You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

957 lines
34KB

  1. /*
  2. * MPEG-4 Parametric Stereo decoding functions
  3. * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <stdint.h>
  22. #include "libavutil/common.h"
  23. #include "libavutil/internal.h"
  24. #include "libavutil/mathematics.h"
  25. #include "avcodec.h"
  26. #include "get_bits.h"
  27. #include "aacps.h"
  28. #include "aacps_tablegen.h"
  29. #include "aacpsdata.c"
  30. #define PS_BASELINE 0 ///< Operate in Baseline PS mode
  31. ///< Baseline implies 10 or 20 stereo bands,
  32. ///< mixing mode A, and no ipd/opd
  33. #define numQMFSlots 32 //numTimeSlots * RATE
  34. static const int8_t num_env_tab[2][4] = {
  35. { 0, 1, 2, 4, },
  36. { 1, 2, 3, 4, },
  37. };
  38. static const int8_t nr_iidicc_par_tab[] = {
  39. 10, 20, 34, 10, 20, 34,
  40. };
  41. static const int8_t nr_iidopd_par_tab[] = {
  42. 5, 11, 17, 5, 11, 17,
  43. };
  44. enum {
  45. huff_iid_df1,
  46. huff_iid_dt1,
  47. huff_iid_df0,
  48. huff_iid_dt0,
  49. huff_icc_df,
  50. huff_icc_dt,
  51. huff_ipd_df,
  52. huff_ipd_dt,
  53. huff_opd_df,
  54. huff_opd_dt,
  55. };
  56. static const int huff_iid[] = {
  57. huff_iid_df0,
  58. huff_iid_df1,
  59. huff_iid_dt0,
  60. huff_iid_dt1,
  61. };
  62. static VLC vlc_ps[10];
  63. #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
  64. /** \
  65. * Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \
  66. * Inter-channel Phase Difference/Overall Phase Difference parameters from the \
  67. * bitstream. \
  68. * \
  69. * @param avctx contains the current codec context \
  70. * @param gb pointer to the input bitstream \
  71. * @param ps pointer to the Parametric Stereo context \
  72. * @param PAR pointer to the parameter to be read \
  73. * @param e envelope to decode \
  74. * @param dt 1: time delta-coded, 0: frequency delta-coded \
  75. */ \
  76. static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
  77. int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
  78. { \
  79. int b, num = ps->nr_ ## PAR ## _par; \
  80. VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
  81. if (dt) { \
  82. int e_prev = e ? e - 1 : ps->num_env_old - 1; \
  83. e_prev = FFMAX(e_prev, 0); \
  84. for (b = 0; b < num; b++) { \
  85. int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  86. if (MASK) val &= MASK; \
  87. PAR[e][b] = val; \
  88. if (ERR_CONDITION) \
  89. goto err; \
  90. } \
  91. } else { \
  92. int val = 0; \
  93. for (b = 0; b < num; b++) { \
  94. val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  95. if (MASK) val &= MASK; \
  96. PAR[e][b] = val; \
  97. if (ERR_CONDITION) \
  98. goto err; \
  99. } \
  100. } \
  101. return 0; \
  102. err: \
  103. av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
  104. return -1; \
  105. }
  106. READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
  107. READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U)
  108. READ_PAR_DATA(ipdopd, 0, 0x07, 0)
  109. static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
  110. {
  111. int e;
  112. int count = get_bits_count(gb);
  113. if (ps_extension_id)
  114. return 0;
  115. ps->enable_ipdopd = get_bits1(gb);
  116. if (ps->enable_ipdopd) {
  117. for (e = 0; e < ps->num_env; e++) {
  118. int dt = get_bits1(gb);
  119. read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
  120. dt = get_bits1(gb);
  121. read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
  122. }
  123. }
  124. skip_bits1(gb); //reserved_ps
  125. return get_bits_count(gb) - count;
  126. }
  127. static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist)
  128. {
  129. int i;
  130. for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
  131. opd_hist[i] = 0;
  132. ipd_hist[i] = 0;
  133. }
  134. }
  135. int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
  136. {
  137. int e;
  138. int bit_count_start = get_bits_count(gb_host);
  139. int header;
  140. int bits_consumed;
  141. GetBitContext gbc = *gb_host, *gb = &gbc;
