You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1176 lines
36KB

  1. /*
  2. * G.723.1 compatible decoder
  3. * Copyright (c) 2006 Benjamin Larsson
  4. * Copyright (c) 2010 Mohamed Naufal Basheer
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * G.723.1 compatible decoder
  25. */
  26. #define BITSTREAM_READER_LE
  27. #include "libavutil/audioconvert.h"
  28. #include "libavutil/lzo.h"
  29. #include "libavutil/opt.h"
  30. #include "avcodec.h"
  31. #include "get_bits.h"
  32. #include "acelp_vectors.h"
  33. #include "celp_filters.h"
  34. #include "celp_math.h"
  35. #include "lsp.h"
  36. #include "g723_1_data.h"
  37. /**
  38. * G723.1 frame types
  39. */
  40. enum FrameType {
  41. ACTIVE_FRAME, ///< Active speech
  42. SID_FRAME, ///< Silence Insertion Descriptor frame
  43. UNTRANSMITTED_FRAME
  44. };
  45. enum Rate {
  46. RATE_6300,
  47. RATE_5300
  48. };
  49. /**
  50. * G723.1 unpacked data subframe
  51. */
  52. typedef struct {
  53. int ad_cb_lag; ///< adaptive codebook lag
  54. int ad_cb_gain;
  55. int dirac_train;
  56. int pulse_sign;
  57. int grid_index;
  58. int amp_index;
  59. int pulse_pos;
  60. } G723_1_Subframe;
  61. /**
  62. * Pitch postfilter parameters
  63. */
  64. typedef struct {
  65. int index; ///< postfilter backward/forward lag
  66. int16_t opt_gain; ///< optimal gain
  67. int16_t sc_gain; ///< scaling gain
  68. } PPFParam;
  69. typedef struct g723_1_context {
  70. AVClass *class;
  71. AVFrame frame;
  72. G723_1_Subframe subframe[4];
  73. enum FrameType cur_frame_type;
  74. enum FrameType past_frame_type;
  75. enum Rate cur_rate;
  76. uint8_t lsp_index[LSP_BANDS];
  77. int pitch_lag[2];
  78. int erased_frames;
  79. int16_t prev_lsp[LPC_ORDER];
  80. int16_t prev_excitation[PITCH_MAX];
  81. int16_t excitation[PITCH_MAX + FRAME_LEN];
  82. int16_t synth_mem[LPC_ORDER];
  83. int16_t fir_mem[LPC_ORDER];
  84. int iir_mem[LPC_ORDER];
  85. int random_seed;
  86. int interp_index;
  87. int interp_gain;
  88. int sid_gain;
  89. int cur_gain;
  90. int reflection_coef;
  91. int pf_gain;
  92. int postfilter;
  93. int16_t audio[FRAME_LEN + LPC_ORDER];
  94. } G723_1_Context;
  95. static av_cold int g723_1_decode_init(AVCodecContext *avctx)
  96. {
  97. G723_1_Context *p = avctx->priv_data;
  98. avctx->channel_layout = AV_CH_LAYOUT_MONO;
  99. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  100. avctx->channels = 1;
  101. avctx->sample_rate = 8000;
  102. p->pf_gain = 1 << 12;
  103. avcodec_get_frame_defaults(&p->frame);
  104. avctx->coded_frame = &p->frame;
  105. memcpy(p->prev_lsp, dc_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
  106. return 0;
  107. }
  108. /**
  109. * Unpack the frame into parameters.
  110. *
  111. * @param p the context
  112. * @param buf pointer to the input buffer
  113. * @param buf_size size of the input buffer
  114. */
  115. static int unpack_bitstream(G723_1_Context *p, const uint8_t *buf,
  116. int buf_size)
  117. {
  118. GetBitContext gb;
  119. int ad_cb_len;
  120. int temp, info_bits, i;
  121. init_get_bits(&gb, buf, buf_size * 8);
  122. /* Extract frame type and rate info */
  123. info_bits = get_bits(&gb, 2);
  124. if (info_bits == 3) {
  125. p->cur_frame_type = UNTRANSMITTED_FRAME;
  126. return 0;
  127. }
  128. /* Extract 24 bit lsp indices, 8 bit for each band */
  129. p->lsp_index[2] = get_bits(&gb, 8);
  130. p->lsp_index[1] = get_bits(&gb, 8);
  131. p->lsp_index[0] = get_bits(&gb, 8);
  132. if (info_bits == 2) {
  133. p->cur_frame_type = SID_FRAME;
  134. p->subframe[0].amp_index = get_bits(&gb, 6);
  135. return 0;
  136. }
  137. /* Extract the info common to both rates */
  138. p->cur_rate = info_bits ? RATE_5300 : RATE_6300;
  139. p->cur_frame_type = ACTIVE_FRAME;
  140. p->pitch_lag[0] = get_bits(&gb, 7);
  141. if (p->pitch_lag[0] > 123) /* test if forbidden code */
  142. return -1;
  143. p->pitch_lag[0] += PITCH_MIN;
  144. p->subframe[1].ad_cb_lag = get_bits(&gb, 2);
