You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1005 lines
35KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "libavutil/attributes.h"
  35. #include "libavutil/ffmath.h"
  36. #include "avcodec.h"
  37. #include "internal.h"
  38. #include "wma.h"
  39. #define EXPVLCBITS 8
  40. #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
  41. #define HGAINVLCBITS 9
  42. #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
  43. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  44. #ifdef TRACE
  45. static void dump_floats(WMACodecContext *s, const char *name,
  46. int prec, const float *tab, int n)
  47. {
  48. int i;
  49. ff_tlog(s->avctx, "%s[%d]:\n", name, n);
  50. for (i = 0; i < n; i++) {
  51. if ((i & 7) == 0)
  52. ff_tlog(s->avctx, "%4d: ", i);
  53. ff_tlog(s->avctx, " %8.*f", prec, tab[i]);
  54. if ((i & 7) == 7)
  55. ff_tlog(s->avctx, "\n");
  56. }
  57. if ((i & 7) != 0)
  58. ff_tlog(s->avctx, "\n");
  59. }
  60. #endif /* TRACE */
  61. static av_cold int wma_decode_init(AVCodecContext *avctx)
  62. {
  63. WMACodecContext *s = avctx->priv_data;
  64. int i, flags2;
  65. uint8_t *extradata;
  66. if (!avctx->block_align) {
  67. av_log(avctx, AV_LOG_ERROR, "block_align is not set\n");
  68. return AVERROR(EINVAL);
  69. }
  70. s->avctx = avctx;
  71. /* extract flag info */
  72. flags2 = 0;
  73. extradata = avctx->extradata;
  74. if (avctx->codec->id == AV_CODEC_ID_WMAV1 && avctx->extradata_size >= 4)
  75. flags2 = AV_RL16(extradata + 2);
  76. else if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 6)
  77. flags2 = AV_RL16(extradata + 4);
  78. s->use_exp_vlc = flags2 & 0x0001;
  79. s->use_bit_reservoir = flags2 & 0x0002;
  80. s->use_variable_block_len = flags2 & 0x0004;
  81. if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 8){
  82. if (AV_RL16(extradata+4)==0xd && s->use_variable_block_len){
  83. av_log(avctx, AV_LOG_WARNING, "Disabling use_variable_block_len, if this fails contact the ffmpeg developers and send us the file\n");
  84. s->use_variable_block_len= 0; // this fixes issue1503
  85. }
  86. }
  87. for (i=0; i<MAX_CHANNELS; i++)
  88. s->max_exponent[i] = 1.0;
  89. if (ff_wma_init(avctx, flags2) < 0)
  90. return -1;
  91. /* init MDCT */
  92. for (i = 0; i < s->nb_block_sizes; i++)
  93. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0 / 32768.0);
  94. if (s->use_noise_coding) {
  95. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  96. ff_wma_hgain_huffbits, 1, 1,
  97. ff_wma_hgain_huffcodes, 2, 2, 0);
  98. }
  99. if (s->use_exp_vlc)
  100. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), // FIXME move out of context
  101. ff_aac_scalefactor_bits, 1, 1,
  102. ff_aac_scalefactor_code, 4, 4, 0);
  103. else
  104. wma_lsp_to_curve_init(s, s->frame_len);
  105. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  106. return 0;
  107. }
  108. /**
  109. * compute x^-0.25 with an exponent and mantissa table. We use linear
  110. * interpolation to reduce the mantissa table size at a small speed
  111. * expense (linear interpolation approximately doubles the number of
  112. * bits of precision).
