You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

460 lines
12KB

  1. /*
  2. * (c) 2002 Fabrice Bellard
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * FFT and MDCT tests.
  23. */
  24. #include "libavutil/mathematics.h"
  25. #include "libavutil/lfg.h"
  26. #include "libavutil/log.h"
  27. #include "fft.h"
  28. #include "dct.h"
  29. #include "rdft.h"
  30. #include <math.h>
  31. #include <unistd.h>
  32. #include <sys/time.h>
  33. #include <stdlib.h>
  34. #include <string.h>
  35. #undef exit
  36. /* reference fft */
  37. #define MUL16(a,b) ((a) * (b))
  38. #define CMAC(pre, pim, are, aim, bre, bim) \
  39. {\
  40. pre += (MUL16(are, bre) - MUL16(aim, bim));\
  41. pim += (MUL16(are, bim) + MUL16(bre, aim));\
  42. }
  43. FFTComplex *exptab;
  44. static void fft_ref_init(int nbits, int inverse)
  45. {
  46. int n, i;
  47. double c1, s1, alpha;
  48. n = 1 << nbits;
  49. exptab = av_malloc((n / 2) * sizeof(FFTComplex));
  50. for (i = 0; i < (n/2); i++) {
  51. alpha = 2 * M_PI * (float)i / (float)n;
  52. c1 = cos(alpha);
  53. s1 = sin(alpha);
  54. if (!inverse)
  55. s1 = -s1;
  56. exptab[i].re = c1;
  57. exptab[i].im = s1;
  58. }
  59. }
  60. static void fft_ref(FFTComplex *tabr, FFTComplex *tab, int nbits)
  61. {
  62. int n, i, j, k, n2;
  63. double tmp_re, tmp_im, s, c;
  64. FFTComplex *q;
  65. n = 1 << nbits;
  66. n2 = n >> 1;
  67. for (i = 0; i < n; i++) {
  68. tmp_re = 0;
  69. tmp_im = 0;
  70. q = tab;
  71. for (j = 0; j < n; j++) {
  72. k = (i * j) & (n - 1);
  73. if (k >= n2) {
  74. c = -exptab[k - n2].re;
  75. s = -exptab[k - n2].im;
  76. } else {
  77. c = exptab[k].re;
  78. s = exptab[k].im;
  79. }
  80. CMAC(tmp_re, tmp_im, c, s, q->re, q->im);
  81. q++;
  82. }
  83. tabr[i].re = tmp_re;
  84. tabr[i].im = tmp_im;
  85. }
  86. }
  87. static void imdct_ref(float *out, float *in, int nbits)
  88. {
  89. int n = 1<<nbits;
  90. int k, i, a;
  91. double sum, f;
  92. for (i = 0; i < n; i++) {
  93. sum = 0;
  94. for (k = 0; k < n/2; k++) {
  95. a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
  96. f = cos(M_PI * a / (double)(2 * n));
  97. sum += f * in[k];
  98. }
  99. out[i] = -sum;
  100. }
  101. }
  102. /* NOTE: no normalisation by 1 / N is done */
  103. static void mdct_ref(float *output, float *input, int nbits)
  104. {
  105. int n = 1<<nbits;
  106. int k, i;
  107. double a, s;
  108. /* do it by hand */
  109. for (k = 0; k < n/2; k++) {
  110. s = 0;
  111. for (i = 0; i < n; i++) {
  112. a = (2*M_PI*(2*i+1+n/2)*(2*k+1) / (4 * n));
  113. s += input[i] * cos(a);
  114. }
  115. output[k] = s;
  116. }
  117. }
  118. static void idct_ref(float *output, float *input, int nbits)
  119. {
  120. int n = 1<<nbits;
  121. int k, i;
  122. double a, s;
  123. /* do it by hand */
  124. for (i = 0; i < n; i++) {
  125. s = 0.5 * input[0];
  126. for (k = 1; k < n; k++) {
  127. a = M_PI*k*(i+0.5) / n;
  128. s += input[k] * cos(a);
  129. }
  130. output[i] = 2 * s / n;
  131. }
  132. }
  133. static void dct_ref(float *output, float *input, int nbits)
  134. {
  135. int n = 1<<nbits;
  136. int k, i;
  137. double a, s;
  138. /* do it by hand */
  139. for (k = 0; k < n; k++) {
  140. s = 0;
  141. for (i = 0; i < n; i++) {
  142. a = M_PI*k*(i+0.5) / n;
  143. s += input[i] * cos(a);
  144. }
  145. output[k] = s;
  146. }
  147. }
  148. static float frandom(AVLFG *prng)
  149. {
  150. return (int16_t)av_lfg_get(prng) / 32768.0;
  151. }
  152. static int64_t gettime(void)
  153. {
  154. struct timeval tv;
  155. gettimeofday(&tv,NULL);
  156. return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
  157. }
  158. static int check_diff(float *tab1, float *tab2, int n, double scale)
  159. {