  145. p->pitch_lag[1] = get_bits(&gb, 7);
  146. if (p->pitch_lag[1] > 123)
  147. return -1;
  148. p->pitch_lag[1] += PITCH_MIN;
  149. p->subframe[3].ad_cb_lag = get_bits(&gb, 2);
  150. p->subframe[0].ad_cb_lag = 1;
  151. p->subframe[2].ad_cb_lag = 1;
  152. for (i = 0; i < SUBFRAMES; i++) {
  153. /* Extract combined gain */
  154. temp = get_bits(&gb, 12);
  155. ad_cb_len = 170;
  156. p->subframe[i].dirac_train = 0;
  157. if (p->cur_rate == RATE_6300 && p->pitch_lag[i >> 1] < SUBFRAME_LEN - 2) {
  158. p->subframe[i].dirac_train = temp >> 11;
  159. temp &= 0x7FF;
  160. ad_cb_len = 85;
  161. }
  162. p->subframe[i].ad_cb_gain = FASTDIV(temp, GAIN_LEVELS);
  163. if (p->subframe[i].ad_cb_gain < ad_cb_len) {
  164. p->subframe[i].amp_index = temp - p->subframe[i].ad_cb_gain *
  165. GAIN_LEVELS;
  166. } else {
  167. return -1;
  168. }
  169. }
  170. p->subframe[0].grid_index = get_bits(&gb, 1);
  171. p->subframe[1].grid_index = get_bits(&gb, 1);
  172. p->subframe[2].grid_index = get_bits(&gb, 1);
  173. p->subframe[3].grid_index = get_bits(&gb, 1);
  174. if (p->cur_rate == RATE_6300) {
  175. skip_bits(&gb, 1); /* skip reserved bit */
  176. /* Compute pulse_pos index using the 13-bit combined position index */
  177. temp = get_bits(&gb, 13);
  178. p->subframe[0].pulse_pos = temp / 810;
  179. temp -= p->subframe[0].pulse_pos * 810;
  180. p->subframe[1].pulse_pos = FASTDIV(temp, 90);
  181. temp -= p->subframe[1].pulse_pos * 90;
  182. p->subframe[2].pulse_pos = FASTDIV(temp, 9);
  183. p->subframe[3].pulse_pos = temp - p->subframe[2].pulse_pos * 9;
  184. p->subframe[0].pulse_pos = (p->subframe[0].pulse_pos << 16) +
  185. get_bits(&gb, 16);
  186. p->subframe[1].pulse_pos = (p->subframe[1].pulse_pos << 14) +
  187. get_bits(&gb, 14);
  188. p->subframe[2].pulse_pos = (p->subframe[2].pulse_pos << 16) +
  189. get_bits(&gb, 16);
  190. p->subframe[3].pulse_pos = (p->subframe[3].pulse_pos << 14) +
  191. get_bits(&gb, 14);
  192. p->subframe[0].pulse_sign = get_bits(&gb, 6);
  193. p->subframe[1].pulse_sign = get_bits(&gb, 5);
  194. p->subframe[2].pulse_sign = get_bits(&gb, 6);
  195. p->subframe[3].pulse_sign = get_bits(&gb, 5);
  196. } else { /* 5300 bps */
  197. p->subframe[0].pulse_pos = get_bits(&gb, 12);
  198. p->subframe[1].pulse_pos = get_bits(&gb, 12);
  199. p->subframe[2].pulse_pos = get_bits(&gb, 12);
  200. p->subframe[3].pulse_pos = get_bits(&gb, 12);
  201. p->subframe[0].pulse_sign = get_bits(&gb, 4);
  202. p->subframe[1].pulse_sign = get_bits(&gb, 4);
  203. p->subframe[2].pulse_sign = get_bits(&gb, 4);
  204. p->subframe[3].pulse_sign = get_bits(&gb, 4);
  205. }
  206. return 0;
  207. }
  208. /**
  209. * Bitexact implementation of sqrt(val/2).
  210. */
  211. static int16_t square_root(int val)
  212. {
  213. int16_t res = 0;
  214. int16_t exp = 0x4000;
  215. int i;
  216. for (i = 0; i < 14; i ++) {
  217. int res_exp = res + exp;
  218. if (val >= res_exp * res_exp << 1)
  219. res += exp;
  220. exp >>= 1;
  221. }
  222. return res;
  223. }
  224. /**
  225. * Calculate the number of left-shifts required for normalizing the input.
  226. *
  227. * @param num input number
  228. * @param width width of the input, 16 bits(0) / 32 bits(1)
  229. */
  230. static int normalize_bits(int num, int width)
  231. {
  232. if (!num)
  233. return 0;
  234. if (num == -1)
  235. return width;
  236. if (num < 0)
  237. num = ~num;
  238. return width - av_log2(num);
  239. }
  240. /**
  241. * Scale vector contents based on the largest of their absolutes.
  242. */
  243. static int scale_vector(int16_t *vector, int length)
  244. {
  245. int bits, scale, max = 0;
  246. int i;
  247. for (i = 0; i < length; i++)
  248. max = FFMAX(max, FFABS(vector[i]));
  249. bits = normalize_bits(max, 15);
  250. scale = (bits == 15) ? 0x7FFF : (1 << bits);
  251. for (i = 0; i < length; i++)
  252. vector[i] = (vector[i] * scale) >> 4;
  253. return bits - 3;
  254. }
  255. /**
  256. * Perform inverse quantization of LSP frequencies.