  113. */
  114. static inline float pow_m1_4(WMACodecContext *s, float x)
  115. {
  116. union {
  117. float f;
  118. unsigned int v;
  119. } u, t;
  120. unsigned int e, m;
  121. float a, b;
  122. u.f = x;
  123. e = u.v >> 23;
  124. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  125. /* build interpolation scale: 1 <= t < 2. */
  126. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  127. a = s->lsp_pow_m_table1[m];
  128. b = s->lsp_pow_m_table2[m];
  129. return s->lsp_pow_e_table[e] * (a + b * t.f);
  130. }
  131. static av_cold void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  132. {
  133. float wdel, a, b;
  134. int i, e, m;
  135. wdel = M_PI / frame_len;
  136. for (i = 0; i < frame_len; i++)
  137. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  138. /* tables for x^-0.25 computation */
  139. for (i = 0; i < 256; i++) {
  140. e = i - 126;
  141. s->lsp_pow_e_table[i] = exp2f(e * -0.25);
  142. }
  143. /* NOTE: these two tables are needed to avoid two operations in
  144. * pow_m1_4 */
  145. b = 1.0;
  146. for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
  147. m = (1 << LSP_POW_BITS) + i;
  148. a = (float) m * (0.5 / (1 << LSP_POW_BITS));
  149. a = 1/sqrt(sqrt(a));
  150. s->lsp_pow_m_table1[i] = 2 * a - b;
  151. s->lsp_pow_m_table2[i] = b - a;
  152. b = a;
  153. }
  154. }
  155. /**
  156. * NOTE: We use the same code as Vorbis here
  157. * @todo optimize it further with SSE/3Dnow
  158. */
  159. static void wma_lsp_to_curve(WMACodecContext *s, float *out, float *val_max_ptr,
  160. int n, float *lsp)
  161. {
  162. int i, j;
  163. float p, q, w, v, val_max;
  164. val_max = 0;
  165. for (i = 0; i < n; i++) {
  166. p = 0.5f;
  167. q = 0.5f;
  168. w = s->lsp_cos_table[i];
  169. for (j = 1; j < NB_LSP_COEFS; j += 2) {
  170. q *= w - lsp[j - 1];
  171. p *= w - lsp[j];
  172. }
  173. p *= p * (2.0f - w);
  174. q *= q * (2.0f + w);
  175. v = p + q;
  176. v = pow_m1_4(s, v);
  177. if (v > val_max)
  178. val_max = v;
  179. out[i] = v;
  180. }
  181. *val_max_ptr = val_max;
  182. }
  183. /**
  184. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  185. */
  186. static void decode_exp_lsp(WMACodecContext *s, int ch)
  187. {
  188. float lsp_coefs[NB_LSP_COEFS];
  189. int val, i;
  190. for (i = 0; i < NB_LSP_COEFS; i++) {
  191. if (i == 0 || i >= 8)
  192. val = get_bits(&s->gb, 3);
  193. else
  194. val = get_bits(&s->gb, 4);
  195. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  196. }
  197. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  198. s->block_len, lsp_coefs);
  199. }
  200. /** pow(10, i / 16.0) for i in -60..95 */
  201. static const float pow_tab[] = {
  202. 1.7782794100389e-04, 2.0535250264571e-04,
  203. 2.3713737056617e-04, 2.7384196342644e-04,
  204. 3.1622776601684e-04, 3.6517412725484e-04,
  205. 4.2169650342858e-04, 4.8696752516586e-04,
  206. 5.6234132519035e-04, 6.4938163157621e-04,
  207. 7.4989420933246e-04, 8.6596432336006e-04,
  208. 1.0000000000000e-03, 1.1547819846895e-03,
  209. 1.3335214321633e-03, 1.5399265260595e-03,
  210. 1.7782794100389e-03, 2.0535250264571e-03,
  211. 2.3713737056617e-03, 2.7384196342644e-03,
  212. 3.1622776601684e-03, 3.6517412725484e-03,
  213. 4.2169650342858e-03, 4.8696752516586e-03,
  214. 5.6234132519035e-03, 6.4938163157621e-03,
  215. 7.4989420933246e-03, 8.6596432336006e-03,
  216. 1.0000000000000e-02, 1.1547819846895e-02,
  217. 1.3335214321633e-02, 1.5399265260595e-02,
  218. 1.7782794100389e-02, 2.0535250264571e-02,
  219. 2.3713737056617e-02, 2.7384196342644e-02,
  220. 3.1622776601684e-02, 3.6517412725484e-02,
  221. 4.2169650342858e-02, 4.8696752516586e-02,
  222. 5.6234132519035e-02, 6.4938163157621e-02,
  223. 7.4989420933246e-02, 8.6596432336007e-02,
  224. 1.0000000000000e-01, 1.1547819846895e-01,
  225. 1.3335214321633e-01, 1.5399265260595e-01,
  226. 1.7782794100389e-01, 2.0535250264571e-01,
  227. 2.3713737056617e-01, 2.7384196342644e-01,
  228. 3.1622776601684e-01, 3.6517412725484e-01,
  229. 4.2169650342858e-01, 4.8696752516586e-01,
  230. 5.6234132519035e-01, 6.4938163157621e-01,