  142. header = get_bits1(gb);
  143. if (header) { //enable_ps_header
  144. ps->enable_iid = get_bits1(gb);
  145. if (ps->enable_iid) {
  146. int iid_mode = get_bits(gb, 3);
  147. if (iid_mode > 5) {
  148. av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
  149. iid_mode);
  150. goto err;
  151. }
  152. ps->nr_iid_par = nr_iidicc_par_tab[iid_mode];
  153. ps->iid_quant = iid_mode > 2;
  154. ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
  155. }
  156. ps->enable_icc = get_bits1(gb);
  157. if (ps->enable_icc) {
  158. ps->icc_mode = get_bits(gb, 3);
  159. if (ps->icc_mode > 5) {
  160. av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
  161. ps->icc_mode);
  162. goto err;
  163. }
  164. ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
  165. }
  166. ps->enable_ext = get_bits1(gb);
  167. }
  168. ps->frame_class = get_bits1(gb);
  169. ps->num_env_old = ps->num_env;
  170. ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)];
  171. ps->border_position[0] = -1;
  172. if (ps->frame_class) {
  173. for (e = 1; e <= ps->num_env; e++)
  174. ps->border_position[e] = get_bits(gb, 5);
  175. } else
  176. for (e = 1; e <= ps->num_env; e++)
  177. ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
  178. if (ps->enable_iid) {
  179. for (e = 0; e < ps->num_env; e++) {
  180. int dt = get_bits1(gb);
  181. if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
  182. goto err;
  183. }
  184. } else
  185. memset(ps->iid_par, 0, sizeof(ps->iid_par));
  186. if (ps->enable_icc)
  187. for (e = 0; e < ps->num_env; e++) {
  188. int dt = get_bits1(gb);
  189. if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
  190. goto err;
  191. }
  192. else
  193. memset(ps->icc_par, 0, sizeof(ps->icc_par));
  194. if (ps->enable_ext) {
  195. int cnt = get_bits(gb, 4);
  196. if (cnt == 15) {
  197. cnt += get_bits(gb, 8);
  198. }
  199. cnt *= 8;
  200. while (cnt > 7) {
  201. int ps_extension_id = get_bits(gb, 2);
  202. cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
  203. }
  204. if (cnt < 0) {
  205. av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d\n", cnt);
  206. goto err;
  207. }
  208. skip_bits(gb, cnt);
  209. }
  210. ps->enable_ipdopd &= !PS_BASELINE;
  211. //Fix up envelopes
  212. if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
  213. //Create a fake envelope
  214. int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
  215. if (source >= 0 && source != ps->num_env) {
  216. if (ps->enable_iid) {
  217. memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
  218. }
  219. if (ps->enable_icc) {
  220. memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
  221. }
  222. if (ps->enable_ipdopd) {
  223. memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
  224. memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
  225. }
  226. }
  227. ps->num_env++;
  228. ps->border_position[ps->num_env] = numQMFSlots - 1;
  229. }
  230. ps->is34bands_old = ps->is34bands;
  231. if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
  232. ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
  233. (ps->enable_icc && ps->nr_icc_par == 34);
  234. //Baseline
  235. if (!ps->enable_ipdopd) {
  236. memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  237. memset(ps->opd_par, 0, sizeof(ps->opd_par));
  238. }
  239. if (header)
  240. ps->start = 1;
  241. bits_consumed = get_bits_count(gb) - bit_count_start;
  242. if (bits_consumed <= bits_left) {
  243. skip_bits_long(gb_host, bits_consumed);
  244. return bits_consumed;
  245. }
  246. av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
  247. err:
  248. ps->start = 0;
  249. skip_bits_long(gb_host, bits_left);
  250. memset(ps->iid_par, 0, sizeof(ps->iid_par));
  251. memset(ps->icc_par, 0, sizeof(ps->icc_par));
  252. memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  253. memset(ps->opd_par, 0, sizeof(ps->opd_par));
  254. return bits_left;
  255. }
  256. /** Split one subband into 2 subsubbands with a symmetric real filter.