  257. *
  258. * @param cur_lsp the current LSP vector
  259. * @param prev_lsp the previous LSP vector
  260. * @param lsp_index VQ indices
  261. * @param bad_frame bad frame flag
  262. */
  263. static void inverse_quant(int16_t *cur_lsp, int16_t *prev_lsp,
  264. uint8_t *lsp_index, int bad_frame)
  265. {
  266. int min_dist, pred;
  267. int i, j, temp, stable;
  268. /* Check for frame erasure */
  269. if (!bad_frame) {
  270. min_dist = 0x100;
  271. pred = 12288;
  272. } else {
  273. min_dist = 0x200;
  274. pred = 23552;
  275. lsp_index[0] = lsp_index[1] = lsp_index[2] = 0;
  276. }
  277. /* Get the VQ table entry corresponding to the transmitted index */
  278. cur_lsp[0] = lsp_band0[lsp_index[0]][0];
  279. cur_lsp[1] = lsp_band0[lsp_index[0]][1];
  280. cur_lsp[2] = lsp_band0[lsp_index[0]][2];
  281. cur_lsp[3] = lsp_band1[lsp_index[1]][0];
  282. cur_lsp[4] = lsp_band1[lsp_index[1]][1];
  283. cur_lsp[5] = lsp_band1[lsp_index[1]][2];
  284. cur_lsp[6] = lsp_band2[lsp_index[2]][0];
  285. cur_lsp[7] = lsp_band2[lsp_index[2]][1];
  286. cur_lsp[8] = lsp_band2[lsp_index[2]][2];
  287. cur_lsp[9] = lsp_band2[lsp_index[2]][3];
  288. /* Add predicted vector & DC component to the previously quantized vector */
  289. for (i = 0; i < LPC_ORDER; i++) {
  290. temp = ((prev_lsp[i] - dc_lsp[i]) * pred + (1 << 14)) >> 15;
  291. cur_lsp[i] += dc_lsp[i] + temp;
  292. }
  293. for (i = 0; i < LPC_ORDER; i++) {
  294. cur_lsp[0] = FFMAX(cur_lsp[0], 0x180);
  295. cur_lsp[LPC_ORDER - 1] = FFMIN(cur_lsp[LPC_ORDER - 1], 0x7e00);
  296. /* Stability check */
  297. for (j = 1; j < LPC_ORDER; j++) {
  298. temp = min_dist + cur_lsp[j - 1] - cur_lsp[j];
  299. if (temp > 0) {
  300. temp >>= 1;
  301. cur_lsp[j - 1] -= temp;
  302. cur_lsp[j] += temp;
  303. }
  304. }
  305. stable = 1;
  306. for (j = 1; j < LPC_ORDER; j++) {
  307. temp = cur_lsp[j - 1] + min_dist - cur_lsp[j] - 4;
  308. if (temp > 0) {
  309. stable = 0;
  310. break;
  311. }
  312. }
  313. if (stable)
  314. break;
  315. }
  316. if (!stable)
  317. memcpy(cur_lsp, prev_lsp, LPC_ORDER * sizeof(*cur_lsp));
  318. }
  319. /**
  320. * Bitexact implementation of 2ab scaled by 1/2^16.
  321. *
  322. * @param a 32 bit multiplicand
  323. * @param b 16 bit multiplier
  324. */
  325. #define MULL2(a, b) \
  326. ((((a) >> 16) * (b) << 1) + (((a) & 0xffff) * (b) >> 15))
  327. /**
  328. * Convert LSP frequencies to LPC coefficients.
  329. *
  330. * @param lpc buffer for LPC coefficients
  331. */
  332. static void lsp2lpc(int16_t *lpc)
  333. {
  334. int f1[LPC_ORDER / 2 + 1];
  335. int f2[LPC_ORDER / 2 + 1];
  336. int i, j;
  337. /* Calculate negative cosine */
  338. for (j = 0; j < LPC_ORDER; j++) {
  339. int index = lpc[j] >> 7;
  340. int offset = lpc[j] & 0x7f;
  341. int64_t temp1 = cos_tab[index] << 16;
  342. int temp2 = (cos_tab[index + 1] - cos_tab[index]) *
  343. ((offset << 8) + 0x80) << 1;
  344. lpc[j] = -(av_clipl_int32(((temp1 + temp2) << 1) + (1 << 15)) >> 16);
  345. }
  346. /*
  347. * Compute sum and difference polynomial coefficients
  348. * (bitexact alternative to lsp2poly() in lsp.c)
  349. */
  350. /* Initialize with values in Q28 */
  351. f1[0] = 1 << 28;
  352. f1[1] = (lpc[0] << 14) + (lpc[2] << 14);
  353. f1[2] = lpc[0] * lpc[2] + (2 << 28);
  354. f2[0] = 1 << 28;
  355. f2[1] = (lpc[1] << 14) + (lpc[3] << 14);
  356. f2[2] = lpc[1] * lpc[3] + (2 << 28);
  357. /*
  358. * Calculate and scale the coefficients by 1/2 in
  359. * each iteration for a final scaling factor of Q25
  360. */
  361. for (i = 2; i < LPC_ORDER / 2; i++) {
  362. f1[i + 1] = f1[i - 1] + MULL2(f1[i], lpc[2 * i]);
  363. f2[i + 1] = f2[i - 1] + MULL2(f2[i], lpc[2 * i + 1]);
  364. for (j = i; j >= 2; j--) {
  365. f1[j] = MULL2(f1[j - 1], lpc[2 * i]) +
  366. (f1[j] >> 1) + (f1[j - 2] >> 1);
  367. f2[j] = MULL2(f2[j - 1], lpc[2 * i + 1]) +
  368. (f2[j] >> 1) + (f2[j - 2] >> 1);
  369. }
  370. f1[0] >>= 1;
  371. f2[0] >>= 1;
  372. f1[1] = ((lpc[2 * i] << 16 >> i) + f1[1]) >> 1;
  373. f2[1] = ((lpc[2 * i + 1] << 16 >> i) + f2[1]) >> 1;
  374. }
  375. /* Convert polynomial coefficients to LPC coefficients */
  376. for (i = 0; i < LPC_ORDER / 2; i++) {
  377. int64_t ff1 = f1[i + 1] + f1[i];
  378. int64_t ff2 = f2[i + 1] - f2[i];
  379. lpc[i] = av_clipl_int32(((ff1 + ff2) << 3) + (1 << 15)) >> 16;
  380. lpc[LPC_ORDER - i - 1] = av_clipl_int32(((ff1 - ff2) << 3) +
  381. (1 << 15)) >> 16;
  382. }
  383. }
  384. /**
  385. * Quantize LSP frequencies by interpolation and convert them to
  386. * the corresponding LPC coefficients.
