= last_el; i++)
  151. if (table[i] == needle)
  152. return 1;
  153. return 0;
  154. }
  155. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  156. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  157. {
  158. int k;
  159. if (sbr->bs_limiter_bands > 0) {
  160. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  161. 1.18509277094158210129f, //2^(0.49/2)
  162. 1.11987160404675912501f }; //2^(0.49/3)
  163. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  164. int16_t patch_borders[7];
  165. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  166. patch_borders[0] = sbr->kx[1];
  167. for (k = 1; k <= sbr->num_patches; k++)
  168. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  169. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  170. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  171. if (sbr->num_patches > 1)
  172. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  173. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  174. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  175. sizeof(sbr->f_tablelim[0]),
  176. qsort_comparison_function_int16);
  177. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  178. while (out < sbr->f_tablelim + sbr->n_lim) {
  179. if (*in >= *out * lim_bands_per_octave_warped) {
  180. *++out = *in++;
  181. } else if (*in == *out ||
  182. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  183. in++;
  184. sbr->n_lim--;
  185. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  186. *out = *in++;
  187. sbr->n_lim--;
  188. } else {
  189. *++out = *in++;
  190. }
  191. }
  192. } else {
  193. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  194. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  195. sbr->n_lim = 1;
  196. }
  197. }
  198. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  199. {
  200. unsigned int cnt = get_bits_count(gb);
  201. uint8_t bs_header_extra_1;
  202. uint8_t bs_header_extra_2;
  203. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  204. SpectrumParameters old_spectrum_params;
  205. sbr->start = 1;
  206. // Save last spectrum parameters variables to compare to new ones
  207. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  208. sbr->bs_amp_res_header = get_bits1(gb);
  209. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  210. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  211. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  212. skip_bits(gb, 2); // bs_reserved
  213. bs_header_extra_1 = get_bits1(gb);
  214. bs_header_extra_2 = get_bits1(gb);
  215. if (bs_header_extra_1) {
  216. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  217. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  218. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  219. } else {
  220. sbr->spectrum_params.bs_freq_scale = 2;
  221. sbr->spectrum_params.bs_alter_scale = 1;
  222. sbr->spectrum_params.bs_noise_bands = 2;
  223. }
  224. // Check if spectrum parameters changed
  225. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  226. sbr->reset = 1;
  227. if (bs_header_extra_2) {
  228. sbr->bs_limiter_bands = get_bits(gb, 2);
  229. sbr->bs_limiter_gains = get_bits(gb, 2);
  230. sbr->bs_interpol_freq = get_bits1(gb);
  231. sbr->bs_smoothing_mode = get_bits1(gb);
  232. } else {
  233. sbr->bs_limiter_bands = 2;
  234. sbr->bs_limiter_gains = 2;
  235. sbr->bs_interpol_freq = 1;
  236. sbr->bs_smoothing_mode = 1;
  237. }
  238. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  239. sbr_make_f_tablelim(sbr);
  240. return get_bits_count(gb) - cnt;
  241. }
  242. static int array_min_int16(const int16_t *array, int nel)
  243. {
  244. int i, min = array[0];
  245. for (i = 1; i < nel; i++)
  246. min = FFMIN(array[i], min);
  247. return min;
  248. }
  249. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  250. {
  251. int k, previous, present;
  252. float base, prod;
  253. base = powf((float)stop / start, 1.0f / num_bands);
  254. prod = start;
  255. previous = start;
  256. for (k = 0; k < num_bands-1; k++) {
  257. prod *= base;
  258. present = lrintf(prod);
  259. bands[k] = present - previous;
  260. previous = present;
  261. }
  262. bands[num_bands-1] = stop - previous;
  263. }
  264. static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
  265. {
  266. // Requirements (14496-3 sp04 p205)
  267. if (n_master <= 0) {
  268. av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  269. return -1;
  270. }
  271. if (bs_xover_band >= n_master) {
  272. av_log(avctx, AV_LOG_ERROR,
  273. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  274. bs_xover_band);
  275. return -1;
  276. }
  277. return 0;
  278. }
  279. /// Master Frequency Band Table (14496-3 sp04 p194)
  280. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  281. SpectrumParameters *spectrum)
  282. {
  283. unsigned int temp, max_qmf_subbands = 0;
  284. unsigned int start_min, stop_min;
  285. int k;
  286. const int8_t *sbr_offset_ptr;
  287. int16_t stop_dk[13];
  288. switch (sbr->sample_rate) {
  289. case 16000:
  290. sbr_offset_ptr = sbr_offset[0];
  291. break;
  292. case 22050:
  293. sbr_offset_ptr = sbr_offset[1];
  294. break;
  295. case 24000:
  296. sbr_offset_ptr = sbr_offset[2];
  297. break;
  298. case 32000:
  299. sbr_offset_ptr = sbr_offset[3];
  300. break;
  301. case 44100: case 48000: case 64000:
  302. sbr_offset_ptr = sbr_offset[4];
  303. break;
  304. case 88200: case 96000: case 128000: case 176400: case 192000:
  305. sbr_offset_ptr = sbr_offset[5];
  306. break;
  307. default:
  308. av_log(ac->avctx, AV_LOG_ERROR,
  309. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  310. return -1;
  311. }
  312. if (sbr->sample_rate < 32000) {
  313. temp = 3000;
  314. } else if (sbr->sample_rate < 64000) {
  315. temp = 4000;
  316. } else
  317. temp = 5000;
  318. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  319. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  320. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  321. if (spectrum->bs_stop_freq < 14) {
  322. sbr->k[2] = stop_min;
  323. make_bands(stop_dk, stop_min, 64, 13);
  324. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  325. for (k = 0; k < spectrum->bs_stop_freq; k++)
  326. sbr->k[2] += stop_dk[k];
  327. } else if (spectrum->bs_stop_freq == 14) {
  328. sbr->k[2] = 2*sbr->k[0];
  329. } else if (spectrum->bs_stop_freq == 15) {
  330. sbr->k[2] = 3*sbr->k[0];
  331. } else {
  332. av_log(ac->avctx, AV_LOG_ERROR,
  333. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  334. return -1;
  335. }
  336. sbr->k[2] = FFMIN(64, sbr->k[2]);
  337. // Requirements (14496-3 sp04 p205)
  338. if (sbr->sample_rate <= 32000) {
  339. max_qmf_subbands = 48;
  340. } else if (sbr->sample_rate == 44100) {
  341. max_qmf_subbands = 35;
  342. } else if (sbr->sample_rate >= 48000)
  343. max_qmf_subbands = 32;
  344. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  345. av_log(ac->avctx, AV_LOG_ERROR,
  346. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  347. return -1;
  348. }
  349. if (!spectrum->bs_freq_scale) {
  350. int dk, k2diff;
  351. dk = spectrum->bs_alter_scale + 1;