  160. int i;
  161. double max= 0;
  162. double error= 0;
  163. int err = 0;
  164. for (i = 0; i < n; i++) {
  165. double e= fabsf(tab1[i] - (tab2[i] / scale));
  166. if (e >= 1e-3) {
  167. av_log(NULL, AV_LOG_ERROR, "ERROR %5d: %10.6f %10.6f\n",
  168. i, tab1[i], tab2[i]);
  169. err = 1;
  170. }
  171. error+= e*e;
  172. if(e>max) max= e;
  173. }
  174. av_log(NULL, AV_LOG_INFO, "max:%f e:%g\n", max, sqrt(error)/n);
  175. return err;
  176. }
  177. static void help(void)
  178. {
  179. av_log(NULL, AV_LOG_INFO,"usage: fft-test [-h] [-s] [-i] [-n b]\n"
  180. "-h print this help\n"
  181. "-s speed test\n"
  182. "-m (I)MDCT test\n"
  183. "-d (I)DCT test\n"
  184. "-r (I)RDFT test\n"
  185. "-i inverse transform test\n"
  186. "-n b set the transform size to 2^b\n"
  187. "-f x set scale factor for output data of (I)MDCT to x\n"
  188. );
  189. exit(1);
  190. }
  191. enum tf_transform {
  192. TRANSFORM_FFT,
  193. TRANSFORM_MDCT,
  194. TRANSFORM_RDFT,
  195. TRANSFORM_DCT,
  196. };
  197. int main(int argc, char **argv)
  198. {
  199. FFTComplex *tab, *tab1, *tab_ref;
  200. FFTSample *tab2;
  201. int it, i, c;
  202. int do_speed = 0;
  203. int err = 1;
  204. enum tf_transform transform = TRANSFORM_FFT;
  205. int do_inverse = 0;
  206. FFTContext s1, *s = &s1;
  207. FFTContext m1, *m = &m1;
  208. RDFTContext r1, *r = &r1;
  209. DCTContext d1, *d = &d1;
  210. int fft_nbits, fft_size, fft_size_2;
  211. double scale = 1.0;
  212. AVLFG prng;
  213. av_lfg_init(&prng, 1);
  214. fft_nbits = 9;
  215. for(;;) {
  216. c = getopt(argc, argv, "hsimrdn:f:");
  217. if (c == -1)
  218. break;
  219. switch(c) {
  220. case 'h':
  221. help();
  222. break;
  223. case 's':
  224. do_speed = 1;
  225. break;
  226. case 'i':
  227. do_inverse = 1;
  228. break;
  229. case 'm':
  230. transform = TRANSFORM_MDCT;
  231. break;
  232. case 'r':
  233. transform = TRANSFORM_RDFT;
  234. break;
  235. case 'd':
  236. transform = TRANSFORM_DCT;
  237. break;
  238. case 'n':
  239. fft_nbits = atoi(optarg);
  240. break;
  241. case 'f':
  242. scale = atof(optarg);
  243. break;
  244. }
  245. }
  246. fft_size = 1 << fft_nbits;
  247. fft_size_2 = fft_size >> 1;
  248. tab = av_malloc(fft_size * sizeof(FFTComplex));
  249. tab1 = av_malloc(fft_size * sizeof(FFTComplex));
  250. tab_ref = av_malloc(fft_size * sizeof(FFTComplex));
  251. tab2 = av_malloc(fft_size * sizeof(FFTSample));
  252. switch (transform) {
  253. case TRANSFORM_MDCT:
  254. av_log(NULL, AV_LOG_INFO,"Scale factor is set to %f\n", scale);
  255. if (do_inverse)
  256. av_log(NULL, AV_LOG_INFO,"IMDCT");
  257. else
  258. av_log(NULL, AV_LOG_INFO,"MDCT");
  259. ff_mdct_init(m, fft_nbits, do_inverse, scale);
  260. break;
  261. case TRANSFORM_FFT:
  262. if (do_inverse)
  263. av_log(NULL, AV_LOG_INFO,"IFFT");
  264. else
  265. av_log(NULL, AV_LOG_INFO,"FFT");
  266. ff_fft_init(s, fft_nbits, do_inverse);
  267. fft_ref_init(fft_nbits, do_inverse);
  268. break;
  269. case TRANSFORM_RDFT:
  270. if (do_inverse)
  271. av_log(NULL, AV_LOG_INFO,"IDFT_C2R");
  272. else
  273. av_log(NULL, AV_LOG_INFO,"DFT_R2C");
  274. ff_rdft_init(r, fft_nbits, do_inverse ? IDFT_C2R : DFT_R2C);
  275. fft_ref_init(fft_nbits, do_inverse);
  276. break;
  277. case TRANSFORM_DCT:
  278. if (do_inverse)
  279. av_log(NULL, AV_LOG_INFO,"DCT_III");
  280. else
  281. av_log(NULL, AV_LOG_INFO,"DCT_II");
  282. ff_dct_init(d, fft_nbits, do_inverse ? DCT_III : DCT_II);
  283. break;
  284. }
  285. av_log(NULL, AV_LOG_INFO," %d test\n", fft_size);
  286. /* generate random data */
  287. for (i = 0; i < fft_size; i++) {
  288. tab1[i].re = frandom(&prng);
  289. tab1[i].im = frandom(&prng);
  290. }
  291. /* checking result */