  257. * The filter must have its non-center even coefficients equal to zero. */
  258. static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[8], int len, int reverse)
  259. {
  260. int i, j;
  261. for (i = 0; i < len; i++, in++) {
  262. float re_in = filter[6] * in[6][0]; //real inphase
  263. float re_op = 0.0f; //real out of phase
  264. float im_in = filter[6] * in[6][1]; //imag inphase
  265. float im_op = 0.0f; //imag out of phase
  266. for (j = 0; j < 6; j += 2) {
  267. re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
  268. im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
  269. }
  270. out[ reverse][i][0] = re_in + re_op;
  271. out[ reverse][i][1] = im_in + im_op;
  272. out[!reverse][i][0] = re_in - re_op;
  273. out[!reverse][i][1] = im_in - im_op;
  274. }
  275. }
  276. /** Split one subband into 6 subsubbands with a complex filter */
  277. static void hybrid6_cx(PSDSPContext *dsp, float (*in)[2], float (*out)[32][2],
  278. TABLE_CONST float (*filter)[8][2], int len)
  279. {
  280. int i;
  281. int N = 8;
  282. LOCAL_ALIGNED_16(float, temp, [8], [2]);
  283. for (i = 0; i < len; i++, in++) {
  284. dsp->hybrid_analysis(temp, in, (const float (*)[8][2]) filter, 1, N);
  285. out[0][i][0] = temp[6][0];
  286. out[0][i][1] = temp[6][1];
  287. out[1][i][0] = temp[7][0];
  288. out[1][i][1] = temp[7][1];
  289. out[2][i][0] = temp[0][0];
  290. out[2][i][1] = temp[0][1];
  291. out[3][i][0] = temp[1][0];
  292. out[3][i][1] = temp[1][1];
  293. out[4][i][0] = temp[2][0] + temp[5][0];
  294. out[4][i][1] = temp[2][1] + temp[5][1];
  295. out[5][i][0] = temp[3][0] + temp[4][0];
  296. out[5][i][1] = temp[3][1] + temp[4][1];
  297. }
  298. }
  299. static void hybrid4_8_12_cx(PSDSPContext *dsp,
  300. float (*in)[2], float (*out)[32][2],
  301. TABLE_CONST float (*filter)[8][2], int N, int len)
  302. {
  303. int i;
  304. for (i = 0; i < len; i++, in++) {
  305. dsp->hybrid_analysis(out[0] + i, in, (const float (*)[8][2]) filter, 32, N);
  306. }
  307. }
  308. static void hybrid_analysis(PSDSPContext *dsp, float out[91][32][2],
  309. float in[5][44][2], float L[2][38][64],
  310. int is34, int len)
  311. {
  312. int i, j;
  313. for (i = 0; i < 5; i++) {
  314. for (j = 0; j < 38; j++) {
  315. in[i][j+6][0] = L[0][j][i];
  316. in[i][j+6][1] = L[1][j][i];
  317. }
  318. }
  319. if (is34) {
  320. hybrid4_8_12_cx(dsp, in[0], out, f34_0_12, 12, len);
  321. hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8, 8, len);
  322. hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4, 4, len);
  323. hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4, 4, len);
  324. hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4, 4, len);
  325. dsp->hybrid_analysis_ileave(out + 27, L, 5, len);
  326. } else {
  327. hybrid6_cx(dsp, in[0], out, f20_0_8, len);
  328. hybrid2_re(in[1], out+6, g1_Q2, len, 1);
  329. hybrid2_re(in[2], out+8, g1_Q2, len, 0);
  330. dsp->hybrid_analysis_ileave(out + 7, L, 3, len);
  331. }
  332. //update in_buf
  333. for (i = 0; i < 5; i++) {
  334. memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
  335. }
  336. }
  337. static void hybrid_synthesis(PSDSPContext *dsp, float out[2][38][64],
  338. float in[91][32][2], int is34, int len)
  339. {
  340. int i, n;
  341. if (is34) {
  342. for (n = 0; n < len; n++) {
  343. memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
  344. memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
  345. for (i = 0; i < 12; i++) {
  346. out[0][n][0] += in[ i][n][0];
  347. out[1][n][0] += in[ i][n][1];
  348. }
  349. for (i = 0; i < 8; i++) {
  350. out[0][n][1] += in[12+i][n][0];
  351. out[1][n][1] += in[12+i][n][1];
  352. }
  353. for (i = 0; i < 4; i++) {
  354. out[0][n][2] += in[20+i][n][0];
  355. out[1][n][2] += in[20+i][n][1];
  356. out[0][n][3] += in[24+i][n][0];
  357. out[1][n][3] += in[24+i][n][1];
  358. out[0][n][4] += in[28+i][n][0];
  359. out[1][n][4] += in[28+i][n][1];
  360. }
  361. }
  362. dsp->hybrid_synthesis_deint(out, in + 27, 5, len);