  352. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  353. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  354. return -1;
  355. for (k = 1; k <= sbr->n_master; k++)
  356. sbr->f_master[k] = dk;
  357. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  358. if (k2diff < 0) {
  359. sbr->f_master[1]--;
  360. sbr->f_master[2]-= (k2diff < -1);
  361. } else if (k2diff) {
  362. sbr->f_master[sbr->n_master]++;
  363. }
  364. sbr->f_master[0] = sbr->k[0];
  365. for (k = 1; k <= sbr->n_master; k++)
  366. sbr->f_master[k] += sbr->f_master[k - 1];
  367. } else {
  368. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  369. int two_regions, num_bands_0;
  370. int vdk0_max, vdk1_min;
  371. int16_t vk0[49];
  372. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  373. two_regions = 1;
  374. sbr->k[1] = 2 * sbr->k[0];
  375. } else {
  376. two_regions = 0;
  377. sbr->k[1] = sbr->k[2];
  378. }
  379. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  380. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  381. av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  382. return -1;
  383. }
  384. vk0[0] = 0;
  385. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  386. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  387. vdk0_max = vk0[num_bands_0];
  388. vk0[0] = sbr->k[0];
  389. for (k = 1; k <= num_bands_0; k++) {
  390. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  391. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  392. return -1;
  393. }
  394. vk0[k] += vk0[k-1];
  395. }
  396. if (two_regions) {
  397. int16_t vk1[49];
  398. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  399. : 1.0f; // bs_alter_scale = {0,1}
  400. int num_bands_1 = lrintf(half_bands * invwarp *
  401. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  402. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  403. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  404. if (vdk1_min < vdk0_max) {
  405. int change;
  406. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  407. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  408. vk1[1] += change;
  409. vk1[num_bands_1] -= change;
  410. }
  411. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  412. vk1[0] = sbr->k[1];
  413. for (k = 1; k <= num_bands_1; k++) {
  414. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  415. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  416. return -1;
  417. }
  418. vk1[k] += vk1[k-1];
  419. }
  420. sbr->n_master = num_bands_0 + num_bands_1;
  421. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  422. return -1;
  423. memcpy(&sbr->f_master[0], vk0,
  424. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  425. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  426. num_bands_1 * sizeof(sbr->f_master[0]));
  427. } else {
  428. sbr->n_master = num_bands_0;
  429. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  430. return -1;
  431. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  432. }
  433. }
  434. return 0;
  435. }
  436. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  437. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  438. {
  439. int i, k, sb = 0;
  440. int msb = sbr->k[0];
  441. int usb = sbr->kx[1];
  442. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  443. sbr->num_patches = 0;
  444. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  445. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  446. } else
  447. k = sbr->n_master;
  448. do {
  449. int odd = 0;
  450. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  451. sb = sbr->f_master[i];
  452. odd = (sb + sbr->k[0]) & 1;
  453. }
  454. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
  455. // After this check the final number of patches can still be six which is
  456. // illegal however the Coding Technologies decoder check stream has a final
  457. // count of 6 patches
  458. if (sbr->num_patches > 5) {
  459. av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  460. return -1;
  461. }
  462. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  463. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  464. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  465. usb = sb;
  466. msb = sb;
  467. sbr->num_patches++;
  468. } else
  469. msb = sbr->kx[1];
  470. if (sbr->f_master[k] - sb < 3)
  471. k = sbr->n_master;
  472. } while (sb != sbr->kx[1] + sbr->m[1]);
  473. if (sbr->num_patches > 1 &&
  474. sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
  475. sbr->num_patches--;
  476. return 0;
  477. }
  478. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  479. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  480. {
  481. int k, temp;
  482. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  483. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  484. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  485. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  486. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  487. sbr->kx[1] = sbr->f_tablehigh[0];
  488. // Requirements (14496-3 sp04 p205)
  489. if (sbr->kx[1] + sbr->m[1] > 64) {
  490. av_log(ac->avctx, AV_LOG_ERROR,
  491. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  492. return -1;
  493. }
  494. if (sbr->kx[1] > 32) {
  495. av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  496. return -1;
  497. }
  498. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  499. temp = sbr->n[1] & 1;
  500. for (k = 1; k <= sbr->n[0]; k++)
  501. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  502. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  503. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  504. if (sbr->n_q > 5) {
  505. av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  506. return -1;
  507. }
  508. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  509. temp = 0;
  510. for (k = 1; k <= sbr->n_q; k++) {
  511. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  512. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  513. }
  514. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  515. return -1;
  516. sbr_make_f_tablelim(sbr);
  517. sbr->data[0].f_indexnoise = 0;
  518. sbr->data[1].f_indexnoise = 0;
  519. return 0;
  520. }
  521. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  522. int elements)
  523. {
  524. int i;
  525. for (i = 0; i < elements; i++) {
  526. vec[i] = get_bits1(gb);
  527. }
  528. }
  529. /** ceil(log2(index+1)) */
  530. static const int8_t ceil_log2[] = {
  531. 0, 1, 2, 2, 3, 3,
  532. };
  533. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  534. GetBitContext *gb, SBRData *ch_data)
  535. {
  536. int i;
  537. int bs_pointer = 0;
  538. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  539. int abs_bord_trail = 16;
  540. int num_rel_lead, num_rel_trail;
  541. unsigned bs_num_env_old = ch_data->bs_num_env;
  542. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
  543. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  544. ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
  545. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  546. case FIXFIX:
  547. ch_data->bs_num_env = 1 << get_bits(gb, 2);
  548. num_rel_lead = ch_data->bs_num_env - 1;
  549. if (ch_data->bs_num_env == 1)