  292. av_log(NULL, AV_LOG_INFO,"Checking...\n");
  293. switch (transform) {
  294. case TRANSFORM_MDCT:
  295. if (do_inverse) {
  296. imdct_ref((float *)tab_ref, (float *)tab1, fft_nbits);
  297. m->imdct_calc(m, tab2, (float *)tab1);
  298. err = check_diff((float *)tab_ref, tab2, fft_size, scale);
  299. } else {
  300. mdct_ref((float *)tab_ref, (float *)tab1, fft_nbits);
  301. m->mdct_calc(m, tab2, (float *)tab1);
  302. err = check_diff((float *)tab_ref, tab2, fft_size / 2, scale);
  303. }
  304. break;
  305. case TRANSFORM_FFT:
  306. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  307. s->fft_permute(s, tab);
  308. s->fft_calc(s, tab);
  309. fft_ref(tab_ref, tab1, fft_nbits);
  310. err = check_diff((float *)tab_ref, (float *)tab, fft_size * 2, 1.0);
  311. break;
  312. case TRANSFORM_RDFT:
  313. if (do_inverse) {
  314. tab1[ 0].im = 0;
  315. tab1[fft_size_2].im = 0;
  316. for (i = 1; i < fft_size_2; i++) {
  317. tab1[fft_size_2+i].re = tab1[fft_size_2-i].re;
  318. tab1[fft_size_2+i].im = -tab1[fft_size_2-i].im;
  319. }
  320. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  321. tab2[1] = tab1[fft_size_2].re;
  322. r->rdft_calc(r, tab2);
  323. fft_ref(tab_ref, tab1, fft_nbits);
  324. for (i = 0; i < fft_size; i++) {
  325. tab[i].re = tab2[i];
  326. tab[i].im = 0;
  327. }
  328. err = check_diff((float *)tab_ref, (float *)tab, fft_size * 2, 0.5);
  329. } else {
  330. for (i = 0; i < fft_size; i++) {
  331. tab2[i] = tab1[i].re;
  332. tab1[i].im = 0;
  333. }
  334. r->rdft_calc(r, tab2);
  335. fft_ref(tab_ref, tab1, fft_nbits);
  336. tab_ref[0].im = tab_ref[fft_size_2].re;
  337. err = check_diff((float *)tab_ref, (float *)tab2, fft_size, 1.0);
  338. }
  339. break;
  340. case TRANSFORM_DCT:
  341. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  342. d->dct_calc(d, tab);
  343. if (do_inverse) {
  344. idct_ref(tab_ref, tab1, fft_nbits);
  345. } else {
  346. dct_ref(tab_ref, tab1, fft_nbits);
  347. }
  348. err = check_diff((float *)tab_ref, (float *)tab, fft_size, 1.0);
  349. break;
  350. }
  351. /* do a speed test */
  352. if (do_speed) {
  353. int64_t time_start, duration;
  354. int nb_its;
  355. av_log(NULL, AV_LOG_INFO,"Speed test...\n");
  356. /* we measure during about 1 seconds */
  357. nb_its = 1;
  358. for(;;) {
  359. time_start = gettime();
  360. for (it = 0; it < nb_its; it++) {
  361. switch (transform) {
  362. case TRANSFORM_MDCT:
  363. if (do_inverse) {
  364. m->imdct_calc(m, (float *)tab, (float *)tab1);
  365. } else {
  366. m->mdct_calc(m, (float *)tab, (float *)tab1);
  367. }
  368. break;
  369. case TRANSFORM_FFT:
  370. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  371. s->fft_calc(s, tab);
  372. break;
  373. case TRANSFORM_RDFT:
  374. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  375. r->rdft_calc(r, tab2);
  376. break;
  377. case TRANSFORM_DCT:
  378. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  379. d->dct_calc(d, tab2);
  380. break;
  381. }
  382. }
  383. duration = gettime() - time_start;
  384. if (duration >= 1000000)
  385. break;
  386. nb_its *= 2;
  387. }
  388. av_log(NULL, AV_LOG_INFO,"time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
  389. (double)duration / nb_its,
  390. (double)duration / 1000000.0,
  391. nb_its);
  392. }
  393. switch (transform) {
  394. case TRANSFORM_MDCT:
  395. ff_mdct_end(m);
  396. break;
  397. case TRANSFORM_FFT:
  398. ff_fft_end(s);
  399. break;
  400. case TRANSFORM_RDFT:
  401. ff_rdft_end(r);
  402. break;
  403. case TRANSFORM_DCT:
  404. ff_dct_end(d);
  405. break;
  406. }
  407. av_free(tab);
  408. av_free(tab1);
  409. av_free(tab2);
  410. av_free(tab_ref);
  411. av_free(exptab);
  412. return err;
  413. }