  363. } else {
  364. for (n = 0; n < len; n++) {
  365. out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
  366. in[3][n][0] + in[4][n][0] + in[5][n][0];
  367. out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
  368. in[3][n][1] + in[4][n][1] + in[5][n][1];
  369. out[0][n][1] = in[6][n][0] + in[7][n][0];
  370. out[1][n][1] = in[6][n][1] + in[7][n][1];
  371. out[0][n][2] = in[8][n][0] + in[9][n][0];
  372. out[1][n][2] = in[8][n][1] + in[9][n][1];
  373. }
  374. dsp->hybrid_synthesis_deint(out, in + 7, 3, len);
  375. }
  376. }
  377. /// All-pass filter decay slope
  378. #define DECAY_SLOPE 0.05f
  379. /// Number of frequency bands that can be addressed by the parameter index, b(k)
  380. static const int NR_PAR_BANDS[] = { 20, 34 };
  381. /// Number of frequency bands that can be addressed by the sub subband index, k
  382. static const int NR_BANDS[] = { 71, 91 };
  383. /// Start frequency band for the all-pass filter decay slope
  384. static const int DECAY_CUTOFF[] = { 10, 32 };
  385. /// Number of all-pass filer bands
  386. static const int NR_ALLPASS_BANDS[] = { 30, 50 };
  387. /// First stereo band using the short one sample delay
  388. static const int SHORT_DELAY_BAND[] = { 42, 62 };
  389. /** Table 8.46 */
  390. static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
  391. {
  392. int b;
  393. if (full)
  394. b = 9;
  395. else {
  396. b = 4;
  397. par_mapped[10] = 0;
  398. }
  399. for (; b >= 0; b--) {
  400. par_mapped[2*b+1] = par_mapped[2*b] = par[b];
  401. }
  402. }
  403. static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
  404. {
  405. par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
  406. par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
  407. par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
  408. par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
  409. par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
  410. par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
  411. par_mapped[ 6] = par[10];
  412. par_mapped[ 7] = par[11];
  413. par_mapped[ 8] = ( par[12] + par[13]) / 2;
  414. par_mapped[ 9] = ( par[14] + par[15]) / 2;
  415. par_mapped[10] = par[16];
  416. if (full) {
  417. par_mapped[11] = par[17];
  418. par_mapped[12] = par[18];
  419. par_mapped[13] = par[19];
  420. par_mapped[14] = ( par[20] + par[21]) / 2;
  421. par_mapped[15] = ( par[22] + par[23]) / 2;
  422. par_mapped[16] = ( par[24] + par[25]) / 2;
  423. par_mapped[17] = ( par[26] + par[27]) / 2;
  424. par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
  425. par_mapped[19] = ( par[32] + par[33]) / 2;
  426. }
  427. }
  428. static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
  429. {
  430. par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
  431. par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
  432. par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
  433. par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
  434. par[ 4] = ( par[ 6] + par[ 7]) * 0.5f;
  435. par[ 5] = ( par[ 8] + par[ 9]) * 0.5f;
  436. par[ 6] = par[10];
  437. par[ 7] = par[11];
  438. par[ 8] = ( par[12] + par[13]) * 0.5f;
  439. par[ 9] = ( par[14] + par[15]) * 0.5f;
  440. par[10] = par[16];
  441. par[11] = par[17];
  442. par[12] = par[18];
  443. par[13] = par[19];
  444. par[14] = ( par[20] + par[21]) * 0.5f;
  445. par[15] = ( par[22] + par[23]) * 0.5f;
  446. par[16] = ( par[24] + par[25]) * 0.5f;
  447. par[17] = ( par[26] + par[27]) * 0.5f;
  448. par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
  449. par[19] = ( par[32] + par[33]) * 0.5f;
  450. }
  451. static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
  452. {
  453. if (full) {
  454. par_mapped[33] = par[9];
  455. par_mapped[32] = par[9];
  456. par_mapped[31] = par[9];
  457. par_mapped[30] = par[9];
  458. par_mapped[29] = par[9];
  459. par_mapped[28] = par[9];
  460. par_mapped[27] = par[8];
  461. par_mapped[26] = par[8];
  462. par_mapped[25] = par[8];
  463. par_mapped[24] = par[8];
  464. par_mapped[23] = par[7];