  387. *
  388. * @param lpc buffer for LPC coefficients
  389. * @param cur_lsp the current LSP vector
  390. * @param prev_lsp the previous LSP vector
  391. */
  392. static void lsp_interpolate(int16_t *lpc, int16_t *cur_lsp, int16_t *prev_lsp)
  393. {
  394. int i;
  395. int16_t *lpc_ptr = lpc;
  396. /* cur_lsp * 0.25 + prev_lsp * 0.75 */
  397. ff_acelp_weighted_vector_sum(lpc, cur_lsp, prev_lsp,
  398. 4096, 12288, 1 << 13, 14, LPC_ORDER);
  399. ff_acelp_weighted_vector_sum(lpc + LPC_ORDER, cur_lsp, prev_lsp,
  400. 8192, 8192, 1 << 13, 14, LPC_ORDER);
  401. ff_acelp_weighted_vector_sum(lpc + 2 * LPC_ORDER, cur_lsp, prev_lsp,
  402. 12288, 4096, 1 << 13, 14, LPC_ORDER);
  403. memcpy(lpc + 3 * LPC_ORDER, cur_lsp, LPC_ORDER * sizeof(*lpc));
  404. for (i = 0; i < SUBFRAMES; i++) {
  405. lsp2lpc(lpc_ptr);
  406. lpc_ptr += LPC_ORDER;
  407. }
  408. }
  409. /**
  410. * Generate a train of dirac functions with period as pitch lag.
  411. */
  412. static void gen_dirac_train(int16_t *buf, int pitch_lag)
  413. {
  414. int16_t vector[SUBFRAME_LEN];
  415. int i, j;
  416. memcpy(vector, buf, SUBFRAME_LEN * sizeof(*vector));
  417. for (i = pitch_lag; i < SUBFRAME_LEN; i += pitch_lag) {
  418. for (j = 0; j < SUBFRAME_LEN - i; j++)
  419. buf[i + j] += vector[j];
  420. }
  421. }
  422. /**
  423. * Generate fixed codebook excitation vector.
  424. *
  425. * @param vector decoded excitation vector
  426. * @param subfrm current subframe
  427. * @param cur_rate current bitrate
  428. * @param pitch_lag closed loop pitch lag
  429. * @param index current subframe index
  430. */
  431. static void gen_fcb_excitation(int16_t *vector, G723_1_Subframe subfrm,
  432. enum Rate cur_rate, int pitch_lag, int index)
  433. {
  434. int temp, i, j;
  435. memset(vector, 0, SUBFRAME_LEN * sizeof(*vector));
  436. if (cur_rate == RATE_6300) {
  437. if (subfrm.pulse_pos >= max_pos[index])
  438. return;
  439. /* Decode amplitudes and positions */
  440. j = PULSE_MAX - pulses[index];
  441. temp = subfrm.pulse_pos;
  442. for (i = 0; i < SUBFRAME_LEN / GRID_SIZE; i++) {
  443. temp -= combinatorial_table[j][i];
  444. if (temp >= 0)
  445. continue;
  446. temp += combinatorial_table[j++][i];
  447. if (subfrm.pulse_sign & (1 << (PULSE_MAX - j))) {
  448. vector[subfrm.grid_index + GRID_SIZE * i] =
  449. -fixed_cb_gain[subfrm.amp_index];
  450. } else {
  451. vector[subfrm.grid_index + GRID_SIZE * i] =
  452. fixed_cb_gain[subfrm.amp_index];
  453. }
  454. if (j == PULSE_MAX)
  455. break;
  456. }
  457. if (subfrm.dirac_train == 1)
  458. gen_dirac_train(vector, pitch_lag);
  459. } else { /* 5300 bps */
  460. int cb_gain = fixed_cb_gain[subfrm.amp_index];
  461. int cb_shift = subfrm.grid_index;
  462. int cb_sign = subfrm.pulse_sign;
  463. int cb_pos = subfrm.pulse_pos;
  464. int offset, beta, lag;
  465. for (i = 0; i < 8; i += 2) {
  466. offset = ((cb_pos & 7) << 3) + cb_shift + i;
  467. vector[offset] = (cb_sign & 1) ? cb_gain : -cb_gain;
  468. cb_pos >>= 3;
  469. cb_sign >>= 1;
  470. }
  471. /* Enhance harmonic components */
  472. lag = pitch_contrib[subfrm.ad_cb_gain << 1] + pitch_lag +
  473. subfrm.ad_cb_lag - 1;
  474. beta = pitch_contrib[(subfrm.ad_cb_gain << 1) + 1];
  475. if (lag < SUBFRAME_LEN - 2) {
  476. for (i = lag; i < SUBFRAME_LEN; i++)
  477. vector[i] += beta * vector[i - lag] >> 15;
  478. }
  479. }
  480. }
  481. /**
  482. * Get delayed contribution from the previous excitation vector.
  483. */
  484. static void get_residual(int16_t *residual, int16_t *prev_excitation, int lag)
  485. {
  486. int offset = PITCH_MAX - PITCH_ORDER / 2 - lag;
  487. int i;
  488. residual[0] = prev_excitation[offset];
  489. residual[1] = prev_excitation[offset + 1];
  490. offset += 2;
  491. for (i = 2; i < SUBFRAME_LEN + PITCH_ORDER - 1; i++)
  492. residual[i] = prev_excitation[offset + (i - 2) % lag];
  493. }
  494. static int dot_product(const int16_t *a, const int16_t *b, int length,
  495. int shift)
  496. {
  497. int i, sum = 0;
  498. for (i = 0; i < length; i++) {
  499. int64_t prod = av_clipl_int32(MUL64(a[i], b[i]) << shift);
  500. sum = av_clipl_int32(sum + prod);
  501. }
  502. return sum;
  503. }
  504. /**
  505. * Generate adaptive codebook excitation.
  506. */
  507. static void gen_acb_excitation(int16_t *vector, int16_t *prev_excitation,
  508. int pitch_lag, G723_1_Subframe subfrm,
  509. enum Rate cur_rate)
  510. {
  511. int16_t residual[SUBFRAME_LEN + PITCH_ORDER - 1];
  512. const int16_t *cb_ptr;
  513. int lag = pitch_lag + subfrm.ad_cb_lag - 1;
  514. int i;
  515. int64_t sum;
  516. get_residual(residual, prev_excitation, lag);
  517. /* Select quantization table */
  518. if (cur_rate == RATE_6300 && pitch_lag < SUBFRAME_LEN - 2)
  519. cb_ptr = adaptive_cb_gain85;
  520. else
  521. cb_ptr = adaptive_cb_gain170;
  522. /* Calculate adaptive vector */
  523. cb_ptr += subfrm.ad_cb_gain * 20;
  524. for (i = 0; i < SUBFRAME_LEN; i++) {
  525. sum = dot_product(residual + i, cb_ptr, PITCH_ORDER, 1);
  526. vector[i] = av_clipl_int32((sum << 1) + (1 << 15)) >> 16;
  527. }
  528. }
  529. /**
  530. * Estimate maximum auto-correlation around pitch lag.
