You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1783 lines
63KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #include <assert.h>
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avutil.h"
  39. #include "libavutil/bswap.h"
  40. #include "libavutil/cpu.h"
  41. #include "libavutil/intreadwrite.h"
  42. #include "libavutil/mathematics.h"
  43. #include "libavutil/opt.h"
  44. #include "libavutil/pixdesc.h"
  45. #include "libavutil/ppc/cpu.h"
  46. #include "libavutil/x86/asm.h"
  47. #include "libavutil/x86/cpu.h"
  48. #include "rgb2rgb.h"
  49. #include "swscale.h"
  50. #include "swscale_internal.h"
  51. unsigned swscale_version(void)
  52. {
  53. return LIBSWSCALE_VERSION_INT;
  54. }
  55. const char *swscale_configuration(void)
  56. {
  57. return LIBAV_CONFIGURATION;
  58. }
  59. const char *swscale_license(void)
  60. {
  61. #define LICENSE_PREFIX "libswscale license: "
  62. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  63. }
  64. #define RET 0xC3 // near return opcode for x86
  65. typedef struct FormatEntry {
  66. uint8_t is_supported_in :1;
  67. uint8_t is_supported_out :1;
  68. uint8_t is_supported_endianness :1;
  69. } FormatEntry;
  70. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  71. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  72. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  73. [AV_PIX_FMT_RGB24] = { 1, 1 },
  74. [AV_PIX_FMT_BGR24] = { 1, 1 },
  75. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  76. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  77. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  78. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  79. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  80. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  81. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  82. [AV_PIX_FMT_PAL8] = { 1, 0 },
  83. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  84. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  85. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  86. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  87. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  88. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  89. [AV_PIX_FMT_BGR8] = { 1, 1 },
  90. [AV_PIX_FMT_BGR4] = { 0, 1 },
  91. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  92. [AV_PIX_FMT_RGB8] = { 1, 1 },
  93. [AV_PIX_FMT_RGB4] = { 0, 1 },
  94. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  95. [AV_PIX_FMT_NV12] = { 1, 1 },
  96. [AV_PIX_FMT_NV21] = { 1, 1 },
  97. [AV_PIX_FMT_ARGB] = { 1, 1 },
  98. [AV_PIX_FMT_RGBA] = { 1, 1 },
  99. [AV_PIX_FMT_ABGR] = { 1, 1 },
  100. [AV_PIX_FMT_BGRA] = { 1, 1 },
  101. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  102. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  103. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  104. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  105. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  106. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  107. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  108. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  109. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  110. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  111. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  115. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  116. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  117. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  118. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  119. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  120. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  126. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  127. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  128. [AV_PIX_FMT_RGBA64BE] = { 0, 0, 1 },
  129. [AV_PIX_FMT_RGBA64LE] = { 0, 0, 1 },
  130. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  131. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  132. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  133. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  134. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  135. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  136. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  137. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  138. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  139. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  140. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  141. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  142. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  143. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  144. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  145. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  146. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  147. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  148. [AV_PIX_FMT_YA8] = { 1, 0 },
  149. [AV_PIX_FMT_YA16BE] = { 1, 0 },
  150. [AV_PIX_FMT_YA16LE] = { 1, 0 },
  151. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  152. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  153. [AV_PIX_FMT_BGRA64BE] = { 0, 0, 1 },
  154. [AV_PIX_FMT_BGRA64LE] = { 0, 0, 1 },
  155. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  157. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  158. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  159. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  160. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  161. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  167. [AV_PIX_FMT_GBRP] = { 1, 1 },
  168. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  169. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  170. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  171. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  172. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  173. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  174. [AV_PIX_FMT_XYZ12BE] = { 0, 0, 1 },
  175. [AV_PIX_FMT_XYZ12LE] = { 0, 0, 1 },
  176. };
  177. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  178. {
  179. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  180. format_entries[pix_fmt].is_supported_in : 0;
  181. }
  182. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  183. {
  184. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  185. format_entries[pix_fmt].is_supported_out : 0;
  186. }
  187. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  188. {
  189. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  190. format_entries[pix_fmt].is_supported_endianness : 0;
  191. }
  192. const char *sws_format_name(enum AVPixelFormat format)
  193. {
  194. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  195. if (desc)
  196. return desc->name;
  197. else
  198. return "Unknown format";
  199. }
  200. static double getSplineCoeff(double a, double b, double c, double d,
  201. double dist)
  202. {
  203. if (dist <= 1.0)
  204. return ((d * dist + c) * dist + b) * dist + a;
  205. else
  206. return getSplineCoeff(0.0,
  207. b + 2.0 * c + 3.0 * d,
  208. c + 3.0 * d,
  209. -b - 3.0 * c - 6.0 * d,
  210. dist - 1.0);
  211. }
  212. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  213. int *outFilterSize, int xInc, int srcW,
  214. int dstW, int filterAlign, int one,
  215. int flags, int cpu_flags,
  216. SwsVector *srcFilter, SwsVector *dstFilter,
  217. double param[2], int is_horizontal)
  218. {
  219. int i;
  220. int filterSize;
  221. int filter2Size;
  222. int minFilterSize;
  223. int64_t *filter = NULL;
  224. int64_t *filter2 = NULL;
  225. const int64_t fone = 1LL << 54;
  226. int ret = -1;
  227. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  228. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  229. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  230. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  231. int i;