  231. 7.4989420933246e-01, 8.6596432336007e-01,
  232. 1.0000000000000e+00, 1.1547819846895e+00,
  233. 1.3335214321633e+00, 1.5399265260595e+00,
  234. 1.7782794100389e+00, 2.0535250264571e+00,
  235. 2.3713737056617e+00, 2.7384196342644e+00,
  236. 3.1622776601684e+00, 3.6517412725484e+00,
  237. 4.2169650342858e+00, 4.8696752516586e+00,
  238. 5.6234132519035e+00, 6.4938163157621e+00,
  239. 7.4989420933246e+00, 8.6596432336007e+00,
  240. 1.0000000000000e+01, 1.1547819846895e+01,
  241. 1.3335214321633e+01, 1.5399265260595e+01,
  242. 1.7782794100389e+01, 2.0535250264571e+01,
  243. 2.3713737056617e+01, 2.7384196342644e+01,
  244. 3.1622776601684e+01, 3.6517412725484e+01,
  245. 4.2169650342858e+01, 4.8696752516586e+01,
  246. 5.6234132519035e+01, 6.4938163157621e+01,
  247. 7.4989420933246e+01, 8.6596432336007e+01,
  248. 1.0000000000000e+02, 1.1547819846895e+02,
  249. 1.3335214321633e+02, 1.5399265260595e+02,
  250. 1.7782794100389e+02, 2.0535250264571e+02,
  251. 2.3713737056617e+02, 2.7384196342644e+02,
  252. 3.1622776601684e+02, 3.6517412725484e+02,
  253. 4.2169650342858e+02, 4.8696752516586e+02,
  254. 5.6234132519035e+02, 6.4938163157621e+02,
  255. 7.4989420933246e+02, 8.6596432336007e+02,
  256. 1.0000000000000e+03, 1.1547819846895e+03,
  257. 1.3335214321633e+03, 1.5399265260595e+03,
  258. 1.7782794100389e+03, 2.0535250264571e+03,
  259. 2.3713737056617e+03, 2.7384196342644e+03,
  260. 3.1622776601684e+03, 3.6517412725484e+03,
  261. 4.2169650342858e+03, 4.8696752516586e+03,
  262. 5.6234132519035e+03, 6.4938163157621e+03,
  263. 7.4989420933246e+03, 8.6596432336007e+03,
  264. 1.0000000000000e+04, 1.1547819846895e+04,
  265. 1.3335214321633e+04, 1.5399265260595e+04,
  266. 1.7782794100389e+04, 2.0535250264571e+04,
  267. 2.3713737056617e+04, 2.7384196342644e+04,
  268. 3.1622776601684e+04, 3.6517412725484e+04,
  269. 4.2169650342858e+04, 4.8696752516586e+04,
  270. 5.6234132519035e+04, 6.4938163157621e+04,
  271. 7.4989420933246e+04, 8.6596432336007e+04,
  272. 1.0000000000000e+05, 1.1547819846895e+05,
  273. 1.3335214321633e+05, 1.5399265260595e+05,
  274. 1.7782794100389e+05, 2.0535250264571e+05,
  275. 2.3713737056617e+05, 2.7384196342644e+05,
  276. 3.1622776601684e+05, 3.6517412725484e+05,
  277. 4.2169650342858e+05, 4.8696752516586e+05,
  278. 5.6234132519035e+05, 6.4938163157621e+05,
  279. 7.4989420933246e+05, 8.6596432336007e+05,
  280. };
  281. /**
  282. * decode exponents coded with VLC codes
  283. */
  284. static int decode_exp_vlc(WMACodecContext *s, int ch)
  285. {
  286. int last_exp, n, code;
  287. const uint16_t *ptr;
  288. float v, max_scale;
  289. uint32_t *q, *q_end, iv;
  290. const float *ptab = pow_tab + 60;
  291. const uint32_t *iptab = (const uint32_t *) ptab;
  292. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  293. q = (uint32_t *) s->exponents[ch];
  294. q_end = q + s->block_len;
  295. max_scale = 0;
  296. if (s->version == 1) {
  297. last_exp = get_bits(&s->gb, 5) + 10;
  298. v = ptab[last_exp];
  299. iv = iptab[last_exp];
  300. max_scale = v;
  301. n = *ptr++;
  302. switch (n & 3) do {
  303. case 0: *q++ = iv;
  304. case 3: *q++ = iv;
  305. case 2: *q++ = iv;
  306. case 1: *q++ = iv;
  307. } while ((n -= 4) > 0);
  308. } else
  309. last_exp = 36;
  310. while (q < q_end) {
  311. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  312. if (code < 0) {
  313. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  314. return -1;
  315. }
  316. /* NOTE: this offset is the same as MPEG-4 AAC! */
  317. last_exp += code - 60;
  318. if ((unsigned) last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
  319. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  320. last_exp);
  321. return -1;
  322. }
  323. v = ptab[last_exp];
  324. iv = iptab[last_exp];
  325. if (v > max_scale)
  326. max_scale = v;
  327. n = *ptr++;
  328. switch (n & 3) do {
  329. case 0: *q++ = iv;
  330. case 3: *q++ = iv;
  331. case 2: *q++ = iv;
  332. case 1: *q++ = iv;
  333. } while ((n -= 4) > 0);
  334. }
  335. s->max_exponent[ch] = max_scale;
  336. return 0;
  337. }
  338. /**
  339. * Apply MDCT window and add into output.