  465. par_mapped[22] = par[7];
  466. par_mapped[21] = par[7];
  467. par_mapped[20] = par[7];
  468. par_mapped[19] = par[6];
  469. par_mapped[18] = par[6];
  470. par_mapped[17] = par[5];
  471. par_mapped[16] = par[5];
  472. } else {
  473. par_mapped[16] = 0;
  474. }
  475. par_mapped[15] = par[4];
  476. par_mapped[14] = par[4];
  477. par_mapped[13] = par[4];
  478. par_mapped[12] = par[4];
  479. par_mapped[11] = par[3];
  480. par_mapped[10] = par[3];
  481. par_mapped[ 9] = par[2];
  482. par_mapped[ 8] = par[2];
  483. par_mapped[ 7] = par[2];
  484. par_mapped[ 6] = par[2];
  485. par_mapped[ 5] = par[1];
  486. par_mapped[ 4] = par[1];
  487. par_mapped[ 3] = par[1];
  488. par_mapped[ 2] = par[0];
  489. par_mapped[ 1] = par[0];
  490. par_mapped[ 0] = par[0];
  491. }
  492. static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
  493. {
  494. if (full) {
  495. par_mapped[33] = par[19];
  496. par_mapped[32] = par[19];
  497. par_mapped[31] = par[18];
  498. par_mapped[30] = par[18];
  499. par_mapped[29] = par[18];
  500. par_mapped[28] = par[18];
  501. par_mapped[27] = par[17];
  502. par_mapped[26] = par[17];
  503. par_mapped[25] = par[16];
  504. par_mapped[24] = par[16];
  505. par_mapped[23] = par[15];
  506. par_mapped[22] = par[15];
  507. par_mapped[21] = par[14];
  508. par_mapped[20] = par[14];
  509. par_mapped[19] = par[13];
  510. par_mapped[18] = par[12];
  511. par_mapped[17] = par[11];
  512. }
  513. par_mapped[16] = par[10];
  514. par_mapped[15] = par[ 9];
  515. par_mapped[14] = par[ 9];
  516. par_mapped[13] = par[ 8];
  517. par_mapped[12] = par[ 8];
  518. par_mapped[11] = par[ 7];
  519. par_mapped[10] = par[ 6];
  520. par_mapped[ 9] = par[ 5];
  521. par_mapped[ 8] = par[ 5];
  522. par_mapped[ 7] = par[ 4];
  523. par_mapped[ 6] = par[ 4];
  524. par_mapped[ 5] = par[ 3];
  525. par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
  526. par_mapped[ 3] = par[ 2];
  527. par_mapped[ 2] = par[ 1];
  528. par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
  529. par_mapped[ 0] = par[ 0];
  530. }
  531. static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
  532. {
  533. par[33] = par[19];
  534. par[32] = par[19];
  535. par[31] = par[18];
  536. par[30] = par[18];
  537. par[29] = par[18];
  538. par[28] = par[18];
  539. par[27] = par[17];
  540. par[26] = par[17];
  541. par[25] = par[16];
  542. par[24] = par[16];
  543. par[23] = par[15];
  544. par[22] = par[15];
  545. par[21] = par[14];
  546. par[20] = par[14];
  547. par[19] = par[13];
  548. par[18] = par[12];
  549. par[17] = par[11];
  550. par[16] = par[10];
  551. par[15] = par[ 9];
  552. par[14] = par[ 9];
  553. par[13] = par[ 8];
  554. par[12] = par[ 8];
  555. par[11] = par[ 7];
  556. par[10] = par[ 6];
  557. par[ 9] = par[ 5];
  558. par[ 8] = par[ 5];
  559. par[ 7] = par[ 4];
  560. par[ 6] = par[ 4];
  561. par[ 5] = par[ 3];
  562. par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
  563. par[ 3] = par[ 2];
  564. par[ 2] = par[ 1];
  565. par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
  566. par[ 0] = par[ 0];
  567. }
  568. static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
  569. {
  570. LOCAL_ALIGNED_16(float, power, [34], [PS_QMF_TIME_SLOTS]);
  571. LOCAL_ALIGNED_16(float, transient_gain, [34], [PS_QMF_TIME_SLOTS]);
  572. float *peak_decay_nrg = ps->peak_decay_nrg;
  573. float *power_smooth = ps->power_smooth;
  574. float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
  575. float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
  576. float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
  577. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  578. const float peak_decay_factor = 0.76592833836465f;
  579. const float transient_impact = 1.5f;
  580. const float a_smooth = 0.25f; ///< Smoothing coefficient
  581. int i, k, m, n;
  582. int n0 = 0, nL = 32;
  583. memset(power, 0, 34 * sizeof(*power));
  584. if (is34 != ps->is34bands_old) {
  585. memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