  232. filterSize = 1;
  233. FF_ALLOCZ_OR_GOTO(NULL, filter,
  234. dstW * sizeof(*filter) * filterSize, fail);
  235. for (i = 0; i < dstW; i++) {
  236. filter[i * filterSize] = fone;
  237. (*filterPos)[i] = i;
  238. }
  239. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  240. int i;
  241. int xDstInSrc;
  242. filterSize = 1;
  243. FF_ALLOC_OR_GOTO(NULL, filter,
  244. dstW * sizeof(*filter) * filterSize, fail);
  245. xDstInSrc = xInc / 2 - 0x8000;
  246. for (i = 0; i < dstW; i++) {
  247. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  248. (*filterPos)[i] = xx;
  249. filter[i] = fone;
  250. xDstInSrc += xInc;
  251. }
  252. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  253. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  254. int i;
  255. int xDstInSrc;
  256. filterSize = 2;
  257. FF_ALLOC_OR_GOTO(NULL, filter,
  258. dstW * sizeof(*filter) * filterSize, fail);
  259. xDstInSrc = xInc / 2 - 0x8000;
  260. for (i = 0; i < dstW; i++) {
  261. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  262. int j;
  263. (*filterPos)[i] = xx;
  264. // bilinear upscale / linear interpolate / area averaging
  265. for (j = 0; j < filterSize; j++) {
  266. int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
  267. (fone >> 16);
  268. if (coeff < 0)
  269. coeff = 0;
  270. filter[i * filterSize + j] = coeff;
  271. xx++;
  272. }
  273. xDstInSrc += xInc;
  274. }
  275. } else {
  276. int64_t xDstInSrc;
  277. int sizeFactor;
  278. if (flags & SWS_BICUBIC)
  279. sizeFactor = 4;
  280. else if (flags & SWS_X)
  281. sizeFactor = 8;
  282. else if (flags & SWS_AREA)
  283. sizeFactor = 1; // downscale only, for upscale it is bilinear
  284. else if (flags & SWS_GAUSS)
  285. sizeFactor = 8; // infinite ;)
  286. else if (flags & SWS_LANCZOS)
  287. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  288. else if (flags & SWS_SINC)
  289. sizeFactor = 20; // infinite ;)
  290. else if (flags & SWS_SPLINE)
  291. sizeFactor = 20; // infinite ;)
  292. else if (flags & SWS_BILINEAR)
  293. sizeFactor = 2;
  294. else {
  295. sizeFactor = 0; // GCC warning killer
  296. assert(0);
  297. }
  298. if (xInc <= 1 << 16)
  299. filterSize = 1 + sizeFactor; // upscale
  300. else
  301. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  302. filterSize = FFMIN(filterSize, srcW - 2);
  303. filterSize = FFMAX(filterSize, 1);
  304. FF_ALLOC_OR_GOTO(NULL, filter,
  305. dstW * sizeof(*filter) * filterSize, fail);
  306. xDstInSrc = xInc - 0x10000;
  307. for (i = 0; i < dstW; i++) {
  308. int xx = (xDstInSrc - ((int64_t)(filterSize - 2) << 16)) / (1 << 17);
  309. int j;
  310. (*filterPos)[i] = xx;
  311. for (j = 0; j < filterSize; j++) {
  312. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  313. double floatd;
  314. int64_t coeff;
  315. if (xInc > 1 << 16)
  316. d = d * dstW / srcW;
  317. floatd = d * (1.0 / (1 << 30));
  318. if (flags & SWS_BICUBIC) {
  319. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  320. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  321. if (d >= 1LL << 31) {
  322. coeff = 0.0;
  323. } else {
  324. int64_t dd = (d * d) >> 30;
  325. int64_t ddd = (dd * d) >> 30;
  326. if (d < 1LL << 30)
  327. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  328. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  329. (6 * (1 << 24) - 2 * B) * (1 << 30);
  330. else
  331. coeff = (-B - 6 * C) * ddd +
  332. (6 * B + 30 * C) * dd +
  333. (-12 * B - 48 * C) * d +
  334. (8 * B + 24 * C) * (1 << 30);
  335. }
  336. coeff *= fone >> (30 + 24);
  337. }
  338. #if 0
  339. else if (flags & SWS_X) {
  340. double p = param ? param * 0.01 : 0.3;
  341. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  342. coeff *= pow(2.0, -p * d * d);
  343. }
  344. #endif
  345. else if (flags & SWS_X) {
  346. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  347. double c;
  348. if (floatd < 1.0)
  349. c = cos(floatd * M_PI);
  350. else
  351. c = -1.0;
  352. if (c < 0.0)
  353. c = -pow(-c, A);
  354. else
  355. c = pow(c, A);
  356. coeff = (c * 0.5 + 0.5) * fone;
  357. } else if (flags & SWS_AREA) {
  358. int64_t d2 = d - (1 << 29);
  359. if (d2 * xInc < -(1LL << (29 + 16)))
  360. coeff = 1.0 * (1LL << (30 + 16));
  361. else if (d2 * xInc < (1LL << (29 + 16)))
  362. coeff = -d2 * xInc + (1LL << (29 + 16));
  363. else
  364. coeff = 0.0;
  365. coeff *= fone >> (30 + 16);
  366. } else if (flags & SWS_GAUSS) {
  367. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  368. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  369. } else if (flags & SWS_SINC) {
  370. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  371. } else if (flags & SWS_LANCZOS) {
  372. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  373. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  374. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  375. if (floatd > p)
  376. coeff = 0;
  377. } else if (flags & SWS_BILINEAR) {
  378. coeff = (1 << 30) - d;
  379. if (coeff < 0)
  380. coeff = 0;
  381. coeff *= fone >> 30;
  382. } else if (flags & SWS_SPLINE) {
  383. double p = -2.196152422706632;
  384. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  385. } else {
  386. coeff = 0.0; // GCC warning killer
  387. assert(0);
  388. }
  389. filter[i * filterSize + j] = coeff;
  390. xx++;
  391. }
  392. xDstInSrc += 2 * xInc;
  393. }
  394. }
  395. /* apply src & dst Filter to filter -> filter2
  396. * av_free(filter);
  397. */
  398. assert(filterSize > 0);
  399. filter2Size = filterSize;
  400. if (srcFilter)
  401. filter2Size += srcFilter->length - 1;
  402. if (dstFilter)
  403. filter2Size += dstFilter->length - 1;
  404. assert(filter2Size > 0);
  405. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  406. for (i = 0; i < dstW; i++) {
  407. int j, k;
  408. if (srcFilter) {
  409. for (k = 0; k < srcFilter->length; k++) {
  410. for (j = 0; j < filterSize; j++)
  411. filter2[i * filter2Size + k + j] +=
  412. srcFilter->coeff[k] * filter[i * filterSize + j];
  413. }
  414. } else {
  415. for (j = 0; j < filterSize; j++)
  416. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  417. }
  418. // FIXME dstFilter
  419. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  420. }
  421. av_freep(&filter);
  422. /* try to reduce the filter-size (step1 find size and shift left) */
  423. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  424. minFilterSize = 0;
  425. for (i = dstW - 1; i >= 0; i--) {
  426. int min = filter2Size;
  427. int j;
  428. int64_t cutOff = 0.0;
  429. /* get rid of near zero elements on the left by shifting left */
  430. for (j = 0; j < filter2Size; j++) {
  431. int k;
  432. cutOff += FFABS(filter2[i * filter2Size]);
  433. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  434. break;
  435. /* preserve monotonicity because the core can't handle the
  436. * filter otherwise */
  437. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  438. break;
  439. // move filter coefficients left
  440. for (k = 1; k < filter2Size; k++)
  441. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  442. filter2[i * filter2Size + k - 1] = 0;
  443. (*filterPos)[i]++;
  444. }
  445. cutOff = 0;
  446. /* count near zeros on the right */
  447. for (j = filter2Size - 1; j > 0; j--) {
  448. cutOff += FFABS(filter2[i * filter2Size + j]);
  449. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  450. break;
  451. min--;
  452. }
  453. if (min > minFilterSize)
  454. minFilterSize = min;
  455. }
  456. if (PPC_ALTIVEC(cpu_flags)) {
  457. // we can handle the special case 4, so we don't want to go the full 8
  458. if (minFilterSize < 5)
  459. filterAlign = 4;
  460. /* We really don't want to waste our time doing useless computation, so
  461. * fall back on the scalar C code for very small filters.