  531. *
  532. * @param p the context
  533. * @param offset offset of the excitation vector
  534. * @param ccr_max pointer to the maximum auto-correlation
  535. * @param pitch_lag decoded pitch lag
  536. * @param length length of autocorrelation
  537. * @param dir forward lag(1) / backward lag(-1)
  538. */
  539. static int autocorr_max(G723_1_Context *p, int offset, int *ccr_max,
  540. int pitch_lag, int length, int dir)
  541. {
  542. int limit, ccr, lag = 0;
  543. int16_t *buf = p->excitation + offset;
  544. int i;
  545. pitch_lag = FFMIN(PITCH_MAX - 3, pitch_lag);
  546. limit = FFMIN(FRAME_LEN + PITCH_MAX - offset - length, pitch_lag + 3);
  547. for (i = pitch_lag - 3; i <= limit; i++) {
  548. ccr = dot_product(buf, buf + dir * i, length, 1);
  549. if (ccr > *ccr_max) {
  550. *ccr_max = ccr;
  551. lag = i;
  552. }
  553. }
  554. return lag;
  555. }
  556. /**
  557. * Calculate pitch postfilter optimal and scaling gains.
  558. *
  559. * @param lag pitch postfilter forward/backward lag
  560. * @param ppf pitch postfilter parameters
  561. * @param cur_rate current bitrate
  562. * @param tgt_eng target energy
  563. * @param ccr cross-correlation
  564. * @param res_eng residual energy
  565. */
  566. static void comp_ppf_gains(int lag, PPFParam *ppf, enum Rate cur_rate,
  567. int tgt_eng, int ccr, int res_eng)
  568. {
  569. int pf_residual; /* square of postfiltered residual */
  570. int64_t temp1, temp2;
  571. ppf->index = lag;
  572. temp1 = tgt_eng * res_eng >> 1;
  573. temp2 = ccr * ccr << 1;
  574. if (temp2 > temp1) {
  575. if (ccr >= res_eng) {
  576. ppf->opt_gain = ppf_gain_weight[cur_rate];
  577. } else {
  578. ppf->opt_gain = (ccr << 15) / res_eng *
  579. ppf_gain_weight[cur_rate] >> 15;
  580. }
  581. /* pf_res^2 = tgt_eng + 2*ccr*gain + res_eng*gain^2 */
  582. temp1 = (tgt_eng << 15) + (ccr * ppf->opt_gain << 1);
  583. temp2 = (ppf->opt_gain * ppf->opt_gain >> 15) * res_eng;
  584. pf_residual = av_clipl_int32(temp1 + temp2 + (1 << 15)) >> 16;
  585. if (tgt_eng >= pf_residual << 1) {
  586. temp1 = 0x7fff;
  587. } else {
  588. temp1 = (tgt_eng << 14) / pf_residual;
  589. }
  590. /* scaling_gain = sqrt(tgt_eng/pf_res^2) */
  591. ppf->sc_gain = square_root(temp1 << 16);
  592. } else {
  593. ppf->opt_gain = 0;
  594. ppf->sc_gain = 0x7fff;
  595. }
  596. ppf->opt_gain = av_clip_int16(ppf->opt_gain * ppf->sc_gain >> 15);
  597. }
  598. /**
  599. * Calculate pitch postfilter parameters.
  600. *
  601. * @param p the context
  602. * @param offset offset of the excitation vector
  603. * @param pitch_lag decoded pitch lag
  604. * @param ppf pitch postfilter parameters
  605. * @param cur_rate current bitrate
  606. */
  607. static void comp_ppf_coeff(G723_1_Context *p, int offset, int pitch_lag,
  608. PPFParam *ppf, enum Rate cur_rate)
  609. {
  610. int16_t scale;
  611. int i;
  612. int64_t temp1, temp2;
  613. /*
  614. * 0 - target energy
  615. * 1 - forward cross-correlation
  616. * 2 - forward residual energy
  617. * 3 - backward cross-correlation
  618. * 4 - backward residual energy
  619. */
  620. int energy[5] = {0, 0, 0, 0, 0};
  621. int16_t *buf = p->excitation + offset;
  622. int fwd_lag = autocorr_max(p, offset, &energy[1], pitch_lag,
  623. SUBFRAME_LEN, 1);
  624. int back_lag = autocorr_max(p, offset, &energy[3], pitch_lag,
  625. SUBFRAME_LEN, -1);
  626. ppf->index = 0;
  627. ppf->opt_gain = 0;
  628. ppf->sc_gain = 0x7fff;
  629. /* Case 0, Section 3.6 */
  630. if (!back_lag && !fwd_lag)
  631. return;
  632. /* Compute target energy */
  633. energy[0] = dot_product(buf, buf, SUBFRAME_LEN, 1);
  634. /* Compute forward residual energy */
  635. if (fwd_lag)
  636. energy[2] = dot_product(buf + fwd_lag, buf + fwd_lag,
  637. SUBFRAME_LEN, 1);
  638. /* Compute backward residual energy */
  639. if (back_lag)
  640. energy[4] = dot_product(buf - back_lag, buf - back_lag,
  641. SUBFRAME_LEN, 1);
  642. /* Normalize and shorten */
  643. temp1 = 0;
  644. for (i = 0; i < 5; i++)
  645. temp1 = FFMAX(energy[i], temp1);
  646. scale = normalize_bits(temp1, 31);
  647. for (i = 0; i < 5; i++)
  648. energy[i] = (energy[i] << scale) >> 16;
  649. if (fwd_lag && !back_lag) { /* Case 1 */
  650. comp_ppf_gains(fwd_lag, ppf, cur_rate, energy[0], energy[1],
  651. energy[2]);
  652. } else if (!fwd_lag) { /* Case 2 */
  653. comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
  654. energy[4]);
  655. } else { /* Case 3 */
  656. /*
  657. * Select the largest of energy[1]^2/energy[2]
  658. * and energy[3]^2/energy[4]
  659. */
  660. temp1 = energy[4] * ((energy[1] * energy[1] + (1 << 14)) >> 15);
  661. temp2 = energy[2] * ((energy[3] * energy[3] + (1 << 14)) >> 15);
  662. if (temp1 >= temp2) {
  663. comp_ppf_gains(fwd_lag, ppf, cur_rate, energy[0], energy[1],
  664. energy[2]);
  665. } else {
  666. comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
  667. energy[4]);
  668. }
  669. }
  670. }
  671. /**
  672. * Classify frames as voiced/unvoiced.