  586. memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
  587. memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
  588. memset(ps->delay, 0, sizeof(ps->delay));
  589. memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
  590. }
  591. for (k = 0; k < NR_BANDS[is34]; k++) {
  592. int i = k_to_i[k];
  593. ps->dsp.add_squares(power[i], s[k], nL - n0);
  594. }
  595. //Transient detection
  596. for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
  597. for (n = n0; n < nL; n++) {
  598. float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
  599. float denom;
  600. peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
  601. power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
  602. peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
  603. denom = transient_impact * peak_decay_diff_smooth[i];
  604. transient_gain[i][n] = (denom > power_smooth[i]) ?
  605. power_smooth[i] / denom : 1.0f;
  606. }
  607. }
  608. //Decorrelation and transient reduction
  609. // PS_AP_LINKS - 1
  610. // -----
  611. // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
  612. //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
  613. // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
  614. // m = 0
  615. //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
  616. for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
  617. int b = k_to_i[k];
  618. float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
  619. g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
  620. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  621. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  622. for (m = 0; m < PS_AP_LINKS; m++) {
  623. memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
  624. }
  625. ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k],
  626. phi_fract[is34][k],
  627. (const float (*)[2]) Q_fract_allpass[is34][k],
  628. transient_gain[b], g_decay_slope, nL - n0);
  629. }
  630. for (; k < SHORT_DELAY_BAND[is34]; k++) {
  631. int i = k_to_i[k];
  632. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  633. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  634. //H = delay 14
  635. ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14,
  636. transient_gain[i], nL - n0);
  637. }
  638. for (; k < NR_BANDS[is34]; k++) {
  639. int i = k_to_i[k];
  640. memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  641. memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  642. //H = delay 1
  643. ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1,
  644. transient_gain[i], nL - n0);
  645. }
  646. }
  647. static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  648. int8_t (*par)[PS_MAX_NR_IIDICC],
  649. int num_par, int num_env, int full)
  650. {
  651. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  652. int e;
  653. if (num_par == 20 || num_par == 11) {
  654. for (e = 0; e < num_env; e++) {
  655. map_idx_20_to_34(par_mapped[e], par[e], full);
  656. }
  657. } else if (num_par == 10 || num_par == 5) {
  658. for (e = 0; e < num_env; e++) {
  659. map_idx_10_to_34(par_mapped[e], par[e], full);
  660. }
  661. } else {
  662. *p_par_mapped = par;
  663. }
  664. }
  665. static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  666. int8_t (*par)[PS_MAX_NR_IIDICC],
  667. int num_par, int num_env, int full)
  668. {
  669. int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  670. int e;
  671. if (num_par == 34 || num_par == 17) {
  672. for (e = 0; e < num_env; e++) {
  673. map_idx_34_to_20(par_mapped[e], par[e], full);
  674. }
  675. } else if (num_par == 10 || num_par == 5) {
  676. for (e = 0; e < num_env; e++) {
  677. map_idx_10_to_20(par_mapped[e], par[e], full);
  678. }
  679. } else {
  680. *p_par_mapped = par;
  681. }
  682. }
  683. static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
  684. {
  685. int e, b, k;
  686. float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
  687. float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