  462. * Vectorizing is worth it only if you have a decent-sized vector. */
  463. if (minFilterSize < 3)
  464. filterAlign = 1;
  465. }
  466. if (INLINE_MMX(cpu_flags)) {
  467. // special case for unscaled vertical filtering
  468. if (minFilterSize == 1 && filterAlign == 2)
  469. filterAlign = 1;
  470. }
  471. assert(minFilterSize > 0);
  472. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  473. assert(filterSize > 0);
  474. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  475. if (filterSize >= MAX_FILTER_SIZE * 16 /
  476. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  477. goto fail;
  478. *outFilterSize = filterSize;
  479. if (flags & SWS_PRINT_INFO)
  480. av_log(NULL, AV_LOG_VERBOSE,
  481. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  482. filter2Size, filterSize);
  483. /* try to reduce the filter-size (step2 reduce it) */
  484. for (i = 0; i < dstW; i++) {
  485. int j;
  486. for (j = 0; j < filterSize; j++) {
  487. if (j >= filter2Size)
  488. filter[i * filterSize + j] = 0;
  489. else
  490. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  491. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  492. filter[i * filterSize + j] = 0;
  493. }
  494. }
  495. // FIXME try to align filterPos if possible
  496. // fix borders
  497. if (is_horizontal) {
  498. for (i = 0; i < dstW; i++) {
  499. int j;
  500. if ((*filterPos)[i] < 0) {
  501. // move filter coefficients left to compensate for filterPos
  502. for (j = 1; j < filterSize; j++) {
  503. int left = FFMAX(j + (*filterPos)[i], 0);
  504. filter[i * filterSize + left] += filter[i * filterSize + j];
  505. filter[i * filterSize + j] = 0;
  506. }
  507. (*filterPos)[i] = 0;
  508. }
  509. if ((*filterPos)[i] + filterSize > srcW) {
  510. int shift = (*filterPos)[i] + filterSize - srcW;
  511. // move filter coefficients right to compensate for filterPos
  512. for (j = filterSize - 2; j >= 0; j--) {
  513. int right = FFMIN(j + shift, filterSize - 1);
  514. filter[i * filterSize + right] += filter[i * filterSize + j];
  515. filter[i * filterSize + j] = 0;
  516. }
  517. (*filterPos)[i] = srcW - filterSize;
  518. }
  519. }
  520. }
  521. // Note the +1 is for the MMX scaler which reads over the end
  522. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  523. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  524. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  525. /* normalize & store in outFilter */
  526. for (i = 0; i < dstW; i++) {
  527. int j;
  528. int64_t error = 0;
  529. int64_t sum = 0;
  530. for (j = 0; j < filterSize; j++) {
  531. sum += filter[i * filterSize + j];
  532. }
  533. sum = (sum + one / 2) / one;
  534. for (j = 0; j < *outFilterSize; j++) {
  535. int64_t v = filter[i * filterSize + j] + error;
  536. int intV = ROUNDED_DIV(v, sum);
  537. (*outFilter)[i * (*outFilterSize) + j] = intV;
  538. error = v - intV * sum;
  539. }
  540. }
  541. (*filterPos)[dstW + 0] =
  542. (*filterPos)[dstW + 1] =
  543. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  544. * read over the end */
  545. for (i = 0; i < *outFilterSize; i++) {
  546. int k = (dstW - 1) * (*outFilterSize) + i;
  547. (*outFilter)[k + 1 * (*outFilterSize)] =
  548. (*outFilter)[k + 2 * (*outFilterSize)] =
  549. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  550. }
  551. ret = 0;
  552. fail:
  553. av_free(filter);
  554. av_free(filter2);
  555. return ret;
  556. }
  557. #if HAVE_MMXEXT_INLINE
  558. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  559. int16_t *filter, int32_t *filterPos,
  560. int numSplits)
  561. {
  562. uint8_t *fragmentA;
  563. x86_reg imm8OfPShufW1A;
  564. x86_reg imm8OfPShufW2A;
  565. x86_reg fragmentLengthA;
  566. uint8_t *fragmentB;
  567. x86_reg imm8OfPShufW1B;
  568. x86_reg imm8OfPShufW2B;
  569. x86_reg fragmentLengthB;
  570. int fragmentPos;
  571. int xpos, i;
  572. // create an optimized horizontal scaling routine
  573. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  574. * pshufw instructions. For every four output pixels, if four input pixels
  575. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  576. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  577. */
  578. // code fragment
  579. __asm__ volatile (
  580. "jmp 9f \n\t"
  581. // Begin
  582. "0: \n\t"
  583. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  584. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  585. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  586. "punpcklbw %%mm7, %%mm1 \n\t"
  587. "punpcklbw %%mm7, %%mm0 \n\t"
  588. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  589. "1: \n\t"
  590. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  591. "2: \n\t"
  592. "psubw %%mm1, %%mm0 \n\t"
  593. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  594. "pmullw %%mm3, %%mm0 \n\t"
  595. "psllw $7, %%mm1 \n\t"
  596. "paddw %%mm1, %%mm0 \n\t"
  597. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  598. "add $8, %%"REG_a" \n\t"
  599. // End
  600. "9: \n\t"
  601. // "int $3 \n\t"
  602. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  603. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  604. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  605. "dec %1 \n\t"
  606. "dec %2 \n\t"
  607. "sub %0, %1 \n\t"
  608. "sub %0, %2 \n\t"
  609. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  610. "sub %0, %3 \n\t"
  611. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  612. "=r" (fragmentLengthA)
  613. );
  614. __asm__ volatile (
  615. "jmp 9f \n\t"
  616. // Begin
  617. "0: \n\t"
  618. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  619. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  620. "punpcklbw %%mm7, %%mm0 \n\t"
  621. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  622. "1: \n\t"
  623. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  624. "2: \n\t"
  625. "psubw %%mm1, %%mm0 \n\t"
  626. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  627. "pmullw %%mm3, %%mm0 \n\t"
  628. "psllw $7, %%mm1 \n\t"
  629. "paddw %%mm1, %%mm0 \n\t"
  630. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  631. "add $8, %%"REG_a" \n\t"
  632. // End
  633. "9: \n\t"
  634. // "int $3 \n\t"
  635. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  636. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  637. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  638. "dec %1 \n\t"
