You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

748 lines
29KB

  1. /*
  2. * DSP utils
  3. * Copyright (c) 2000, 2001, 2002 Fabrice Bellard
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * DSP utils.
  25. * note, many functions in here may use MMX which trashes the FPU state, it is
  26. * absolutely necessary to call emms_c() between dsp & float/double code
  27. */
  28. #ifndef AVCODEC_DSPUTIL_H
  29. #define AVCODEC_DSPUTIL_H
  30. #include "libavutil/intreadwrite.h"
  31. #include "avcodec.h"
  32. //#define DEBUG
  33. /* dct code */
  34. typedef short DCTELEM;
  35. void ff_fdct_ifast (DCTELEM *data);
  36. void ff_fdct_ifast248 (DCTELEM *data);
  37. void ff_jpeg_fdct_islow_8(DCTELEM *data);
  38. void ff_jpeg_fdct_islow_10(DCTELEM *data);
  39. void ff_fdct248_islow_8(DCTELEM *data);
  40. void ff_fdct248_islow_10(DCTELEM *data);
  41. void ff_j_rev_dct (DCTELEM *data);
  42. void ff_wmv2_idct_c(DCTELEM *data);
  43. void ff_fdct_mmx(DCTELEM *block);
  44. void ff_fdct_mmx2(DCTELEM *block);
  45. void ff_fdct_sse2(DCTELEM *block);
  46. #define H264_IDCT(depth) \
  47. void ff_h264_idct8_add_ ## depth ## _c(uint8_t *dst, DCTELEM *block, int stride);\
  48. void ff_h264_idct_add_ ## depth ## _c(uint8_t *dst, DCTELEM *block, int stride);\
  49. void ff_h264_idct8_dc_add_ ## depth ## _c(uint8_t *dst, DCTELEM *block, int stride);\
  50. void ff_h264_idct_dc_add_ ## depth ## _c(uint8_t *dst, DCTELEM *block, int stride);\
  51. void ff_h264_idct_add16_ ## depth ## _c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);\
  52. void ff_h264_idct_add16intra_ ## depth ## _c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);\
  53. void ff_h264_idct8_add4_ ## depth ## _c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);\
  54. void ff_h264_idct_add8_422_ ## depth ## _c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);\
  55. void ff_h264_idct_add8_ ## depth ## _c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);\
  56. void ff_h264_luma_dc_dequant_idct_ ## depth ## _c(DCTELEM *output, DCTELEM *input, int qmul);\
  57. void ff_h264_chroma422_dc_dequant_idct_ ## depth ## _c(DCTELEM *block, int qmul);\
  58. void ff_h264_chroma_dc_dequant_idct_ ## depth ## _c(DCTELEM *block, int qmul);
  59. H264_IDCT( 8)
  60. H264_IDCT( 9)
  61. H264_IDCT(10)
  62. void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *output, DCTELEM *input, int qp);
  63. void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  64. /* encoding scans */
  65. extern const uint8_t ff_alternate_horizontal_scan[64];
  66. extern const uint8_t ff_alternate_vertical_scan[64];
  67. extern const uint8_t ff_zigzag_direct[64];
  68. extern const uint8_t ff_zigzag248_direct[64];
  69. /* pixel operations */
  70. #define MAX_NEG_CROP 1024
  71. /* temporary */
  72. extern uint32_t ff_squareTbl[512];
  73. extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP];
  74. #define PUTAVG_PIXELS(depth)\
  75. void ff_put_pixels8x8_ ## depth ## _c(uint8_t *dst, uint8_t *src, int stride);\
  76. void ff_avg_pixels8x8_ ## depth ## _c(uint8_t *dst, uint8_t *src, int stride);\
  77. void ff_put_pixels16x16_ ## depth ## _c(uint8_t *dst, uint8_t *src, int stride);\
  78. void ff_avg_pixels16x16_ ## depth ## _c(uint8_t *dst, uint8_t *src, int stride);
  79. PUTAVG_PIXELS( 8)
  80. PUTAVG_PIXELS( 9)
  81. PUTAVG_PIXELS(10)
  82. #define ff_put_pixels8x8_c ff_put_pixels8x8_8_c
  83. #define ff_avg_pixels8x8_c ff_avg_pixels8x8_8_c
  84. #define ff_put_pixels16x16_c ff_put_pixels16x16_8_c
  85. #define ff_avg_pixels16x16_c ff_avg_pixels16x16_8_c
  86. /* EA functions */
  87. void ff_ea_idct_put_c(uint8_t *dest, int linesize, DCTELEM *block);
  88. /* RV40 functions */
  89. void ff_put_rv40_qpel16_mc33_c(uint8_t *dst, uint8_t *src, int stride);
  90. void ff_avg_rv40_qpel16_mc33_c(uint8_t *dst, uint8_t *src, int stride);
  91. void ff_put_rv40_qpel8_mc33_c(uint8_t *dst, uint8_t *src, int stride);
  92. void ff_avg_rv40_qpel8_mc33_c(uint8_t *dst, uint8_t *src, int stride);
  93. /* 1/2^n downscaling functions from imgconvert.c */
  94. void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  95. void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  96. void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  97. void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
  98. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  99. /* minimum alignment rules ;)
  100. If you notice errors in the align stuff, need more alignment for some ASM code
  101. for some CPU or need to use a function with less aligned data then send a mail
  102. to the libav-devel mailing list, ...