  688. float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
  689. float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
  690. int8_t *opd_hist = ps->opd_hist;
  691. int8_t *ipd_hist = ps->ipd_hist;
  692. int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  693. int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  694. int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  695. int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  696. int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
  697. int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
  698. int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
  699. int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
  700. const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  701. TABLE_CONST float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
  702. //Remapping
  703. if (ps->num_env_old) {
  704. memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
  705. memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
  706. memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
  707. memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
  708. memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
  709. memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
  710. memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
  711. memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
  712. }
  713. if (is34) {
  714. remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  715. remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  716. if (ps->enable_ipdopd) {
  717. remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  718. remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  719. }
  720. if (!ps->is34bands_old) {
  721. map_val_20_to_34(H11[0][0]);
  722. map_val_20_to_34(H11[1][0]);
  723. map_val_20_to_34(H12[0][0]);
  724. map_val_20_to_34(H12[1][0]);
  725. map_val_20_to_34(H21[0][0]);
  726. map_val_20_to_34(H21[1][0]);
  727. map_val_20_to_34(H22[0][0]);
  728. map_val_20_to_34(H22[1][0]);
  729. ipdopd_reset(ipd_hist, opd_hist);
  730. }
  731. } else {
  732. remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  733. remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  734. if (ps->enable_ipdopd) {
  735. remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  736. remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  737. }
  738. if (ps->is34bands_old) {
  739. map_val_34_to_20(H11[0][0]);
  740. map_val_34_to_20(H11[1][0]);
  741. map_val_34_to_20(H12[0][0]);
  742. map_val_34_to_20(H12[1][0]);
  743. map_val_34_to_20(H21[0][0]);
  744. map_val_34_to_20(H21[1][0]);
  745. map_val_34_to_20(H22[0][0]);
  746. map_val_34_to_20(H22[1][0]);
  747. ipdopd_reset(ipd_hist, opd_hist);
  748. }
  749. }
  750. //Mixing
  751. for (e = 0; e < ps->num_env; e++) {
  752. for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
  753. float h11, h12, h21, h22;
  754. h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
  755. h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
  756. h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
  757. h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
  758. if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) {
  759. //The spec say says to only run this smoother when enable_ipdopd
  760. //is set but the reference decoder appears to run it constantly
  761. float h11i, h12i, h21i, h22i;
  762. float ipd_adj_re, ipd_adj_im;
  763. int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
  764. int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
  765. float opd_re = pd_re_smooth[opd_idx];
  766. float opd_im = pd_im_smooth[opd_idx];
  767. float ipd_re = pd_re_smooth[ipd_idx];
  768. float ipd_im = pd_im_smooth[ipd_idx];
  769. opd_hist[b] = opd_idx & 0x3F;
  770. ipd_hist[b] = ipd_idx & 0x3F;
  771. ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
  772. ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
  773. h11i = h11 * opd_im;
  774. h11 = h11 * opd_re;
  775. h12i = h12 * ipd_adj_im;