  673. *
  674. * @param p the context
  675. * @param pitch_lag decoded pitch_lag
  676. * @param exc_eng excitation energy estimation
  677. * @param scale scaling factor of exc_eng
  678. *
  679. * @return residual interpolation index if voiced, 0 otherwise
  680. */
  681. static int comp_interp_index(G723_1_Context *p, int pitch_lag,
  682. int *exc_eng, int *scale)
  683. {
  684. int offset = PITCH_MAX + 2 * SUBFRAME_LEN;
  685. int16_t *buf = p->excitation + offset;
  686. int index, ccr, tgt_eng, best_eng, temp;
  687. *scale = scale_vector(p->excitation, FRAME_LEN + PITCH_MAX);
  688. /* Compute maximum backward cross-correlation */
  689. ccr = 0;
  690. index = autocorr_max(p, offset, &ccr, pitch_lag, SUBFRAME_LEN * 2, -1);
  691. ccr = av_clipl_int32((int64_t)ccr + (1 << 15)) >> 16;
  692. /* Compute target energy */
  693. tgt_eng = dot_product(buf, buf, SUBFRAME_LEN * 2, 1);
  694. *exc_eng = av_clipl_int32((int64_t)tgt_eng + (1 << 15)) >> 16;
  695. if (ccr <= 0)
  696. return 0;
  697. /* Compute best energy */
  698. best_eng = dot_product(buf - index, buf - index,
  699. SUBFRAME_LEN * 2, 1);
  700. best_eng = av_clipl_int32((int64_t)best_eng + (1 << 15)) >> 16;
  701. temp = best_eng * *exc_eng >> 3;
  702. if (temp < ccr * ccr)
  703. return index;
  704. else
  705. return 0;
  706. }
  707. /**
  708. * Peform residual interpolation based on frame classification.
  709. *
  710. * @param buf decoded excitation vector
  711. * @param out output vector
  712. * @param lag decoded pitch lag
  713. * @param gain interpolated gain
  714. * @param rseed seed for random number generator
  715. */
  716. static void residual_interp(int16_t *buf, int16_t *out, int lag,
  717. int gain, int *rseed)
  718. {
  719. int i;
  720. if (lag) { /* Voiced */
  721. int16_t *vector_ptr = buf + PITCH_MAX;
  722. /* Attenuate */
  723. for (i = 0; i < lag; i++)
  724. vector_ptr[i - lag] = vector_ptr[i - lag] * 3 >> 2;
  725. av_memcpy_backptr((uint8_t*)vector_ptr, lag * sizeof(*vector_ptr),
  726. FRAME_LEN * sizeof(*vector_ptr));
  727. memcpy(out, vector_ptr, FRAME_LEN * sizeof(*vector_ptr));
  728. } else { /* Unvoiced */
  729. for (i = 0; i < FRAME_LEN; i++) {
  730. *rseed = *rseed * 521 + 259;
  731. out[i] = gain * *rseed >> 15;
  732. }
  733. memset(buf, 0, (FRAME_LEN + PITCH_MAX) * sizeof(*buf));
  734. }
  735. }
  736. /**
  737. * Perform IIR filtering.
  738. *
  739. * @param fir_coef FIR coefficients
  740. * @param iir_coef IIR coefficients
  741. * @param src source vector
  742. * @param dest destination vector
  743. */
  744. static inline void iir_filter(int16_t *fir_coef, int16_t *iir_coef,
  745. int16_t *src, int *dest)
  746. {
  747. int m, n;
  748. for (m = 0; m < SUBFRAME_LEN; m++) {
  749. int64_t filter = 0;
  750. for (n = 1; n <= LPC_ORDER; n++) {
  751. filter -= fir_coef[n - 1] * src[m - n] -
  752. iir_coef[n - 1] * (dest[m - n] >> 16);
  753. }
  754. dest[m] = av_clipl_int32((src[m] << 16) + (filter << 3) + (1 << 15));
  755. }
  756. }
  757. /**
  758. * Adjust gain of postfiltered signal.
  759. *
  760. * @param p the context
  761. * @param buf postfiltered output vector
  762. * @param energy input energy coefficient
  763. */
  764. static void gain_scale(G723_1_Context *p, int16_t * buf, int energy)
  765. {
  766. int num, denom, gain, bits1, bits2;
  767. int i;
  768. num = energy;
  769. denom = 0;
  770. for (i = 0; i < SUBFRAME_LEN; i++) {
  771. int64_t temp = buf[i] >> 2;
  772. temp = av_clipl_int32(MUL64(temp, temp) << 1);
  773. denom = av_clipl_int32(denom + temp);
  774. }
  775. if (num && denom) {
  776. bits1 = normalize_bits(num, 31);
  777. bits2 = normalize_bits(denom, 31);
  778. num = num << bits1 >> 1;
  779. denom <<= bits2;
  780. bits2 = 5 + bits1 - bits2;
  781. bits2 = FFMAX(0, bits2);
  782. gain = (num >> 1) / (denom >> 16);
  783. gain = square_root(gain << 16 >> bits2);
  784. } else {
  785. gain = 1 << 12;
  786. }
  787. for (i = 0; i < SUBFRAME_LEN; i++) {
  788. p->pf_gain = ((p->pf_gain << 4) - p->pf_gain + gain + (1 << 3)) >> 4;
  789. buf[i] = av_clip_int16((buf[i] * (p->pf_gain + (p->pf_gain >> 4)) +
  790. (1 << 10)) >> 11);
  791. }
  792. }
  793. /**
  794. * Perform formant filtering.