  639. "dec %2 \n\t"
  640. "sub %0, %1 \n\t"
  641. "sub %0, %2 \n\t"
  642. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  643. "sub %0, %3 \n\t"
  644. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  645. "=r" (fragmentLengthB)
  646. );
  647. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  648. fragmentPos = 0;
  649. for (i = 0; i < dstW / numSplits; i++) {
  650. int xx = xpos >> 16;
  651. if ((i & 3) == 0) {
  652. int a = 0;
  653. int b = ((xpos + xInc) >> 16) - xx;
  654. int c = ((xpos + xInc * 2) >> 16) - xx;
  655. int d = ((xpos + xInc * 3) >> 16) - xx;
  656. int inc = (d + 1 < 4);
  657. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  658. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  659. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  660. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  661. int maxShift = 3 - (d + inc);
  662. int shift = 0;
  663. if (filterCode) {
  664. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  665. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  666. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  667. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  668. filterPos[i / 2] = xx;
  669. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  670. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  671. ((b + inc) << 2) |
  672. ((c + inc) << 4) |
  673. ((d + inc) << 6);
  674. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  675. (c << 4) |
  676. (d << 6);
  677. if (i + 4 - inc >= dstW)
  678. shift = maxShift; // avoid overread
  679. else if ((filterPos[i / 2] & 3) <= maxShift)
  680. shift = filterPos[i / 2] & 3; // align
  681. if (shift && i >= shift) {
  682. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  683. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  684. filterPos[i / 2] -= shift;
  685. }
  686. }
  687. fragmentPos += fragmentLength;
  688. if (filterCode)
  689. filterCode[fragmentPos] = RET;
  690. }
  691. xpos += xInc;
  692. }
  693. if (filterCode)
  694. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  695. return fragmentPos + 1;
  696. }
  697. #endif /* HAVE_MMXEXT_INLINE */
  698. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  699. {
  700. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  701. *h = desc->log2_chroma_w;
  702. *v = desc->log2_chroma_h;
  703. }
  704. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  705. int srcRange, const int table[4], int dstRange,
  706. int brightness, int contrast, int saturation)
  707. {
  708. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  709. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  710. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  711. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  712. c->brightness = brightness;
  713. c->contrast = contrast;
  714. c->saturation = saturation;
  715. c->srcRange = srcRange;
  716. c->dstRange = dstRange;
  717. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  718. return -1;
  719. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  720. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  721. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  722. contrast, saturation);
  723. // FIXME factorize
  724. if (ARCH_PPC)
  725. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  726. contrast, saturation);
  727. return 0;
  728. }
  729. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  730. int *srcRange, int **table, int *dstRange,
  731. int *brightness, int *contrast, int *saturation)
  732. {
  733. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  734. return -1;
  735. *inv_table = c->srcColorspaceTable;
  736. *table = c->dstColorspaceTable;
  737. *srcRange = c->srcRange;
  738. *dstRange = c->dstRange;
  739. *brightness = c->brightness;
  740. *contrast = c->contrast;
  741. *saturation = c->saturation;
  742. return 0;
  743. }
  744. static int handle_jpeg(enum AVPixelFormat *format)
  745. {
  746. switch (*format) {
  747. case AV_PIX_FMT_YUVJ420P:
  748. *format = AV_PIX_FMT_YUV420P;
  749. return 1;
  750. case AV_PIX_FMT_YUVJ422P:
  751. *format = AV_PIX_FMT_YUV422P;
  752. return 1;
  753. case AV_PIX_FMT_YUVJ444P:
  754. *format = AV_PIX_FMT_YUV444P;
  755. return 1;
  756. case AV_PIX_FMT_YUVJ440P:
  757. *format = AV_PIX_FMT_YUV440P;
  758. return 1;
  759. default:
  760. return 0;
  761. }
  762. }
  763. SwsContext *sws_alloc_context(void)
  764. {
  765. SwsContext *c = av_mallocz(sizeof(SwsContext));
  766. if (c) {
  767. c->av_class = &sws_context_class;
  768. av_opt_set_defaults(c);
  769. }
  770. return c;
  771. }
  772. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  773. SwsFilter *dstFilter)
  774. {
  775. int i;
  776. int usesVFilter, usesHFilter;
  777. int unscaled;
  778. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  779. int srcW = c->srcW;
  780. int srcH = c->srcH;
  781. int dstW = c->dstW;
  782. int dstH = c->dstH;
  783. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
  784. int dst_stride_px = dst_stride >> 1;
  785. int flags, cpu_flags;
  786. enum AVPixelFormat srcFormat = c->srcFormat;
  787. enum AVPixelFormat dstFormat = c->dstFormat;
  788. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  789. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  790. cpu_flags = av_get_cpu_flags();
  791. flags = c->flags;
  792. emms_c();
  793. if (!rgb15to16)
  794. sws_rgb2rgb_init();
  795. unscaled = (srcW == dstW && srcH == dstH);
  796. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  797. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  798. if (!sws_isSupportedInput(srcFormat)) {
  799. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  800. sws_format_name(srcFormat));
  801. return AVERROR(EINVAL);
  802. }
  803. if (!sws_isSupportedOutput(dstFormat)) {
  804. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  805. sws_format_name(dstFormat));
  806. return AVERROR(EINVAL);
  807. }
  808. }
  809. i = flags & (SWS_POINT |
  810. SWS_AREA |
  811. SWS_BILINEAR |
  812. SWS_FAST_BILINEAR |
  813. SWS_BICUBIC |
  814. SWS_X |
  815. SWS_GAUSS |
  816. SWS_LANCZOS |
  817. SWS_SINC |
  818. SWS_SPLINE |
  819. SWS_BICUBLIN);