  776. h12 = h12 * ipd_adj_re;
  777. h21i = h21 * opd_im;
  778. h21 = h21 * opd_re;
  779. h22i = h22 * ipd_adj_im;
  780. h22 = h22 * ipd_adj_re;
  781. H11[1][e+1][b] = h11i;
  782. H12[1][e+1][b] = h12i;
  783. H21[1][e+1][b] = h21i;
  784. H22[1][e+1][b] = h22i;
  785. }
  786. H11[0][e+1][b] = h11;
  787. H12[0][e+1][b] = h12;
  788. H21[0][e+1][b] = h21;
  789. H22[0][e+1][b] = h22;
  790. }
  791. for (k = 0; k < NR_BANDS[is34]; k++) {
  792. float h[2][4];
  793. float h_step[2][4];
  794. int start = ps->border_position[e];
  795. int stop = ps->border_position[e+1];
  796. float width = 1.f / (stop - start);
  797. b = k_to_i[k];
  798. h[0][0] = H11[0][e][b];
  799. h[0][1] = H12[0][e][b];
  800. h[0][2] = H21[0][e][b];
  801. h[0][3] = H22[0][e][b];
  802. if (!PS_BASELINE && ps->enable_ipdopd) {
  803. //Is this necessary? ps_04_new seems unchanged
  804. if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
  805. h[1][0] = -H11[1][e][b];
  806. h[1][1] = -H12[1][e][b];
  807. h[1][2] = -H21[1][e][b];
  808. h[1][3] = -H22[1][e][b];
  809. } else {
  810. h[1][0] = H11[1][e][b];
  811. h[1][1] = H12[1][e][b];
  812. h[1][2] = H21[1][e][b];
  813. h[1][3] = H22[1][e][b];
  814. }
  815. }
  816. //Interpolation
  817. h_step[0][0] = (H11[0][e+1][b] - h[0][0]) * width;
  818. h_step[0][1] = (H12[0][e+1][b] - h[0][1]) * width;
  819. h_step[0][2] = (H21[0][e+1][b] - h[0][2]) * width;
  820. h_step[0][3] = (H22[0][e+1][b] - h[0][3]) * width;
  821. if (!PS_BASELINE && ps->enable_ipdopd) {
  822. h_step[1][0] = (H11[1][e+1][b] - h[1][0]) * width;
  823. h_step[1][1] = (H12[1][e+1][b] - h[1][1]) * width;
  824. h_step[1][2] = (H21[1][e+1][b] - h[1][2]) * width;
  825. h_step[1][3] = (H22[1][e+1][b] - h[1][3]) * width;
  826. }
  827. ps->dsp.stereo_interpolate[!PS_BASELINE && ps->enable_ipdopd](
  828. l[k] + start + 1, r[k] + start + 1,
  829. h, h_step, stop - start);
  830. }
  831. }
  832. }
  833. int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
  834. {
  835. LOCAL_ALIGNED_16(float, Lbuf, [91], [32][2]);
  836. LOCAL_ALIGNED_16(float, Rbuf, [91], [32][2]);
  837. const int len = 32;
  838. int is34 = ps->is34bands;
  839. top += NR_BANDS[is34] - 64;
  840. memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
  841. if (top < NR_ALLPASS_BANDS[is34])
  842. memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
  843. hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len);
  844. decorrelation(ps, Rbuf, (const float (*)[32][2]) Lbuf, is34);
  845. stereo_processing(ps, Lbuf, Rbuf, is34);
  846. hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len);
  847. hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len);
  848. return 0;
  849. }
  850. #define PS_INIT_VLC_STATIC(num, size) \
  851. INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \
  852. ps_tmp[num].ps_bits, 1, 1, \
  853. ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
  854. size);
  855. #define PS_VLC_ROW(name) \
  856. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  857. av_cold void ff_ps_init(void) {
  858. // Syntax initialization
  859. static const struct {
  860. const void *ps_codes, *ps_bits;
  861. const unsigned int table_size, elem_size;
  862. } ps_tmp[] = {
  863. PS_VLC_ROW(huff_iid_df1),
  864. PS_VLC_ROW(huff_iid_dt1),
  865. PS_VLC_ROW(huff_iid_df0),
  866. PS_VLC_ROW(huff_iid_dt0),
  867. PS_VLC_ROW(huff_icc_df),
  868. PS_VLC_ROW(huff_icc_dt),
  869. PS_VLC_ROW(huff_ipd_df),
  870. PS_VLC_ROW(huff_ipd_dt),
  871. PS_VLC_ROW(huff_opd_df),
  872. PS_VLC_ROW(huff_opd_dt),
  873. };
  874. PS_INIT_VLC_STATIC(0, 1544);
  875. PS_INIT_VLC_STATIC(1, 832);
  876. PS_INIT_VLC_STATIC(2, 1024);
  877. PS_INIT_VLC_STATIC(3, 1036);
  878. PS_INIT_VLC_STATIC(4, 544);
  879. PS_INIT_VLC_STATIC(5, 544);
  880. PS_INIT_VLC_STATIC(6, 512);
  881. PS_INIT_VLC_STATIC(7, 512);
  882. PS_INIT_VLC_STATIC(8, 512);
  883. PS_INIT_VLC_STATIC(9, 512);
  884. ps_tableinit();
  885. }
  886. av_cold void ff_ps_ctx_init(PSContext *ps)
  887. {
  888. ff_psdsp_init(&ps->dsp);
  889. }