  550. ch_data->bs_amp_res = 0;
  551. if (ch_data->bs_num_env > 4) {
  552. av_log(ac->avctx, AV_LOG_ERROR,
  553. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  554. ch_data->bs_num_env);
  555. return -1;
  556. }
  557. ch_data->t_env[0] = 0;
  558. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  559. abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
  560. ch_data->bs_num_env;
  561. for (i = 0; i < num_rel_lead; i++)
  562. ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
  563. ch_data->bs_freq_res[1] = get_bits1(gb);
  564. for (i = 1; i < ch_data->bs_num_env; i++)
  565. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  566. break;
  567. case FIXVAR:
  568. abs_bord_trail += get_bits(gb, 2);
  569. num_rel_trail = get_bits(gb, 2);
  570. ch_data->bs_num_env = num_rel_trail + 1;
  571. ch_data->t_env[0] = 0;
  572. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  573. for (i = 0; i < num_rel_trail; i++)
  574. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  575. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  576. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  577. for (i = 0; i < ch_data->bs_num_env; i++)
  578. ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
  579. break;
  580. case VARFIX:
  581. ch_data->t_env[0] = get_bits(gb, 2);
  582. num_rel_lead = get_bits(gb, 2);
  583. ch_data->bs_num_env = num_rel_lead + 1;
  584. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  585. for (i = 0; i < num_rel_lead; i++)
  586. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  587. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  588. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  589. break;
  590. case VARVAR:
  591. ch_data->t_env[0] = get_bits(gb, 2);
  592. abs_bord_trail += get_bits(gb, 2);
  593. num_rel_lead = get_bits(gb, 2);
  594. num_rel_trail = get_bits(gb, 2);
  595. ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
  596. if (ch_data->bs_num_env > 5) {
  597. av_log(ac->avctx, AV_LOG_ERROR,
  598. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  599. ch_data->bs_num_env);
  600. return -1;
  601. }
  602. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  603. for (i = 0; i < num_rel_lead; i++)
  604. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  605. for (i = 0; i < num_rel_trail; i++)
  606. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  607. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  608. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  609. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  610. break;
  611. }
  612. if (bs_pointer < 0 || bs_pointer > ch_data->bs_num_env + 1) {
  613. av_log(ac->avctx, AV_LOG_ERROR,
  614. "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
  615. bs_pointer);
  616. return -1;
  617. }
  618. for (i = 1; i <= ch_data->bs_num_env; i++) {
  619. if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
  620. av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
  621. return -1;
  622. }
  623. }
  624. ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
  625. ch_data->t_q[0] = ch_data->t_env[0];
  626. ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
  627. if (ch_data->bs_num_noise > 1) {
  628. int idx;
  629. if (ch_data->bs_frame_class == FIXFIX) {
  630. idx = ch_data->bs_num_env >> 1;
  631. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  632. idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
  633. } else { // VARFIX
  634. if (!bs_pointer)
  635. idx = 1;
  636. else if (bs_pointer == 1)
  637. idx = ch_data->bs_num_env - 1;
  638. else // bs_pointer > 1
  639. idx = bs_pointer - 1;
  640. }
  641. ch_data->t_q[1] = ch_data->t_env[idx];
  642. }
  643. ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
  644. ch_data->e_a[1] = -1;
  645. if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  646. ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
  647. } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
  648. ch_data->e_a[1] = bs_pointer - 1;
  649. return 0;
  650. }
  651. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  652. //These variables are saved from the previous frame rather than copied
  653. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
  654. dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
  655. dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
  656. //These variables are read from the bitstream and therefore copied
  657. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  658. memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
  659. memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
  660. dst->bs_num_env = src->bs_num_env;
  661. dst->bs_amp_res = src->bs_amp_res;
  662. dst->bs_num_noise = src->bs_num_noise;
  663. dst->bs_frame_class = src->bs_frame_class;
  664. dst->e_a[1] = src->e_a[1];
  665. }
  666. /// Read how the envelope and noise floor data is delta coded
  667. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  668. SBRData *ch_data)
  669. {
  670. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
  671. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  672. }
  673. /// Read inverse filtering data
  674. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  675. SBRData *ch_data)
  676. {
  677. int i;
  678. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  679. for (i = 0; i < sbr->n_q; i++)
  680. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  681. }
  682. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  683. SBRData *ch_data, int ch)
  684. {
  685. int bits;
  686. int i, j, k;
  687. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  688. int t_lav, f_lav;
  689. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  690. const int odd = sbr->n[1] & 1;
  691. if (sbr->bs_coupling && ch) {
  692. if (ch_data->bs_amp_res) {
  693. bits = 5;
  694. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  695. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  696. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  697. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  698. } else {
  699. bits = 6;
  700. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  701. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  702. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  703. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  704. }
  705. } else {
  706. if (ch_data->bs_amp_res) {
  707. bits = 6;
  708. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  709. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  710. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  711. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  712. } else {
  713. bits = 7;
  714. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  715. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  716. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  717. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  718. }
  719. }
  720. for (i = 0; i < ch_data->bs_num_env; i++) {
  721. if (ch_data->bs_df_env[i]) {
  722. // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
  723. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  724. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  725. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  726. } else if (ch_data->bs_freq_res[i + 1]) {