  795. *
  796. * @param p the context
  797. * @param lpc quantized lpc coefficients
  798. * @param buf output buffer
  799. */
  800. static void formant_postfilter(G723_1_Context *p, int16_t *lpc, int16_t *buf)
  801. {
  802. int16_t filter_coef[2][LPC_ORDER], *buf_ptr;
  803. int filter_signal[LPC_ORDER + FRAME_LEN], *signal_ptr;
  804. int i, j, k;
  805. memcpy(buf, p->fir_mem, LPC_ORDER * sizeof(*buf));
  806. memcpy(filter_signal, p->iir_mem, LPC_ORDER * sizeof(*filter_signal));
  807. for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) {
  808. for (k = 0; k < LPC_ORDER; k++) {
  809. filter_coef[0][k] = (-lpc[k] * postfilter_tbl[0][k] +
  810. (1 << 14)) >> 15;
  811. filter_coef[1][k] = (-lpc[k] * postfilter_tbl[1][k] +
  812. (1 << 14)) >> 15;
  813. }
  814. iir_filter(filter_coef[0], filter_coef[1], buf + i,
  815. filter_signal + i);
  816. }
  817. memcpy(p->fir_mem, buf + FRAME_LEN, LPC_ORDER * sizeof(*p->fir_mem));
  818. memcpy(p->iir_mem, filter_signal + FRAME_LEN,
  819. LPC_ORDER * sizeof(*p->iir_mem));
  820. buf_ptr = buf + LPC_ORDER;
  821. signal_ptr = filter_signal + LPC_ORDER;
  822. for (i = 0; i < SUBFRAMES; i++) {
  823. int16_t temp_vector[SUBFRAME_LEN];
  824. int16_t temp;
  825. int auto_corr[2];
  826. int scale, energy;
  827. /* Normalize */
  828. memcpy(temp_vector, buf_ptr, SUBFRAME_LEN * sizeof(*temp_vector));
  829. scale = scale_vector(temp_vector, SUBFRAME_LEN);
  830. /* Compute auto correlation coefficients */
  831. auto_corr[0] = dot_product(temp_vector, temp_vector + 1,
  832. SUBFRAME_LEN - 1, 1);
  833. auto_corr[1] = dot_product(temp_vector, temp_vector, SUBFRAME_LEN, 1);
  834. /* Compute reflection coefficient */
  835. temp = auto_corr[1] >> 16;
  836. if (temp) {
  837. temp = (auto_corr[0] >> 2) / temp;
  838. }
  839. p->reflection_coef = ((p->reflection_coef << 2) - p->reflection_coef +
  840. temp + 2) >> 2;
  841. temp = (p->reflection_coef * 0xffffc >> 3) & 0xfffc;
  842. /* Compensation filter */
  843. for (j = 0; j < SUBFRAME_LEN; j++) {
  844. buf_ptr[j] = av_clipl_int32(signal_ptr[j] +
  845. ((signal_ptr[j - 1] >> 16) *
  846. temp << 1)) >> 16;
  847. }
  848. /* Compute normalized signal energy */
  849. temp = 2 * scale + 4;
  850. if (temp < 0) {
  851. energy = av_clipl_int32((int64_t)auto_corr[1] << -temp);
  852. } else
  853. energy = auto_corr[1] >> temp;
  854. gain_scale(p, buf_ptr, energy);
  855. buf_ptr += SUBFRAME_LEN;
  856. signal_ptr += SUBFRAME_LEN;
  857. }
  858. }
  859. static int g723_1_decode_frame(AVCodecContext *avctx, void *data,
  860. int *got_frame_ptr, AVPacket *avpkt)
  861. {
  862. G723_1_Context *p = avctx->priv_data;
  863. const uint8_t *buf = avpkt->data;
  864. int buf_size = avpkt->size;
  865. int dec_mode = buf[0] & 3;
  866. PPFParam ppf[SUBFRAMES];
  867. int16_t cur_lsp[LPC_ORDER];
  868. int16_t lpc[SUBFRAMES * LPC_ORDER];
  869. int16_t acb_vector[SUBFRAME_LEN];
  870. int16_t *vector_ptr;
  871. int bad_frame = 0, i, j, ret;
  872. if (buf_size < frame_size[dec_mode]) {
  873. if (buf_size)
  874. av_log(avctx, AV_LOG_WARNING,
  875. "Expected %d bytes, got %d - skipping packet\n",
  876. frame_size[dec_mode], buf_size);
  877. *got_frame_ptr = 0;
  878. return buf_size;
  879. }
  880. if (unpack_bitstream(p, buf, buf_size) < 0) {
  881. bad_frame = 1;
  882. if (p->past_frame_type == ACTIVE_FRAME)
  883. p->cur_frame_type = ACTIVE_FRAME;
  884. else
  885. p->cur_frame_type = UNTRANSMITTED_FRAME;
  886. }
  887. p->frame.nb_samples = FRAME_LEN;
  888. if ((ret = avctx->get_buffer(avctx, &p->frame)) < 0) {
  889. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  890. return ret;
  891. }
  892. if (p->cur_frame_type == ACTIVE_FRAME) {
  893. if (!bad_frame)
  894. p->erased_frames = 0;
  895. else if (p->erased_frames != 3)
  896. p->erased_frames++;
  897. inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, bad_frame);
  898. lsp_interpolate(lpc, cur_lsp, p->prev_lsp);
  899. /* Save the lsp_vector for the next frame */
  900. memcpy(p->prev_lsp, cur_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
  901. /* Generate the excitation for the frame */
  902. memcpy(p->excitation, p->prev_excitation,
  903. PITCH_MAX * sizeof(*p->excitation));