  340. *
  341. * We ensure that when the windows overlap their squared sum
  342. * is always 1 (MDCT reconstruction rule).
  343. */
  344. static void wma_window(WMACodecContext *s, float *out)
  345. {
  346. float *in = s->output;
  347. int block_len, bsize, n;
  348. /* left part */
  349. if (s->block_len_bits <= s->prev_block_len_bits) {
  350. block_len = s->block_len;
  351. bsize = s->frame_len_bits - s->block_len_bits;
  352. s->fdsp->vector_fmul_add(out, in, s->windows[bsize],
  353. out, block_len);
  354. } else {
  355. block_len = 1 << s->prev_block_len_bits;
  356. n = (s->block_len - block_len) / 2;
  357. bsize = s->frame_len_bits - s->prev_block_len_bits;
  358. s->fdsp->vector_fmul_add(out + n, in + n, s->windows[bsize],
  359. out + n, block_len);
  360. memcpy(out + n + block_len, in + n + block_len, n * sizeof(float));
  361. }
  362. out += s->block_len;
  363. in += s->block_len;
  364. /* right part */
  365. if (s->block_len_bits <= s->next_block_len_bits) {
  366. block_len = s->block_len;
  367. bsize = s->frame_len_bits - s->block_len_bits;
  368. s->fdsp->vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  369. } else {
  370. block_len = 1 << s->next_block_len_bits;
  371. n = (s->block_len - block_len) / 2;
  372. bsize = s->frame_len_bits - s->next_block_len_bits;
  373. memcpy(out, in, n * sizeof(float));
  374. s->fdsp->vector_fmul_reverse(out + n, in + n, s->windows[bsize],
  375. block_len);
  376. memset(out + n + block_len, 0, n * sizeof(float));
  377. }
  378. }
  379. /**
  380. * @return 0 if OK. 1 if last block of frame. return -1 if
  381. * unrecoverable error.
  382. */
  383. static int wma_decode_block(WMACodecContext *s)
  384. {
  385. int n, v, a, ch, bsize;
  386. int coef_nb_bits, total_gain;
  387. int nb_coefs[MAX_CHANNELS];
  388. float mdct_norm;
  389. FFTContext *mdct;
  390. #ifdef TRACE
  391. ff_tlog(s->avctx, "***decode_block: %d:%d\n",
  392. s->frame_count - 1, s->block_num);
  393. #endif /* TRACE */
  394. /* compute current block length */
  395. if (s->use_variable_block_len) {
  396. n = av_log2(s->nb_block_sizes - 1) + 1;
  397. if (s->reset_block_lengths) {
  398. s->reset_block_lengths = 0;
  399. v = get_bits(&s->gb, n);
  400. if (v >= s->nb_block_sizes) {
  401. av_log(s->avctx, AV_LOG_ERROR,
  402. "prev_block_len_bits %d out of range\n",
  403. s->frame_len_bits - v);
  404. return -1;
  405. }
  406. s->prev_block_len_bits = s->frame_len_bits - v;
  407. v = get_bits(&s->gb, n);
  408. if (v >= s->nb_block_sizes) {
  409. av_log(s->avctx, AV_LOG_ERROR,
  410. "block_len_bits %d out of range\n",
  411. s->frame_len_bits - v);
  412. return -1;
  413. }
  414. s->block_len_bits = s->frame_len_bits - v;
  415. } else {
  416. /* update block lengths */
  417. s->prev_block_len_bits = s->block_len_bits;
  418. s->block_len_bits = s->next_block_len_bits;
  419. }
  420. v = get_bits(&s->gb, n);
  421. if (v >= s->nb_block_sizes) {
  422. av_log(s->avctx, AV_LOG_ERROR,
  423. "next_block_len_bits %d out of range\n",
  424. s->frame_len_bits - v);
  425. return -1;
  426. }
  427. s->next_block_len_bits = s->frame_len_bits - v;
  428. } else {
  429. /* fixed block len */
  430. s->next_block_len_bits = s->frame_len_bits;
  431. s->prev_block_len_bits = s->frame_len_bits;
  432. s->block_len_bits = s->frame_len_bits;
  433. }
  434. if (s->frame_len_bits - s->block_len_bits >= s->nb_block_sizes){
  435. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits not initialized to a valid value\n");
  436. return -1;
  437. }
  438. /* now check if the block length is coherent with the frame length */
  439. s->block_len = 1 << s->block_len_bits;
  440. if ((s->block_pos + s->block_len) > s->frame_len) {
  441. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  442. return -1;