  727. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  728. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  729. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  730. }
  731. } else {
  732. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  733. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  734. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  735. }
  736. }
  737. } else {
  738. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  739. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  740. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  741. }
  742. }
  743. //assign 0th elements of env_facs from last elements
  744. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
  745. sizeof(ch_data->env_facs[0]));
  746. }
  747. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  748. SBRData *ch_data, int ch)
  749. {
  750. int i, j;
  751. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  752. int t_lav, f_lav;
  753. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  754. if (sbr->bs_coupling && ch) {
  755. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  756. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  757. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  758. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  759. } else {
  760. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  761. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  762. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  763. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  764. }
  765. for (i = 0; i < ch_data->bs_num_noise; i++) {
  766. if (ch_data->bs_df_noise[i]) {
  767. for (j = 0; j < sbr->n_q; j++)
  768. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  769. } else {
  770. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  771. for (j = 1; j < sbr->n_q; j++)
  772. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  773. }
  774. }
  775. //assign 0th elements of noise_facs from last elements
  776. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  777. sizeof(ch_data->noise_facs[0]));
  778. }
  779. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  780. GetBitContext *gb,
  781. int bs_extension_id, int *num_bits_left)
  782. {
  783. switch (bs_extension_id) {
  784. case EXTENSION_ID_PS:
  785. if (!ac->oc[1].m4ac.ps) {
  786. av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
  787. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  788. *num_bits_left = 0;
  789. } else {
  790. *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
  791. ac->avctx->profile = FF_PROFILE_AAC_HE_V2;
  792. }
  793. break;
  794. default:
  795. // some files contain 0-padding
  796. if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
  797. avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
  798. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  799. *num_bits_left = 0;
  800. break;
  801. }
  802. }
  803. static int read_sbr_single_channel_element(AACContext *ac,
  804. SpectralBandReplication *sbr,
  805. GetBitContext *gb)
  806. {
  807. if (get_bits1(gb)) // bs_data_extra
  808. skip_bits(gb, 4); // bs_reserved
  809. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  810. return -1;
  811. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  812. read_sbr_invf(sbr, gb, &sbr->data[0]);
  813. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  814. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  815. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  816. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  817. return 0;
  818. }
  819. static int read_sbr_channel_pair_element(AACContext *ac,
  820. SpectralBandReplication *sbr,
  821. GetBitContext *gb)
  822. {
  823. if (get_bits1(gb)) // bs_data_extra
  824. skip_bits(gb, 8); // bs_reserved
  825. if ((sbr->bs_coupling = get_bits1(gb))) {
  826. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  827. return -1;
  828. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  829. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  830. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  831. read_sbr_invf(sbr, gb, &sbr->data[0]);
  832. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  833. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  834. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  835. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  836. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  837. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  838. } else {
  839. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  840. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  841. return -1;
  842. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  843. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  844. read_sbr_invf(sbr, gb, &sbr->data[0]);
  845. read_sbr_invf(sbr, gb, &sbr->data[1]);
  846. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  847. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  848. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  849. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  850. }
  851. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  852. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  853. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  854. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  855. return 0;
  856. }
  857. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  858. GetBitContext *gb, int id_aac)
  859. {
  860. unsigned int cnt = get_bits_count(gb);
  861. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  862. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  863. sbr_turnoff(sbr);
  864. return get_bits_count(gb) - cnt;
  865. }
  866. } else if (id_aac == TYPE_CPE) {
  867. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  868. sbr_turnoff(sbr);
  869. return get_bits_count(gb) - cnt;
  870. }
  871. } else {
  872. av_log(ac->avctx, AV_LOG_ERROR,
  873. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  874. sbr_turnoff(sbr);
  875. return get_bits_count(gb) - cnt;
  876. }
  877. if (get_bits1(gb)) { // bs_extended_data
  878. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  879. if (num_bits_left == 15)
  880. num_bits_left += get_bits(gb, 8); // bs_esc_count
  881. num_bits_left <<= 3;
  882. while (num_bits_left > 7) {
  883. num_bits_left -= 2;
  884. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  885. }
  886. if (num_bits_left < 0) {
  887. av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
  888. }
  889. if (num_bits_left > 0)
  890. skip_bits(gb, num_bits_left);
  891. }
  892. return get_bits_count(gb) - cnt;
  893. }
  894. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  895. {
  896. int err;
  897. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  898. if (err >= 0)
  899. err = sbr_make_f_derived(ac, sbr);
  900. if (err < 0) {
  901. av_log(ac->avctx, AV_LOG_ERROR,
  902. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  903. sbr_turnoff(sbr);
  904. }
  905. }
  906. /**
  907. * Decode Spectral Band Replication extension data; reference: table 4.55.