  820. /* provide a default scaler if not set by caller */
  821. if (!i) {
  822. if (dstW < srcW && dstH < srcH)
  823. flags |= SWS_GAUSS;
  824. else if (dstW > srcW && dstH > srcH)
  825. flags |= SWS_SINC;
  826. else
  827. flags |= SWS_LANCZOS;
  828. c->flags = flags;
  829. } else if (i & (i - 1)) {
  830. av_log(c, AV_LOG_ERROR,
  831. "Exactly one scaler algorithm must be chosen\n");
  832. return AVERROR(EINVAL);
  833. }
  834. /* sanity check */
  835. if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
  836. /* FIXME check if these are enough and try to lower them after
  837. * fixing the relevant parts of the code */
  838. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  839. srcW, srcH, dstW, dstH);
  840. return AVERROR(EINVAL);
  841. }
  842. if (!dstFilter)
  843. dstFilter = &dummyFilter;
  844. if (!srcFilter)
  845. srcFilter = &dummyFilter;
  846. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  847. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  848. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  849. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  850. c->vRounder = 4 * 0x0001000100010001ULL;
  851. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  852. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  853. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  854. (dstFilter->chrV && dstFilter->chrV->length > 1);
  855. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  856. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  857. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  858. (dstFilter->chrH && dstFilter->chrH->length > 1);
  859. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  860. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  861. if (isPlanarRGB(dstFormat)) {
  862. if (!(flags & SWS_FULL_CHR_H_INT)) {
  863. av_log(c, AV_LOG_DEBUG,
  864. "%s output is not supported with half chroma resolution, switching to full\n",
  865. av_get_pix_fmt_name(dstFormat));
  866. flags |= SWS_FULL_CHR_H_INT;
  867. c->flags = flags;
  868. }
  869. }
  870. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  871. * chroma interpolation */
  872. if (flags & SWS_FULL_CHR_H_INT &&
  873. isAnyRGB(dstFormat) &&
  874. !isPlanarRGB(dstFormat) &&
  875. dstFormat != AV_PIX_FMT_RGBA &&
  876. dstFormat != AV_PIX_FMT_ARGB &&
  877. dstFormat != AV_PIX_FMT_BGRA &&
  878. dstFormat != AV_PIX_FMT_ABGR &&
  879. dstFormat != AV_PIX_FMT_RGB24 &&
  880. dstFormat != AV_PIX_FMT_BGR24) {
  881. av_log(c, AV_LOG_ERROR,
  882. "full chroma interpolation for destination format '%s' not yet implemented\n",
  883. sws_format_name(dstFormat));
  884. flags &= ~SWS_FULL_CHR_H_INT;
  885. c->flags = flags;
  886. }
  887. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  888. c->chrDstHSubSample = 1;
  889. // drop some chroma lines if the user wants it
  890. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  891. SWS_SRC_V_CHR_DROP_SHIFT;
  892. c->chrSrcVSubSample += c->vChrDrop;
  893. /* drop every other pixel for chroma calculation unless user
  894. * wants full chroma */
  895. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  896. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  897. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  898. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  899. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  900. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  901. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  902. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  903. (flags & SWS_FAST_BILINEAR)))
  904. c->chrSrcHSubSample = 1;
  905. // Note the -((-x)>>y) is so that we always round toward +inf.
  906. c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
  907. c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
  908. c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
  909. c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
  910. /* unscaled special cases */
  911. if (unscaled && !usesHFilter && !usesVFilter &&
  912. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  913. ff_get_unscaled_swscale(c);
  914. if (c->swscale) {
  915. if (flags & SWS_PRINT_INFO)
  916. av_log(c, AV_LOG_INFO,
  917. "using unscaled %s -> %s special converter\n",
  918. sws_format_name(srcFormat), sws_format_name(dstFormat));
  919. return 0;
  920. }
  921. }
  922. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  923. if (c->srcBpc < 8)
  924. c->srcBpc = 8;
  925. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  926. if (c->dstBpc < 8)
  927. c->dstBpc = 8;
  928. if (c->dstBpc == 16)
  929. dst_stride <<= 1;
  930. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
  931. (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
  932. fail);
  933. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 10) {
  934. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  935. (srcW & 15) == 0) ? 1 : 0;
  936. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  937. && (flags & SWS_FAST_BILINEAR)) {
  938. if (flags & SWS_PRINT_INFO)
  939. av_log(c, AV_LOG_INFO,
  940. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  941. }
  942. if (usesHFilter)
  943. c->canMMXEXTBeUsed = 0;
  944. } else
  945. c->canMMXEXTBeUsed = 0;
  946. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  947. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  948. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  949. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  950. * correct scaling.
  951. * n-2 is the last chrominance sample available.
  952. * This is not perfect, but no one should notice the difference, the more
  953. * correct variant would be like the vertical one, but that would require
  954. * some special code for the first and last pixel */
  955. if (flags & SWS_FAST_BILINEAR) {
  956. if (c->canMMXEXTBeUsed) {
  957. c->lumXInc += 20;
  958. c->chrXInc += 20;
  959. }
  960. // we don't use the x86 asm scaler if MMX is available
  961. else if (INLINE_MMX(cpu_flags)) {
  962. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  963. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  964. }
  965. }
  966. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  967. /* precalculate horizontal scaler filter coefficients */
  968. {
  969. #if HAVE_MMXEXT_INLINE
  970. // can't downscale !!!