  443. }
  444. if (s->avctx->channels == 2)
  445. s->ms_stereo = get_bits1(&s->gb);
  446. v = 0;
  447. for (ch = 0; ch < s->avctx->channels; ch++) {
  448. a = get_bits1(&s->gb);
  449. s->channel_coded[ch] = a;
  450. v |= a;
  451. }
  452. bsize = s->frame_len_bits - s->block_len_bits;
  453. /* if no channel coded, no need to go further */
  454. /* XXX: fix potential framing problems */
  455. if (!v)
  456. goto next;
  457. /* read total gain and extract corresponding number of bits for
  458. * coef escape coding */
  459. total_gain = 1;
  460. for (;;) {
  461. if (get_bits_left(&s->gb) < 7) {
  462. av_log(s->avctx, AV_LOG_ERROR, "total_gain overread\n");
  463. return AVERROR_INVALIDDATA;
  464. }
  465. a = get_bits(&s->gb, 7);
  466. total_gain += a;
  467. if (a != 127)
  468. break;
  469. }
  470. coef_nb_bits = ff_wma_total_gain_to_bits(total_gain);
  471. /* compute number of coefficients */
  472. n = s->coefs_end[bsize] - s->coefs_start;
  473. for (ch = 0; ch < s->avctx->channels; ch++)
  474. nb_coefs[ch] = n;
  475. /* complex coding */
  476. if (s->use_noise_coding) {
  477. for (ch = 0; ch < s->avctx->channels; ch++) {
  478. if (s->channel_coded[ch]) {
  479. int i, n, a;
  480. n = s->exponent_high_sizes[bsize];
  481. for (i = 0; i < n; i++) {
  482. a = get_bits1(&s->gb);
  483. s->high_band_coded[ch][i] = a;
  484. /* if noise coding, the coefficients are not transmitted */
  485. if (a)
  486. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  487. }
  488. }
  489. }
  490. for (ch = 0; ch < s->avctx->channels; ch++) {
  491. if (s->channel_coded[ch]) {
  492. int i, n, val, code;
  493. n = s->exponent_high_sizes[bsize];
  494. val = (int) 0x80000000;
  495. for (i = 0; i < n; i++) {
  496. if (s->high_band_coded[ch][i]) {
  497. if (val == (int) 0x80000000) {
  498. val = get_bits(&s->gb, 7) - 19;
  499. } else {
  500. code = get_vlc2(&s->gb, s->hgain_vlc.table,
  501. HGAINVLCBITS, HGAINMAX);
  502. if (code < 0) {
  503. av_log(s->avctx, AV_LOG_ERROR,
  504. "hgain vlc invalid\n");
  505. return -1;
  506. }
  507. val += code - 18;
  508. }
  509. s->high_band_values[ch][i] = val;
  510. }
  511. }
  512. }
  513. }
  514. }
  515. /* exponents can be reused in short blocks. */
  516. if ((s->block_len_bits == s->frame_len_bits) || get_bits1(&s->gb)) {
  517. for (ch = 0; ch < s->avctx->channels; ch++) {
  518. if (s->channel_coded[ch]) {
  519. if (s->use_exp_vlc) {
  520. if (decode_exp_vlc(s, ch) < 0)
  521. return -1;
  522. } else {
  523. decode_exp_lsp(s, ch);
  524. }
  525. s->exponents_bsize[ch] = bsize;
  526. }
  527. }
  528. s->exponents_initialized = 1;
  529. }else if (!s->exponents_initialized) {
  530. return AVERROR_INVALIDDATA;
  531. }
  532. /* parse spectral coefficients : just RLE encoding */
  533. for (ch = 0; ch < s->avctx->channels; ch++) {
  534. if (s->channel_coded[ch]) {
  535. int tindex;
  536. WMACoef *ptr = &s->coefs1[ch][0];
  537. /* special VLC tables are used for ms stereo because
  538. * there is potentially less energy there */
  539. tindex = (ch == 1 && s->ms_stereo);
  540. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  541. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  542. s->level_table[tindex], s->run_table[tindex],
  543. 0, ptr, 0, nb_coefs[ch],
  544. s->block_len, s->frame_len_bits, coef_nb_bits);
  545. }
  546. if (s->version == 1 && s->avctx->channels >= 2)
  547. align_get_bits(&s->gb);
  548. }
  549. /* normalize */
  550. {
  551. int n4 = s->block_len / 2;
  552. mdct_norm = 1.0 / (float) n4;
  553. if (s->version == 1)
  554. mdct_norm *= sqrt(n4);
  555. }
  556. /* finally compute the MDCT coefficients */
  557. for (ch = 0; ch < s->avctx->channels; ch++) {
  558. if (s->channel_coded[ch]) {