  908. *
  909. * @param crc flag indicating the presence of CRC checksum
  910. * @param cnt length of TYPE_FIL syntactic element in bytes
  911. *
  912. * @return Returns number of bytes consumed from the TYPE_FIL element.
  913. */
  914. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  915. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  916. {
  917. unsigned int num_sbr_bits = 0, num_align_bits;
  918. unsigned bytes_read;
  919. GetBitContext gbc = *gb_host, *gb = &gbc;
  920. skip_bits_long(gb_host, cnt*8 - 4);
  921. sbr->reset = 0;
  922. if (!sbr->sample_rate)
  923. sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  924. if (!ac->oc[1].m4ac.ext_sample_rate)
  925. ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
  926. if (crc) {
  927. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  928. num_sbr_bits += 10;
  929. }
  930. //Save some state from the previous frame.
  931. sbr->kx[0] = sbr->kx[1];
  932. sbr->m[0] = sbr->m[1];
  933. sbr->kx_and_m_pushed = 1;
  934. num_sbr_bits++;
  935. if (get_bits1(gb)) // bs_header_flag
  936. num_sbr_bits += read_sbr_header(sbr, gb);
  937. if (sbr->reset)
  938. sbr_reset(ac, sbr);
  939. if (sbr->start)
  940. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  941. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  942. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  943. if (bytes_read > cnt) {
  944. av_log(ac->avctx, AV_LOG_ERROR,
  945. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  946. }
  947. return cnt;
  948. }
  949. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  950. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  951. {
  952. int k, e;
  953. int ch;
  954. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  955. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  956. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  957. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  958. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  959. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  960. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  961. float fac = temp1 / (1.0f + temp2);
  962. sbr->data[0].env_facs[e][k] = fac;
  963. sbr->data[1].env_facs[e][k] = fac * temp2;
  964. }
  965. }
  966. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  967. for (k = 0; k < sbr->n_q; k++) {
  968. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  969. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  970. float fac = temp1 / (1.0f + temp2);
  971. sbr->data[0].noise_facs[e][k] = fac;
  972. sbr->data[1].noise_facs[e][k] = fac * temp2;
  973. }
  974. }
  975. } else { // SCE or one non-coupled CPE
  976. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  977. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  978. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  979. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  980. sbr->data[ch].env_facs[e][k] =
  981. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  982. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  983. for (k = 0; k < sbr->n_q; k++)
  984. sbr->data[ch].noise_facs[e][k] =
  985. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  986. }
  987. }
  988. }
  989. /**
  990. * Analysis QMF Bank (14496-3 sp04 p206)
  991. *
  992. * @param x pointer to the beginning of the first sample window
  993. * @param W array of complex-valued samples split into subbands
  994. */
  995. static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
  996. SBRDSPContext *sbrdsp, const float *in, float *x,
  997. float z[320], float W[2][32][32][2], int buf_idx)
  998. {
  999. int i;
  1000. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  1001. memcpy(x+288, in, 1024*sizeof(x[0]));
  1002. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  1003. // are not supported
  1004. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  1005. sbrdsp->sum64x5(z);
  1006. sbrdsp->qmf_pre_shuffle(z);
  1007. mdct->imdct_half(mdct, z, z+64);
  1008. sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
  1009. x += 32;
  1010. }
  1011. }
  1012. /**
  1013. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1014. * (14496-3 sp04 p206)
  1015. */
  1016. static void sbr_qmf_synthesis(FFTContext *mdct,
  1017. SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
  1018. float *out, float X[2][38][64],
  1019. float mdct_buf[2][64],
  1020. float *v0, int *v_off, const unsigned int div)
  1021. {
  1022. int i, n;
  1023. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1024. const int step = 128 >> div;
  1025. float *v;
  1026. for (i = 0; i < 32; i++) {
  1027. if (*v_off < step) {
  1028. int saved_samples = (1280 - 128) >> div;
  1029. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1030. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
  1031. } else {
  1032. *v_off -= step;
  1033. }
  1034. v = v0 + *v_off;
  1035. if (div) {
  1036. for (n = 0; n < 32; n++) {
  1037. X[0][i][ n] = -X[0][i][n];
  1038. X[0][i][32+n] = X[1][i][31-n];
  1039. }
  1040. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1041. sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
  1042. } else {
  1043. sbrdsp->neg_odd_64(X[1][i]);
  1044. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1045. mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
  1046. sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
  1047. }
  1048. dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
  1049. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1050. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1051. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1052. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1053. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1054. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1055. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1056. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1057. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1058. out += 64 >> div;
  1059. }
  1060. }
  1061. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1062. * (14496-3 sp04 p214)
  1063. * Warning: This routine does not seem numerically stable.