  971. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  972. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  973. NULL, NULL, 8);
  974. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  975. NULL, NULL, NULL, 4);
  976. #if USE_MMAP
  977. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  978. PROT_READ | PROT_WRITE,
  979. MAP_PRIVATE | MAP_ANONYMOUS,
  980. -1, 0);
  981. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  982. PROT_READ | PROT_WRITE,
  983. MAP_PRIVATE | MAP_ANONYMOUS,
  984. -1, 0);
  985. #elif HAVE_VIRTUALALLOC
  986. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  987. c->lumMmxextFilterCodeSize,
  988. MEM_COMMIT,
  989. PAGE_EXECUTE_READWRITE);
  990. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  991. c->chrMmxextFilterCodeSize,
  992. MEM_COMMIT,
  993. PAGE_EXECUTE_READWRITE);
  994. #else
  995. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  996. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  997. #endif
  998. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  999. return AVERROR(ENOMEM);
  1000. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1001. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1002. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1003. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1004. init_hscaler_mmxext(dstW, c->lumXInc, c->lumMmxextFilterCode,
  1005. c->hLumFilter, c->hLumFilterPos, 8);
  1006. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1007. c->hChrFilter, c->hChrFilterPos, 4);
  1008. #if USE_MMAP
  1009. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1010. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1011. #endif
  1012. } else
  1013. #endif /* HAVE_MMXEXT_INLINE */
  1014. {
  1015. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1016. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1017. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1018. &c->hLumFilterSize, c->lumXInc,
  1019. srcW, dstW, filterAlign, 1 << 14,
  1020. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1021. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1022. c->param, 1) < 0)
  1023. goto fail;
  1024. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1025. &c->hChrFilterSize, c->chrXInc,
  1026. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1027. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1028. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1029. c->param, 1) < 0)
  1030. goto fail;
  1031. }
  1032. } // initialize horizontal stuff
  1033. /* precalculate vertical scaler filter coefficients */
  1034. {
  1035. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1036. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1037. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1038. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1039. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1040. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1041. c->param, 0) < 0)
  1042. goto fail;
  1043. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1044. c->chrYInc, c->chrSrcH, c->chrDstH,
  1045. filterAlign, (1 << 12),
  1046. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1047. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1048. c->param, 0) < 0)
  1049. goto fail;
  1050. #if HAVE_ALTIVEC
  1051. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1052. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1053. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1054. int j;
  1055. short *p = (short *)&c->vYCoeffsBank[i];
  1056. for (j = 0; j < 8; j++)
  1057. p[j] = c->vLumFilter[i];
  1058. }
  1059. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1060. int j;
  1061. short *p = (short *)&c->vCCoeffsBank[i];
  1062. for (j = 0; j < 8; j++)
  1063. p[j] = c->vChrFilter[i];
  1064. }
  1065. #endif
  1066. }
  1067. // calculate buffer sizes so that they won't run out while handling these damn slices
  1068. c->vLumBufSize = c->vLumFilterSize;
  1069. c->vChrBufSize = c->vChrFilterSize;
  1070. for (i = 0; i < dstH; i++) {
  1071. int chrI = (int64_t)i * c->chrDstH / dstH;
  1072. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1073. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1074. << c->chrSrcVSubSample));
  1075. nextSlice >>= c->chrSrcVSubSample;
  1076. nextSlice <<= c->chrSrcVSubSample;
  1077. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1078. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1079. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1080. (nextSlice >> c->chrSrcVSubSample))
  1081. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1082. c->vChrFilterPos[chrI];
  1083. }
  1084. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1085. * need to allocate several megabytes to handle all possible cases) */
  1086. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1087. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1088. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1089. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1090. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1091. /* Note we need at least one pixel more at the end because of the MMX code
  1092. * (just in case someone wants to replace the 4000/8000). */
  1093. /* align at 16 bytes for AltiVec */
  1094. for (i = 0; i < c->vLumBufSize; i++) {
  1095. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1096. dst_stride + 16, fail);
  1097. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1098. }
  1099. // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
  1100. c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
  1101. c->uv_off_byte = dst_stride + 16;
  1102. for (i = 0; i < c->vChrBufSize; i++) {
  1103. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1104. dst_stride * 2 + 32, fail);
  1105. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1106. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1107. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1108. }
  1109. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1110. for (i = 0; i < c->vLumBufSize; i++) {
  1111. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1112. dst_stride + 16, fail);
  1113. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1114. }
  1115. // try to avoid drawing green stuff between the right end and the stride end
  1116. for (i = 0; i < c->vChrBufSize; i++)
  1117. memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
  1118. assert(c->chrDstH <= dstH);
  1119. if (flags & SWS_PRINT_INFO) {
  1120. if (flags & SWS_FAST_BILINEAR)
  1121. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1122. else if (flags & SWS_BILINEAR)
  1123. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1124. else if (flags & SWS_BICUBIC)
  1125. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1126. else if (flags & SWS_X)
  1127. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1128. else if (flags & SWS_POINT)
  1129. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1130. else if (flags & SWS_AREA)
  1131. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1132. else if (flags & SWS_BICUBLIN)