  559. WMACoef *coefs1;
  560. float *coefs, *exponents, mult, mult1, noise;
  561. int i, j, n, n1, last_high_band, esize;
  562. float exp_power[HIGH_BAND_MAX_SIZE];
  563. coefs1 = s->coefs1[ch];
  564. exponents = s->exponents[ch];
  565. esize = s->exponents_bsize[ch];
  566. mult = ff_exp10(total_gain * 0.05) / s->max_exponent[ch];
  567. mult *= mdct_norm;
  568. coefs = s->coefs[ch];
  569. if (s->use_noise_coding) {
  570. mult1 = mult;
  571. /* very low freqs : noise */
  572. for (i = 0; i < s->coefs_start; i++) {
  573. *coefs++ = s->noise_table[s->noise_index] *
  574. exponents[i << bsize >> esize] * mult1;
  575. s->noise_index = (s->noise_index + 1) &
  576. (NOISE_TAB_SIZE - 1);
  577. }
  578. n1 = s->exponent_high_sizes[bsize];
  579. /* compute power of high bands */
  580. exponents = s->exponents[ch] +
  581. (s->high_band_start[bsize] << bsize >> esize);
  582. last_high_band = 0; /* avoid warning */
  583. for (j = 0; j < n1; j++) {
  584. n = s->exponent_high_bands[s->frame_len_bits -
  585. s->block_len_bits][j];
  586. if (s->high_band_coded[ch][j]) {
  587. float e2, v;
  588. e2 = 0;
  589. for (i = 0; i < n; i++) {
  590. v = exponents[i << bsize >> esize];
  591. e2 += v * v;
  592. }
  593. exp_power[j] = e2 / n;
  594. last_high_band = j;
  595. ff_tlog(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  596. }
  597. exponents += n << bsize >> esize;
  598. }
  599. /* main freqs and high freqs */
  600. exponents = s->exponents[ch] + (s->coefs_start << bsize >> esize);
  601. for (j = -1; j < n1; j++) {
  602. if (j < 0)
  603. n = s->high_band_start[bsize] - s->coefs_start;
  604. else
  605. n = s->exponent_high_bands[s->frame_len_bits -
  606. s->block_len_bits][j];
  607. if (j >= 0 && s->high_band_coded[ch][j]) {
  608. /* use noise with specified power */
  609. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  610. /* XXX: use a table */
  611. mult1 = mult1 * ff_exp10(s->high_band_values[ch][j] * 0.05);
  612. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  613. mult1 *= mdct_norm;
  614. for (i = 0; i < n; i++) {
  615. noise = s->noise_table[s->noise_index];
  616. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  617. *coefs++ = noise * exponents[i << bsize >> esize] * mult1;
  618. }
  619. exponents += n << bsize >> esize;
  620. } else {
  621. /* coded values + small noise */
  622. for (i = 0; i < n; i++) {
  623. noise = s->noise_table[s->noise_index];
  624. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  625. *coefs++ = ((*coefs1++) + noise) *
  626. exponents[i << bsize >> esize] * mult;
  627. }
  628. exponents += n << bsize >> esize;
  629. }
  630. }
  631. /* very high freqs : noise */
  632. n = s->block_len - s->coefs_end[bsize];
  633. mult1 = mult * exponents[(-(1 << bsize)) >> esize];
  634. for (i = 0; i < n; i++) {
  635. *coefs++ = s->noise_table[s->noise_index] * mult1;
  636. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  637. }
  638. } else {
  639. /* XXX: optimize more */
  640. for (i = 0; i < s->coefs_start; i++)
  641. *coefs++ = 0.0;
  642. n = nb_coefs[ch];
  643. for (i = 0; i < n; i++)
  644. *coefs++ = coefs1[i] * exponents[i << bsize >> esize] * mult;
  645. n = s->block_len - s->coefs_end[bsize];
  646. for (i = 0; i < n; i++)
  647. *coefs++ = 0.0;
  648. }
  649. }
  650. }
  651. #ifdef TRACE
  652. for (ch = 0; ch < s->avctx->channels; ch++) {
  653. if (s->channel_coded[ch]) {
  654. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  655. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  656. }
  657. }
  658. #endif /* TRACE */
  659. if (s->ms_stereo && s->channel_coded[1]) {
  660. /* nominal case for ms stereo: we do it before mdct */
  661. /* no need to optimize this case because it should almost
  662. * never happen */