  103. !warning These alignments might not match reality, (missing attribute((align))
  104. stuff somewhere possible).
  105. I (Michael) did not check them, these are just the alignments which I think
  106. could be reached easily ...
  107. !future video codecs might need functions with less strict alignment
  108. */
  109. /*
  110. void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
  111. void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
  112. void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  113. void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
  114. void clear_blocks_c(DCTELEM *blocks);
  115. */
  116. /* add and put pixel (decoding) */
  117. // blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
  118. //h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller than 4
  119. typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
  120. typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
  121. typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  122. typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
  123. typedef void (*op_fill_func)(uint8_t *block/*align width (8 or 16)*/, uint8_t value, int line_size, int h);
  124. #define DEF_OLD_QPEL(name)\
  125. void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  126. void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
  127. void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
  128. DEF_OLD_QPEL(qpel16_mc11_old_c)
  129. DEF_OLD_QPEL(qpel16_mc31_old_c)
  130. DEF_OLD_QPEL(qpel16_mc12_old_c)
  131. DEF_OLD_QPEL(qpel16_mc32_old_c)
  132. DEF_OLD_QPEL(qpel16_mc13_old_c)
  133. DEF_OLD_QPEL(qpel16_mc33_old_c)
  134. DEF_OLD_QPEL(qpel8_mc11_old_c)
  135. DEF_OLD_QPEL(qpel8_mc31_old_c)
  136. DEF_OLD_QPEL(qpel8_mc12_old_c)
  137. DEF_OLD_QPEL(qpel8_mc32_old_c)
  138. DEF_OLD_QPEL(qpel8_mc13_old_c)
  139. DEF_OLD_QPEL(qpel8_mc33_old_c)
  140. #define CALL_2X_PIXELS(a, b, n)\
  141. static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
  142. b(block , pixels , line_size, h);\
  143. b(block+n, pixels+n, line_size, h);\
  144. }
  145. /* motion estimation */
  146. // h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller than 2
  147. // although currently h<4 is not used as functions with width <8 are neither used nor implemented
  148. typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
  149. /**
  150. * Scantable.
  151. */
  152. typedef struct ScanTable{
  153. const uint8_t *scantable;
  154. uint8_t permutated[64];
  155. uint8_t raster_end[64];
  156. } ScanTable;
  157. void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable);
  158. void ff_init_scantable_permutation(uint8_t *idct_permutation,
  159. int idct_permutation_type);
  160. #define EMULATED_EDGE(depth) \
  161. void ff_emulated_edge_mc_ ## depth (uint8_t *buf, const uint8_t *src, int linesize,\
  162. int block_w, int block_h,\
  163. int src_x, int src_y, int w, int h);
  164. EMULATED_EDGE(8)
  165. EMULATED_EDGE(9)
  166. EMULATED_EDGE(10)
  167. void ff_add_pixels_clamped_c(const DCTELEM *block, uint8_t *dest, int linesize);
  168. void ff_put_pixels_clamped_c(const DCTELEM *block, uint8_t *dest, int linesize);
  169. void ff_put_signed_pixels_clamped_c(const DCTELEM *block, uint8_t *dest, int linesize);
  170. /**
  171. * DSPContext.
  172. */
  173. typedef struct DSPContext {
  174. /**
  175. * Size of DCT coefficients.
  176. */
  177. int dct_bits;
  178. /* pixel ops : interface with DCT */
  179. void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
  180. void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
  181. void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  182. void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  183. void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
  184. void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
  185. void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
  186. int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/);
  187. /**
  188. * Motion estimation with emulated edge values.
  189. * @param buf pointer to destination buffer (unaligned)
  190. * @param src pointer to pixel source (unaligned)
  191. * @param linesize width (in pixels) for src/buf
  192. * @param block_w number of pixels (per row) to copy to buf
  193. * @param block_h nummber of pixel rows to copy to buf
  194. * @param src_x offset of src to start of row - this may be negative
  195. * @param src_y offset of src to top of image - this may be negative
  196. * @param w width of src in pixels
  197. * @param h height of src in pixels
  198. */
  199. void (*emulated_edge_mc)(uint8_t *buf, const uint8_t *src, int linesize,
  200. int block_w, int block_h,
  201. int src_x, int src_y, int w, int h);
  202. /**
  203. * translational global motion compensation.