  1064. */
  1065. static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
  1066. float (*alpha0)[2], float (*alpha1)[2],
  1067. const float X_low[32][40][2], int k0)
  1068. {
  1069. int k;
  1070. for (k = 0; k < k0; k++) {
  1071. LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
  1072. float dk;
  1073. dsp->autocorrelate(X_low[k], phi);
  1074. dk = phi[2][1][0] * phi[1][0][0] -
  1075. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1076. if (!dk) {
  1077. alpha1[k][0] = 0;
  1078. alpha1[k][1] = 0;
  1079. } else {
  1080. float temp_real, temp_im;
  1081. temp_real = phi[0][0][0] * phi[1][1][0] -
  1082. phi[0][0][1] * phi[1][1][1] -
  1083. phi[0][1][0] * phi[1][0][0];
  1084. temp_im = phi[0][0][0] * phi[1][1][1] +
  1085. phi[0][0][1] * phi[1][1][0] -
  1086. phi[0][1][1] * phi[1][0][0];
  1087. alpha1[k][0] = temp_real / dk;
  1088. alpha1[k][1] = temp_im / dk;
  1089. }
  1090. if (!phi[1][0][0]) {
  1091. alpha0[k][0] = 0;
  1092. alpha0[k][1] = 0;
  1093. } else {
  1094. float temp_real, temp_im;
  1095. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1096. alpha1[k][1] * phi[1][1][1];
  1097. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1098. alpha1[k][0] * phi[1][1][1];
  1099. alpha0[k][0] = -temp_real / phi[1][0][0];
  1100. alpha0[k][1] = -temp_im / phi[1][0][0];
  1101. }
  1102. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1103. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1104. alpha1[k][0] = 0;
  1105. alpha1[k][1] = 0;
  1106. alpha0[k][0] = 0;
  1107. alpha0[k][1] = 0;
  1108. }
  1109. }
  1110. }
  1111. /// Chirp Factors (14496-3 sp04 p214)
  1112. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1113. {
  1114. int i;
  1115. float new_bw;
  1116. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1117. for (i = 0; i < sbr->n_q; i++) {
  1118. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1119. new_bw = 0.6f;
  1120. } else
  1121. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1122. if (new_bw < ch_data->bw_array[i]) {
  1123. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1124. } else
  1125. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1126. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1127. }
  1128. }
  1129. /// Generate the subband filtered lowband
  1130. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1131. float X_low[32][40][2], const float W[2][32][32][2],
  1132. int buf_idx)
  1133. {
  1134. int i, k;
  1135. const int t_HFGen = 8;
  1136. const int i_f = 32;
  1137. memset(X_low, 0, 32*sizeof(*X_low));
  1138. for (k = 0; k < sbr->kx[1]; k++) {
  1139. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1140. X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
  1141. X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
  1142. }
  1143. }
  1144. buf_idx = 1-buf_idx;
  1145. for (k = 0; k < sbr->kx[0]; k++) {
  1146. for (i = 0; i < t_HFGen; i++) {
  1147. X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
  1148. X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
  1149. }
  1150. }
  1151. return 0;
  1152. }
  1153. /// High Frequency Generator (14496-3 sp04 p215)
  1154. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1155. float X_high[64][40][2], const float X_low[32][40][2],
  1156. const float (*alpha0)[2], const float (*alpha1)[2],
  1157. const float bw_array[5], const uint8_t *t_env,
  1158. int bs_num_env)
  1159. {
  1160. int j, x;
  1161. int g = 0;
  1162. int k = sbr->kx[1];
  1163. for (j = 0; j < sbr->num_patches; j++) {
  1164. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1165. const int p = sbr->patch_start_subband[j] + x;
  1166. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1167. g++;
  1168. g--;
  1169. if (g < 0) {
  1170. av_log(ac->avctx, AV_LOG_ERROR,
  1171. "ERROR : no subband found for frequency %d\n", k);
  1172. return -1;
  1173. }
  1174. sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
  1175. X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
  1176. alpha0[p], alpha1[p], bw_array[g],
  1177. 2 * t_env[0], 2 * t_env[bs_num_env]);
  1178. }
  1179. }
  1180. if (k < sbr->m[1] + sbr->kx[1])
  1181. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1182. return 0;
  1183. }
  1184. /// Generate the subband filtered lowband
  1185. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
  1186. const float Y0[38][64][2], const float Y1[38][64][2],
  1187. const float X_low[32][40][2], int ch)
  1188. {
  1189. int k, i;
  1190. const int i_f = 32;
  1191. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1192. memset(X, 0, 2*sizeof(*X));
  1193. for (k = 0; k < sbr->kx[0]; k++) {
  1194. for (i = 0; i < i_Temp; i++) {
  1195. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1196. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1197. }
  1198. }
  1199. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1200. for (i = 0; i < i_Temp; i++) {
  1201. X[0][i][k] = Y0[i + i_f][k][0];
  1202. X[1][i][k] = Y0[i + i_f][k][1];
  1203. }
  1204. }
  1205. for (k = 0; k < sbr->kx[1]; k++) {
  1206. for (i = i_Temp; i < 38; i++) {
  1207. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1208. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1209. }
  1210. }
  1211. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1212. for (i = i_Temp; i < i_f; i++) {
  1213. X[0][i][k] = Y1[i][k][0];
  1214. X[1][i][k] = Y1[i][k][1];
  1215. }
  1216. }
  1217. return 0;
  1218. }
  1219. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1220. * (14496-3 sp04 p217)
  1221. */
  1222. static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1223. SBRData *ch_data, int e_a[2])
  1224. {
  1225. int e, i, m;