  663. if (!s->channel_coded[0]) {
  664. ff_tlog(s->avctx, "rare ms-stereo case happened\n");
  665. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  666. s->channel_coded[0] = 1;
  667. }
  668. s->fdsp->butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  669. }
  670. next:
  671. mdct = &s->mdct_ctx[bsize];
  672. for (ch = 0; ch < s->avctx->channels; ch++) {
  673. int n4, index;
  674. n4 = s->block_len / 2;
  675. if (s->channel_coded[ch])
  676. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  677. else if (!(s->ms_stereo && ch == 1))
  678. memset(s->output, 0, sizeof(s->output));
  679. /* multiply by the window and add in the frame */
  680. index = (s->frame_len / 2) + s->block_pos - n4;
  681. wma_window(s, &s->frame_out[ch][index]);
  682. }
  683. /* update block number */
  684. s->block_num++;
  685. s->block_pos += s->block_len;
  686. if (s->block_pos >= s->frame_len)
  687. return 1;
  688. else
  689. return 0;
  690. }
  691. /* decode a frame of frame_len samples */
  692. static int wma_decode_frame(WMACodecContext *s, float **samples,
  693. int samples_offset)
  694. {
  695. int ret, ch;
  696. #ifdef TRACE
  697. ff_tlog(s->avctx, "***decode_frame: %d size=%d\n",
  698. s->frame_count++, s->frame_len);
  699. #endif /* TRACE */
  700. /* read each block */
  701. s->block_num = 0;
  702. s->block_pos = 0;
  703. for (;;) {
  704. ret = wma_decode_block(s);
  705. if (ret < 0)
  706. return -1;
  707. if (ret)
  708. break;
  709. }
  710. for (ch = 0; ch < s->avctx->channels; ch++) {
  711. /* copy current block to output */
  712. memcpy(samples[ch] + samples_offset, s->frame_out[ch],
  713. s->frame_len * sizeof(*s->frame_out[ch]));
  714. /* prepare for next block */
  715. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  716. s->frame_len * sizeof(*s->frame_out[ch]));
  717. #ifdef TRACE
  718. dump_floats(s, "samples", 6, samples[ch] + samples_offset,
  719. s->frame_len);
  720. #endif /* TRACE */
  721. }
  722. return 0;
  723. }
  724. static int wma_decode_superframe(AVCodecContext *avctx, void *data,
  725. int *got_frame_ptr, AVPacket *avpkt)
  726. {
  727. AVFrame *frame = data;
  728. const uint8_t *buf = avpkt->data;
  729. int buf_size = avpkt->size;
  730. WMACodecContext *s = avctx->priv_data;
  731. int nb_frames, bit_offset, i, pos, len, ret;
  732. uint8_t *q;
  733. float **samples;
  734. int samples_offset;
  735. ff_tlog(avctx, "***decode_superframe:\n");
  736. if (buf_size == 0) {
  737. s->last_superframe_len = 0;
  738. return 0;
  739. }
  740. if (buf_size < avctx->block_align) {
  741. av_log(avctx, AV_LOG_ERROR,
  742. "Input packet size too small (%d < %d)\n",
  743. buf_size, avctx->block_align);
  744. return AVERROR_INVALIDDATA;
  745. }
  746. if (avctx->block_align)
  747. buf_size = avctx->block_align;
  748. init_get_bits(&s->gb, buf, buf_size * 8);
  749. if (s->use_bit_reservoir) {
  750. /* read super frame header */
  751. skip_bits(&s->gb, 4); /* super frame index */
  752. nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
  753. if (nb_frames <= 0) {
  754. int is_error = nb_frames < 0 || get_bits_left(&s->gb) <= 8;
  755. av_log(avctx, is_error ? AV_LOG_ERROR : AV_LOG_WARNING,
  756. "nb_frames is %d bits left %d\n",
  757. nb_frames, get_bits_left(&s->gb));
  758. if (is_error)
  759. return AVERROR_INVALIDDATA;
  760. if ((s->last_superframe_len + buf_size - 1) >
  761. MAX_CODED_SUPERFRAME_SIZE)
  762. goto fail;
  763. q = s->last_superframe + s->last_superframe_len;
  764. len = buf_size - 1;
  765. while (len > 0) {
  766. *q++ = get_bits (&s->gb, 8);
  767. len --;
  768. }
  769. memset(q, 0, AV_INPUT_BUFFER_PADDING_SIZE);
  770. s->last_superframe_len += 8*buf_size - 8;
  771. // s->reset_block_lengths = 1; //XXX is this needed ?