  1133. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1134. else if (flags & SWS_GAUSS)
  1135. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1136. else if (flags & SWS_SINC)
  1137. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1138. else if (flags & SWS_LANCZOS)
  1139. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1140. else if (flags & SWS_SPLINE)
  1141. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1142. else
  1143. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1144. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1145. sws_format_name(srcFormat),
  1146. #ifdef DITHER1XBPP
  1147. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1148. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1149. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1150. "dithered " : "",
  1151. #else
  1152. "",
  1153. #endif
  1154. sws_format_name(dstFormat));
  1155. if (INLINE_MMXEXT(cpu_flags))
  1156. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1157. else if (INLINE_AMD3DNOW(cpu_flags))
  1158. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1159. else if (INLINE_MMX(cpu_flags))
  1160. av_log(c, AV_LOG_INFO, "using MMX\n");
  1161. else if (PPC_ALTIVEC(cpu_flags))
  1162. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1163. else
  1164. av_log(c, AV_LOG_INFO, "using C\n");
  1165. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1166. av_log(c, AV_LOG_DEBUG,
  1167. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1168. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1169. av_log(c, AV_LOG_DEBUG,
  1170. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1171. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1172. c->chrXInc, c->chrYInc);
  1173. }
  1174. c->swscale = ff_getSwsFunc(c);
  1175. return 0;
  1176. fail: // FIXME replace things by appropriate error codes
  1177. return -1;
  1178. }
  1179. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1180. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1181. int flags, SwsFilter *srcFilter,
  1182. SwsFilter *dstFilter, const double *param)
  1183. {
  1184. SwsContext *c;
  1185. if (!(c = sws_alloc_context()))
  1186. return NULL;
  1187. c->flags = flags;
  1188. c->srcW = srcW;
  1189. c->srcH = srcH;
  1190. c->dstW = dstW;
  1191. c->dstH = dstH;
  1192. c->srcRange = handle_jpeg(&srcFormat);
  1193. c->dstRange = handle_jpeg(&dstFormat);
  1194. c->srcFormat = srcFormat;
  1195. c->dstFormat = dstFormat;
  1196. if (param) {
  1197. c->param[0] = param[0];
  1198. c->param[1] = param[1];
  1199. }
  1200. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1201. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1202. c->dstRange, 0, 1 << 16, 1 << 16);
  1203. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1204. sws_freeContext(c);
  1205. return NULL;
  1206. }
  1207. return c;
  1208. }
  1209. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1210. float lumaSharpen, float chromaSharpen,
  1211. float chromaHShift, float chromaVShift,
  1212. int verbose)
  1213. {
  1214. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1215. if (!filter)
  1216. return NULL;
  1217. if (lumaGBlur != 0.0) {
  1218. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1219. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1220. } else {
  1221. filter->lumH = sws_getIdentityVec();
  1222. filter->lumV = sws_getIdentityVec();
  1223. }
  1224. if (chromaGBlur != 0.0) {
  1225. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1226. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1227. } else {
  1228. filter->chrH = sws_getIdentityVec();
  1229. filter->chrV = sws_getIdentityVec();
  1230. }
  1231. if (chromaSharpen != 0.0) {
  1232. SwsVector *id = sws_getIdentityVec();
  1233. sws_scaleVec(filter->chrH, -chromaSharpen);
  1234. sws_scaleVec(filter->chrV, -chromaSharpen);
  1235. sws_addVec(filter->chrH, id);
  1236. sws_addVec(filter->chrV, id);
  1237. sws_freeVec(id);
  1238. }
  1239. if (lumaSharpen != 0.0) {
  1240. SwsVector *id = sws_getIdentityVec();
  1241. sws_scaleVec(filter->lumH, -lumaSharpen);
  1242. sws_scaleVec(filter->lumV, -lumaSharpen);
  1243. sws_addVec(filter->lumH, id);
  1244. sws_addVec(filter->lumV, id);
  1245. sws_freeVec(id);
  1246. }
  1247. if (chromaHShift != 0.0)
  1248. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1249. if (chromaVShift != 0.0)
  1250. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1251. sws_normalizeVec(filter->chrH, 1.0);
  1252. sws_normalizeVec(filter->chrV, 1.0);
  1253. sws_normalizeVec(filter->lumH, 1.0);
  1254. sws_normalizeVec(filter->lumV, 1.0);
  1255. if (verbose)
  1256. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1257. if (verbose)
  1258. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1259. return filter;
  1260. }
  1261. SwsVector *sws_allocVec(int length)
  1262. {
  1263. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1264. if (!vec)
  1265. return NULL;
  1266. vec->length = length;
  1267. vec->coeff = av_malloc(sizeof(double) * length);
  1268. if (!vec->coeff)
  1269. av_freep(&vec);
  1270. return vec;
  1271. }
  1272. SwsVector *sws_getGaussianVec(double variance, double quality)
  1273. {
  1274. const int length = (int)(variance * quality + 0.5) | 1;
  1275. int i;
  1276. double middle = (length - 1) * 0.5;
  1277. SwsVector *vec = sws_allocVec(length);
  1278. if (!vec)
  1279. return NULL;
  1280. for (i = 0; i < length; i++) {
  1281. double dist = i - middle;
  1282. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1283. sqrt(2 * variance * M_PI);
  1284. }
  1285. sws_normalizeVec(vec, 1.0);
  1286. return vec;
  1287. }
  1288. SwsVector *sws_getConstVec(double c, int length)
  1289. {
  1290. int i;
  1291. SwsVector *vec = sws_allocVec(length);
  1292. if (!vec)
  1293. return NULL;
  1294. for (i = 0; i < length; i++)
  1295. vec->coeff[i] = c;
  1296. return vec;
  1297. }
  1298. SwsVector *sws_getIdentityVec(void)
  1299. {
  1300. return sws_getConstVec(1.0, 1);
  1301. }
  1302. static double sws_dcVec(SwsVector *a)
  1303. {
  1304. int i;
  1305. double sum = 0;
  1306. for (i = 0; i < a->length; i++)
  1307. sum += a->coeff[i];
  1308. return sum;
  1309. }
  1310. void sws_scaleVec(SwsVector *a, double scalar)
  1311. {
  1312. int i;
  1313. for (i = 0; i < a->length; i++)
  1314. a->coeff[i] *= scalar;
  1315. }
  1316. void sws_normalizeVec(SwsVector *a, double height)
  1317. {
  1318. sws_scaleVec(a, height / sws_dcVec(a));
  1319. }
  1320. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1321. {
  1322. int length = a->length + b->length - 1;
  1323. int i, j;
  1324. SwsVector *vec = sws_getConstVec(0.0, length);
  1325. if (!vec)
  1326. return NULL;
  1327. for (i = 0; i < a->length; i++) {
  1328. for (j = 0; j < b->length; j++) {
  1329. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1330. }
  1331. }
  1332. return vec;
  1333. }
  1334. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1335. {
  1336. int length = FFMAX(a->length, b->length);
  1337. int i;
  1338. SwsVector *vec = sws_getConstVec(0.0, length);