  1226. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1227. for (e = 0; e < ch_data->bs_num_env; e++) {
  1228. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1229. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1230. int k;
  1231. if (sbr->kx[1] != table[0]) {
  1232. av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
  1233. "Derived frequency tables were not regenerated.\n");
  1234. sbr_turnoff(sbr);
  1235. return AVERROR_BUG;
  1236. }
  1237. for (i = 0; i < ilim; i++)
  1238. for (m = table[i]; m < table[i + 1]; m++)
  1239. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1240. // ch_data->bs_num_noise > 1 => 2 noise floors
  1241. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1242. for (i = 0; i < sbr->n_q; i++)
  1243. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1244. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1245. for (i = 0; i < sbr->n[1]; i++) {
  1246. if (ch_data->bs_add_harmonic_flag) {
  1247. const unsigned int m_midpoint =
  1248. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1249. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1250. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1251. }
  1252. }
  1253. for (i = 0; i < ilim; i++) {
  1254. int additional_sinusoid_present = 0;
  1255. for (m = table[i]; m < table[i + 1]; m++) {
  1256. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1257. additional_sinusoid_present = 1;
  1258. break;
  1259. }
  1260. }
  1261. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1262. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1263. }
  1264. }
  1265. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
  1266. return 0;
  1267. }
  1268. /// Estimation of current envelope (14496-3 sp04 p218)
  1269. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1270. SpectralBandReplication *sbr, SBRData *ch_data)
  1271. {
  1272. int e, m;
  1273. int kx1 = sbr->kx[1];
  1274. if (sbr->bs_interpol_freq) {
  1275. for (e = 0; e < ch_data->bs_num_env; e++) {
  1276. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1277. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1278. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1279. for (m = 0; m < sbr->m[1]; m++) {
  1280. float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
  1281. e_curr[e][m] = sum * recip_env_size;
  1282. }
  1283. }
  1284. } else {
  1285. int k, p;
  1286. for (e = 0; e < ch_data->bs_num_env; e++) {
  1287. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1288. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1289. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1290. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1291. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1292. float sum = 0.0f;
  1293. const int den = env_size * (table[p + 1] - table[p]);
  1294. for (k = table[p]; k < table[p + 1]; k++) {
  1295. sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
  1296. }
  1297. sum /= den;
  1298. for (k = table[p]; k < table[p + 1]; k++) {
  1299. e_curr[e][k - kx1] = sum;
  1300. }
  1301. }
  1302. }
  1303. }
  1304. }
  1305. /**
  1306. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1307. * and Calculation of gain (14496-3 sp04 p219)
  1308. */
  1309. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1310. SBRData *ch_data, const int e_a[2])
  1311. {
  1312. int e, k, m;
  1313. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1314. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1315. for (e = 0; e < ch_data->bs_num_env; e++) {
  1316. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1317. for (k = 0; k < sbr->n_lim; k++) {
  1318. float gain_boost, gain_max;
  1319. float sum[2] = { 0.0f, 0.0f };
  1320. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1321. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1322. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1323. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1324. if (!sbr->s_mapped[e][m]) {
  1325. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1326. ((1.0f + sbr->e_curr[e][m]) *
  1327. (1.0f + sbr->q_mapped[e][m] * delta)));
  1328. } else {
  1329. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1330. ((1.0f + sbr->e_curr[e][m]) *
  1331. (1.0f + sbr->q_mapped[e][m])));
  1332. }
  1333. }
  1334. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1335. sum[0] += sbr->e_origmapped[e][m];
  1336. sum[1] += sbr->e_curr[e][m];
  1337. }
  1338. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1339. gain_max = FFMIN(100000.f, gain_max);
  1340. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1341. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1342. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1343. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1344. }
  1345. sum[0] = sum[1] = 0.0f;
  1346. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1347. sum[0] += sbr->e_origmapped[e][m];
  1348. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1349. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1350. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1351. }
  1352. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1353. gain_boost = FFMIN(1.584893192f, gain_boost);
  1354. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1355. sbr->gain[e][m] *= gain_boost;
  1356. sbr->q_m[e][m] *= gain_boost;
  1357. sbr->s_m[e][m] *= gain_boost;
  1358. }
  1359. }
  1360. }
  1361. }
  1362. /// Assembling HF Signals (14496-3 sp04 p220)
  1363. static void sbr_hf_assemble(float Y1[38][64][2],
  1364. const float X_high[64][40][2],
  1365. SpectralBandReplication *sbr, SBRData *ch_data,
  1366. const int e_a[2])
  1367. {
  1368. int e, i, j, m;