  772. *got_frame_ptr = 0;
  773. return buf_size;
  774. }
  775. } else
  776. nb_frames = 1;
  777. /* get output buffer */
  778. frame->nb_samples = nb_frames * s->frame_len;
  779. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  780. return ret;
  781. samples = (float **) frame->extended_data;
  782. samples_offset = 0;
  783. if (s->use_bit_reservoir) {
  784. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  785. if (bit_offset > get_bits_left(&s->gb)) {
  786. av_log(avctx, AV_LOG_ERROR,
  787. "Invalid last frame bit offset %d > buf size %d (%d)\n",
  788. bit_offset, get_bits_left(&s->gb), buf_size);
  789. goto fail;
  790. }
  791. if (s->last_superframe_len > 0) {
  792. /* add bit_offset bits to last frame */
  793. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  794. MAX_CODED_SUPERFRAME_SIZE)
  795. goto fail;
  796. q = s->last_superframe + s->last_superframe_len;
  797. len = bit_offset;
  798. while (len > 7) {
  799. *q++ = (get_bits) (&s->gb, 8);
  800. len -= 8;
  801. }
  802. if (len > 0)
  803. *q++ = (get_bits) (&s->gb, len) << (8 - len);
  804. memset(q, 0, AV_INPUT_BUFFER_PADDING_SIZE);
  805. /* XXX: bit_offset bits into last frame */
  806. init_get_bits(&s->gb, s->last_superframe,
  807. s->last_superframe_len * 8 + bit_offset);
  808. /* skip unused bits */
  809. if (s->last_bitoffset > 0)
  810. skip_bits(&s->gb, s->last_bitoffset);
  811. /* this frame is stored in the last superframe and in the
  812. * current one */
  813. if (wma_decode_frame(s, samples, samples_offset) < 0)
  814. goto fail;
  815. samples_offset += s->frame_len;
  816. nb_frames--;
  817. }
  818. /* read each frame starting from bit_offset */
  819. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  820. if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
  821. return AVERROR_INVALIDDATA;
  822. init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3)) * 8);
  823. len = pos & 7;
  824. if (len > 0)
  825. skip_bits(&s->gb, len);
  826. s->reset_block_lengths = 1;
  827. for (i = 0; i < nb_frames; i++) {
  828. if (wma_decode_frame(s, samples, samples_offset) < 0)
  829. goto fail;
  830. samples_offset += s->frame_len;
  831. }
  832. /* we copy the end of the frame in the last frame buffer */
  833. pos = get_bits_count(&s->gb) +
  834. ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  835. s->last_bitoffset = pos & 7;
  836. pos >>= 3;
  837. len = buf_size - pos;
  838. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  839. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  840. goto fail;
  841. }
  842. s->last_superframe_len = len;
  843. memcpy(s->last_superframe, buf + pos, len);
  844. } else {
  845. /* single frame decode */
  846. if (wma_decode_frame(s, samples, samples_offset) < 0)
  847. goto fail;
  848. samples_offset += s->frame_len;
  849. }
  850. ff_dlog(s->avctx, "%d %d %d %d outbytes:%"PTRDIFF_SPECIFIER" eaten:%d\n",
  851. s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len,
  852. (int8_t *) samples - (int8_t *) data, avctx->block_align);
  853. *got_frame_ptr = 1;
  854. return buf_size;
  855. fail:
  856. /* when error, we reset the bit reservoir */
  857. s->last_superframe_len = 0;
  858. return -1;
  859. }
  860. static av_cold void flush(AVCodecContext *avctx)
  861. {
  862. WMACodecContext *s = avctx->priv_data;
  863. s->last_bitoffset =
  864. s->last_superframe_len = 0;
  865. }
  866. #if CONFIG_WMAV1_DECODER
  867. AVCodec ff_wmav1_decoder = {
  868. .name = "wmav1",
  869. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  870. .type = AVMEDIA_TYPE_AUDIO,
  871. .id = AV_CODEC_ID_WMAV1,
  872. .priv_data_size = sizeof(WMACodecContext),
  873. .init = wma_decode_init,
  874. .close = ff_wma_end,
  875. .decode = wma_decode_superframe,
  876. .flush = flush,
  877. .capabilities = AV_CODEC_CAP_DR1,
  878. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  879. AV_SAMPLE_FMT_NONE },
  880. };
  881. #endif
  882. #if CONFIG_WMAV2_DECODER
  883. AVCodec ff_wmav2_decoder = {
  884. .name = "wmav2",
  885. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  886. .type = AVMEDIA_TYPE_AUDIO,
  887. .id = AV_CODEC_ID_WMAV2,
  888. .priv_data_size = sizeof(WMACodecContext),
  889. .init = wma_decode_init,
  890. .close = ff_wma_end,
  891. .decode = wma_decode_superframe,
  892. .flush = flush,
  893. .capabilities = AV_CODEC_CAP_DR1,
  894. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  895. AV_SAMPLE_FMT_NONE },
  896. };
  897. #endif