  1339. if (!vec)
  1340. return NULL;
  1341. for (i = 0; i < a->length; i++)
  1342. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1343. for (i = 0; i < b->length; i++)
  1344. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1345. return vec;
  1346. }
  1347. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1348. {
  1349. int length = FFMAX(a->length, b->length);
  1350. int i;
  1351. SwsVector *vec = sws_getConstVec(0.0, length);
  1352. if (!vec)
  1353. return NULL;
  1354. for (i = 0; i < a->length; i++)
  1355. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1356. for (i = 0; i < b->length; i++)
  1357. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1358. return vec;
  1359. }
  1360. /* shift left / or right if "shift" is negative */
  1361. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1362. {
  1363. int length = a->length + FFABS(shift) * 2;
  1364. int i;
  1365. SwsVector *vec = sws_getConstVec(0.0, length);
  1366. if (!vec)
  1367. return NULL;
  1368. for (i = 0; i < a->length; i++) {
  1369. vec->coeff[i + (length - 1) / 2 -
  1370. (a->length - 1) / 2 - shift] = a->coeff[i];
  1371. }
  1372. return vec;
  1373. }
  1374. void sws_shiftVec(SwsVector *a, int shift)
  1375. {
  1376. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1377. av_free(a->coeff);
  1378. a->coeff = shifted->coeff;
  1379. a->length = shifted->length;
  1380. av_free(shifted);
  1381. }
  1382. void sws_addVec(SwsVector *a, SwsVector *b)
  1383. {
  1384. SwsVector *sum = sws_sumVec(a, b);
  1385. av_free(a->coeff);
  1386. a->coeff = sum->coeff;
  1387. a->length = sum->length;
  1388. av_free(sum);
  1389. }
  1390. void sws_subVec(SwsVector *a, SwsVector *b)
  1391. {
  1392. SwsVector *diff = sws_diffVec(a, b);
  1393. av_free(a->coeff);
  1394. a->coeff = diff->coeff;
  1395. a->length = diff->length;
  1396. av_free(diff);
  1397. }
  1398. void sws_convVec(SwsVector *a, SwsVector *b)
  1399. {
  1400. SwsVector *conv = sws_getConvVec(a, b);
  1401. av_free(a->coeff);
  1402. a->coeff = conv->coeff;
  1403. a->length = conv->length;
  1404. av_free(conv);
  1405. }
  1406. SwsVector *sws_cloneVec(SwsVector *a)
  1407. {
  1408. int i;
  1409. SwsVector *vec = sws_allocVec(a->length);
  1410. if (!vec)
  1411. return NULL;
  1412. for (i = 0; i < a->length; i++)
  1413. vec->coeff[i] = a->coeff[i];
  1414. return vec;
  1415. }
  1416. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1417. {
  1418. int i;
  1419. double max = 0;
  1420. double min = 0;
  1421. double range;
  1422. for (i = 0; i < a->length; i++)
  1423. if (a->coeff[i] > max)
  1424. max = a->coeff[i];
  1425. for (i = 0; i < a->length; i++)
  1426. if (a->coeff[i] < min)
  1427. min = a->coeff[i];
  1428. range = max - min;
  1429. for (i = 0; i < a->length; i++) {
  1430. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1431. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1432. for (; x > 0; x--)
  1433. av_log(log_ctx, log_level, " ");
  1434. av_log(log_ctx, log_level, "|\n");
  1435. }
  1436. }
  1437. void sws_freeVec(SwsVector *a)
  1438. {
  1439. if (!a)
  1440. return;
  1441. av_freep(&a->coeff);
  1442. a->length = 0;
  1443. av_free(a);
  1444. }
  1445. void sws_freeFilter(SwsFilter *filter)
  1446. {
  1447. if (!filter)
  1448. return;
  1449. if (filter->lumH)
  1450. sws_freeVec(filter->lumH);
  1451. if (filter->lumV)
  1452. sws_freeVec(filter->lumV);
  1453. if (filter->chrH)
  1454. sws_freeVec(filter->chrH);
  1455. if (filter->chrV)
  1456. sws_freeVec(filter->chrV);
  1457. av_free(filter);
  1458. }
  1459. void sws_freeContext(SwsContext *c)
  1460. {
  1461. int i;
  1462. if (!c)
  1463. return;
  1464. if (c->lumPixBuf) {
  1465. for (i = 0; i < c->vLumBufSize; i++)
  1466. av_freep(&c->lumPixBuf[i]);
  1467. av_freep(&c->lumPixBuf);
  1468. }
  1469. if (c->chrUPixBuf) {
  1470. for (i = 0; i < c->vChrBufSize; i++)
  1471. av_freep(&c->chrUPixBuf[i]);
  1472. av_freep(&c->chrUPixBuf);
  1473. av_freep(&c->chrVPixBuf);
  1474. }
  1475. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1476. for (i = 0; i < c->vLumBufSize; i++)
  1477. av_freep(&c->alpPixBuf[i]);
  1478. av_freep(&c->alpPixBuf);
  1479. }
  1480. av_freep(&c->vLumFilter);
  1481. av_freep(&c->vChrFilter);
  1482. av_freep(&c->hLumFilter);
  1483. av_freep(&c->hChrFilter);
  1484. #if HAVE_ALTIVEC
  1485. av_freep(&c->vYCoeffsBank);
  1486. av_freep(&c->vCCoeffsBank);
  1487. #endif
  1488. av_freep(&c->vLumFilterPos);
  1489. av_freep(&c->vChrFilterPos);
  1490. av_freep(&c->hLumFilterPos);
  1491. av_freep(&c->hChrFilterPos);
  1492. #if HAVE_MMX_INLINE
  1493. #if USE_MMAP
  1494. if (c->lumMmxextFilterCode)
  1495. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1496. if (c->chrMmxextFilterCode)
  1497. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1498. #elif HAVE_VIRTUALALLOC
  1499. if (c->lumMmxextFilterCode)
  1500. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1501. if (c->chrMmxextFilterCode)
  1502. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1503. #else
  1504. av_free(c->lumMmxextFilterCode);
  1505. av_free(c->chrMmxextFilterCode);
  1506. #endif
  1507. c->lumMmxextFilterCode = NULL;
  1508. c->chrMmxextFilterCode = NULL;
  1509. #endif /* HAVE_MMX_INLINE */
  1510. av_freep(&c->yuvTable);
  1511. av_free(c->formatConvBuffer);
  1512. av_free(c);
  1513. }
  1514. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1515. int srcH, enum AVPixelFormat srcFormat,
  1516. int dstW, int dstH,
  1517. enum AVPixelFormat dstFormat, int flags,
  1518. SwsFilter *srcFilter,
  1519. SwsFilter *dstFilter,
  1520. const double *param)
  1521. {
  1522. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1523. SWS_PARAM_DEFAULT };
  1524. if (!param)
  1525. param = default_param;
  1526. if (context &&
  1527. (context->srcW != srcW ||
  1528. context->srcH != srcH ||
  1529. context->srcFormat != srcFormat ||
  1530. context->dstW != dstW ||
  1531. context->dstH != dstH ||
  1532. context->dstFormat != dstFormat ||
  1533. context->flags != flags ||
  1534. context->param[0] != param[0] ||
  1535. context->param[1] != param[1])) {
  1536. sws_freeContext(context);
  1537. context = NULL;
  1538. }
  1539. if (!context) {
  1540. if (!(context = sws_alloc_context()))
  1541. return NULL;
  1542. context->srcW = srcW;
  1543. context->srcH = srcH;
  1544. context->srcRange = handle_jpeg(&srcFormat);
  1545. context->srcFormat = srcFormat;
  1546. context->dstW = dstW;
  1547. context->dstH = dstH;
  1548. context->dstRange = handle_jpeg(&dstFormat);
  1549. context->dstFormat = dstFormat;
  1550. context->flags = flags;
  1551. context->param[0] = param[0];
  1552. context->param[1] = param[1];
  1553. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1554. context->srcRange,
  1555. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1556. context->dstRange, 0, 1 << 16, 1 << 16);
  1557. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1558. sws_freeContext(context);
  1559. return NULL;
  1560. }
  1561. }
  1562. return context;
  1563. }