  904. vector_ptr = p->excitation + PITCH_MAX;
  905. if (!p->erased_frames) {
  906. /* Update interpolation gain memory */
  907. p->interp_gain = fixed_cb_gain[(p->subframe[2].amp_index +
  908. p->subframe[3].amp_index) >> 1];
  909. for (i = 0; i < SUBFRAMES; i++) {
  910. gen_fcb_excitation(vector_ptr, p->subframe[i], p->cur_rate,
  911. p->pitch_lag[i >> 1], i);
  912. gen_acb_excitation(acb_vector, &p->excitation[SUBFRAME_LEN * i],
  913. p->pitch_lag[i >> 1], p->subframe[i],
  914. p->cur_rate);
  915. /* Get the total excitation */
  916. for (j = 0; j < SUBFRAME_LEN; j++) {
  917. vector_ptr[j] = av_clip_int16(vector_ptr[j] << 1);
  918. vector_ptr[j] = av_clip_int16(vector_ptr[j] +
  919. acb_vector[j]);
  920. }
  921. vector_ptr += SUBFRAME_LEN;
  922. }
  923. vector_ptr = p->excitation + PITCH_MAX;
  924. /* Save the excitation */
  925. memcpy(p->audio, vector_ptr, FRAME_LEN * sizeof(*p->audio));
  926. p->interp_index = comp_interp_index(p, p->pitch_lag[1],
  927. &p->sid_gain, &p->cur_gain);
  928. if (p->postfilter) {
  929. i = PITCH_MAX;
  930. for (j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
  931. comp_ppf_coeff(p, i, p->pitch_lag[j >> 1],
  932. ppf + j, p->cur_rate);
  933. }
  934. /* Restore the original excitation */
  935. memcpy(p->excitation, p->prev_excitation,
  936. PITCH_MAX * sizeof(*p->excitation));
  937. memcpy(vector_ptr, p->audio, FRAME_LEN * sizeof(*vector_ptr));
  938. /* Peform pitch postfiltering */
  939. if (p->postfilter)
  940. for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
  941. ff_acelp_weighted_vector_sum(p->audio + LPC_ORDER + i,
  942. vector_ptr + i,
  943. vector_ptr + i + ppf[j].index,
  944. ppf[j].sc_gain,
  945. ppf[j].opt_gain,
  946. 1 << 14, 15, SUBFRAME_LEN);
  947. } else {
  948. p->interp_gain = (p->interp_gain * 3 + 2) >> 2;
  949. if (p->erased_frames == 3) {
  950. /* Mute output */
  951. memset(p->excitation, 0,
  952. (FRAME_LEN + PITCH_MAX) * sizeof(*p->excitation));
  953. memset(p->frame.data[0], 0,
  954. (FRAME_LEN + LPC_ORDER) * sizeof(int16_t));
  955. } else {
  956. /* Regenerate frame */
  957. residual_interp(p->excitation, p->audio + LPC_ORDER, p->interp_index,
  958. p->interp_gain, &p->random_seed);
  959. }
  960. }
  961. /* Save the excitation for the next frame */
  962. memcpy(p->prev_excitation, p->excitation + FRAME_LEN,
  963. PITCH_MAX * sizeof(*p->excitation));
  964. } else {
  965. memset(p->frame.data[0], 0, FRAME_LEN * 2);
  966. av_log(avctx, AV_LOG_WARNING,
  967. "G.723.1: Comfort noise generation not supported yet\n");
  968. *got_frame_ptr = 1;
  969. *(AVFrame *)data = p->frame;
  970. return frame_size[dec_mode];
  971. }
  972. p->past_frame_type = p->cur_frame_type;
  973. memcpy(p->audio, p->synth_mem, LPC_ORDER * sizeof(*p->audio));
  974. for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
  975. ff_celp_lp_synthesis_filter(p->audio + i, &lpc[j * LPC_ORDER],
  976. p->audio + i, SUBFRAME_LEN, LPC_ORDER,
  977. 0, 1, 1 << 12);
  978. memcpy(p->synth_mem, p->audio + FRAME_LEN, LPC_ORDER * sizeof(*p->audio));
  979. if (p->postfilter)
  980. formant_postfilter(p, lpc, p->audio);
  981. memcpy(p->frame.data[0], p->audio + LPC_ORDER, FRAME_LEN * 2);
  982. *got_frame_ptr = 1;
  983. *(AVFrame *)data = p->frame;
  984. return frame_size[dec_mode];
  985. }
  986. #define OFFSET(x) offsetof(G723_1_Context, x)
  987. #define AD AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM
  988. static const AVOption options[] = {
  989. { "postfilter", "postfilter on/off", OFFSET(postfilter), AV_OPT_TYPE_INT,
  990. { 1 }, 0, 1, AD },
  991. { NULL }
  992. };
  993. static const AVClass g723_1dec_class = {
  994. .class_name = "G.723.1 decoder",
  995. .item_name = av_default_item_name,
  996. .option = options,
  997. .version = LIBAVUTIL_VERSION_INT,
  998. };
  999. AVCodec ff_g723_1_decoder = {
  1000. .name = "g723_1",
  1001. .type = AVMEDIA_TYPE_AUDIO,
  1002. .id = CODEC_ID_G723_1,
  1003. .priv_data_size = sizeof(G723_1_Context),
  1004. .init = g723_1_decode_init,
  1005. .decode = g723_1_decode_frame,
  1006. .long_name = NULL_IF_CONFIG_SMALL("G.723.1"),
  1007. .capabilities = CODEC_CAP_SUBFRAMES,
  1008. .priv_class = &g723_1dec_class,
  1009. };