  1369. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1370. const int kx = sbr->kx[1];
  1371. const int m_max = sbr->m[1];
  1372. static const float h_smooth[5] = {
  1373. 0.33333333333333,
  1374. 0.30150283239582,
  1375. 0.21816949906249,
  1376. 0.11516383427084,
  1377. 0.03183050093751,
  1378. };
  1379. static const int8_t phi[2][4] = {
  1380. { 1, 0, -1, 0}, // real
  1381. { 0, 1, 0, -1}, // imaginary
  1382. };
  1383. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1384. int indexnoise = ch_data->f_indexnoise;
  1385. int indexsine = ch_data->f_indexsine;
  1386. if (sbr->reset) {
  1387. for (i = 0; i < h_SL; i++) {
  1388. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1389. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1390. }
  1391. } else if (h_SL) {
  1392. for (i = 0; i < 4; i++) {
  1393. memcpy(g_temp[i + 2 * ch_data->t_env[0]],
  1394. g_temp[i + 2 * ch_data->t_env_num_env_old],
  1395. sizeof(g_temp[0]));
  1396. memcpy(q_temp[i + 2 * ch_data->t_env[0]],
  1397. q_temp[i + 2 * ch_data->t_env_num_env_old],
  1398. sizeof(q_temp[0]));
  1399. }
  1400. }
  1401. for (e = 0; e < ch_data->bs_num_env; e++) {
  1402. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1403. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1404. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1405. }
  1406. }
  1407. for (e = 0; e < ch_data->bs_num_env; e++) {
  1408. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1409. int phi_sign = (1 - 2*(kx & 1));
  1410. LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
  1411. LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
  1412. float *g_filt, *q_filt;
  1413. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1414. g_filt = g_filt_tab;
  1415. q_filt = q_filt_tab;
  1416. for (m = 0; m < m_max; m++) {
  1417. const int idx1 = i + h_SL;
  1418. g_filt[m] = 0.0f;
  1419. q_filt[m] = 0.0f;
  1420. for (j = 0; j <= h_SL; j++) {
  1421. g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
  1422. q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
  1423. }
  1424. }
  1425. } else {
  1426. g_filt = g_temp[i + h_SL];
  1427. q_filt = q_temp[i];
  1428. }
  1429. sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
  1430. i + ENVELOPE_ADJUSTMENT_OFFSET);
  1431. if (e != e_a[0] && e != e_a[1]) {
  1432. sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
  1433. q_filt, indexnoise,
  1434. kx, m_max);
  1435. } else {
  1436. for (m = 0; m < m_max; m++) {
  1437. Y1[i][m + kx][0] +=
  1438. sbr->s_m[e][m] * phi[0][indexsine];
  1439. Y1[i][m + kx][1] +=
  1440. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1441. phi_sign = -phi_sign;
  1442. }
  1443. }
  1444. indexnoise = (indexnoise + m_max) & 0x1ff;
  1445. indexsine = (indexsine + 1) & 3;
  1446. }
  1447. }
  1448. ch_data->f_indexnoise = indexnoise;
  1449. ch_data->f_indexsine = indexsine;
  1450. }
  1451. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
  1452. float* L, float* R)
  1453. {
  1454. int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
  1455. int ch;
  1456. int nch = (id_aac == TYPE_CPE) ? 2 : 1;
  1457. int err;
  1458. if (!sbr->kx_and_m_pushed) {
  1459. sbr->kx[0] = sbr->kx[1];
  1460. sbr->m[0] = sbr->m[1];
  1461. } else {
  1462. sbr->kx_and_m_pushed = 0;
  1463. }
  1464. if (sbr->start) {
  1465. sbr_dequant(sbr, id_aac);
  1466. }
  1467. for (ch = 0; ch < nch; ch++) {
  1468. /* decode channel */
  1469. sbr_qmf_analysis(&ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
  1470. (float*)sbr->qmf_filter_scratch,
  1471. sbr->data[ch].W, sbr->data[ch].Ypos);
  1472. sbr_lf_gen(ac, sbr, sbr->X_low,
  1473. (const float (*)[32][32][2]) sbr->data[ch].W,
  1474. sbr->data[ch].Ypos);
  1475. sbr->data[ch].Ypos ^= 1;
  1476. if (sbr->start) {
  1477. sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
  1478. (const float (*)[40][2]) sbr->X_low, sbr->k[0]);
  1479. sbr_chirp(sbr, &sbr->data[ch]);
  1480. sbr_hf_gen(ac, sbr, sbr->X_high,
  1481. (const float (*)[40][2]) sbr->X_low,
  1482. (const float (*)[2]) sbr->alpha0,
  1483. (const float (*)[2]) sbr->alpha1,
  1484. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1485. sbr->data[ch].bs_num_env);
  1486. // hf_adj
  1487. err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1488. if (!err) {
  1489. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1490. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1491. sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
  1492. (const float (*)[40][2]) sbr->X_high,
  1493. sbr, &sbr->data[ch],
  1494. sbr->data[ch].e_a);
  1495. }
  1496. }
  1497. /* synthesis */
  1498. sbr_x_gen(sbr, sbr->X[ch],
  1499. (const float (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
  1500. (const float (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
  1501. (const float (*)[40][2]) sbr->X_low, ch);
  1502. }
  1503. if (ac->oc[1].m4ac.ps == 1) {
  1504. if (sbr->ps.start) {
  1505. ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
  1506. } else {
  1507. memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
  1508. }
  1509. nch = 2;
  1510. }
  1511. sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, &ac->fdsp,
  1512. L, sbr->X[0], sbr->qmf_filter_scratch,
  1513. sbr->data[0].synthesis_filterbank_samples,
  1514. &sbr->data[0].synthesis_filterbank_samples_offset,
  1515. downsampled);
  1516. if (nch == 2)
  1517. sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, &ac->fdsp,
  1518. R, sbr->X[1], sbr->qmf_filter_scratch,
  1519. sbr->data[1].synthesis_filterbank_samples,
  1520. &sbr->data[1].synthesis_filterbank_samples_offset,
  1521. downsampled);
  1522. }