  204. */
  205. void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
  206. /**
  207. * global motion compensation.
  208. */
  209. void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
  210. int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
  211. void (*clear_block)(DCTELEM *block/*align 16*/);
  212. void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
  213. int (*pix_sum)(uint8_t * pix, int line_size);
  214. int (*pix_norm1)(uint8_t * pix, int line_size);
  215. // 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
  216. me_cmp_func sad[6]; /* identical to pix_absAxA except additional void * */
  217. me_cmp_func sse[6];
  218. me_cmp_func hadamard8_diff[6];
  219. me_cmp_func dct_sad[6];
  220. me_cmp_func quant_psnr[6];
  221. me_cmp_func bit[6];
  222. me_cmp_func rd[6];
  223. me_cmp_func vsad[6];
  224. me_cmp_func vsse[6];
  225. me_cmp_func nsse[6];
  226. me_cmp_func w53[6];
  227. me_cmp_func w97[6];
  228. me_cmp_func dct_max[6];
  229. me_cmp_func dct264_sad[6];
  230. me_cmp_func me_pre_cmp[6];
  231. me_cmp_func me_cmp[6];
  232. me_cmp_func me_sub_cmp[6];
  233. me_cmp_func mb_cmp[6];
  234. me_cmp_func ildct_cmp[6]; //only width 16 used
  235. me_cmp_func frame_skip_cmp[6]; //only width 8 used
  236. int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2,
  237. int size);
  238. /**
  239. * Halfpel motion compensation with rounding (a+b+1)>>1.
  240. * this is an array[4][4] of motion compensation functions for 4
  241. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  242. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  243. * @param block destination where the result is stored
  244. * @param pixels source
  245. * @param line_size number of bytes in a horizontal line of block
  246. * @param h height
  247. */
  248. op_pixels_func put_pixels_tab[4][4];
  249. /**
  250. * Halfpel motion compensation with rounding (a+b+1)>>1.
  251. * This is an array[4][4] of motion compensation functions for 4
  252. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  253. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  254. * @param block destination into which the result is averaged (a+b+1)>>1
  255. * @param pixels source
  256. * @param line_size number of bytes in a horizontal line of block
  257. * @param h height
  258. */
  259. op_pixels_func avg_pixels_tab[4][4];
  260. /**
  261. * Halfpel motion compensation with no rounding (a+b)>>1.
  262. * this is an array[2][4] of motion compensation functions for 2
  263. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  264. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  265. * @param block destination where the result is stored
  266. * @param pixels source
  267. * @param line_size number of bytes in a horizontal line of block
  268. * @param h height
  269. */
  270. op_pixels_func put_no_rnd_pixels_tab[4][4];
  271. /**
  272. * Halfpel motion compensation with no rounding (a+b)>>1.
  273. * this is an array[2][4] of motion compensation functions for 2
  274. * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
  275. * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
  276. * @param block destination into which the result is averaged (a+b)>>1
  277. * @param pixels source
  278. * @param line_size number of bytes in a horizontal line of block
  279. * @param h height
  280. */
  281. op_pixels_func avg_no_rnd_pixels_tab[4][4];
  282. void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
  283. /**
  284. * Thirdpel motion compensation with rounding (a+b+1)>>1.
  285. * this is an array[12] of motion compensation functions for the 9 thirdpe
  286. * positions<br>
  287. * *pixels_tab[ xthirdpel + 4*ythirdpel ]
  288. * @param block destination where the result is stored
  289. * @param pixels source
  290. * @param line_size number of bytes in a horizontal line of block
  291. * @param h height
  292. */
  293. tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  294. tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
  295. qpel_mc_func put_qpel_pixels_tab[2][16];
  296. qpel_mc_func avg_qpel_pixels_tab[2][16];
  297. qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
  298. qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
  299. qpel_mc_func put_mspel_pixels_tab[8];
  300. /**
  301. * h264 Chroma MC
  302. */
  303. h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
  304. h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
  305. qpel_mc_func put_h264_qpel_pixels_tab[4][16];
  306. qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
  307. qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
  308. qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
  309. me_cmp_func pix_abs[2][4];
  310. /* huffyuv specific */
  311. void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
  312. void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
  313. /**
  314. * subtract huffyuv's variant of median prediction
  315. * note, this might read from src1[-1], src2[-1]
  316. */
  317. void (*sub_hfyu_median_prediction)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top);
  318. void (*add_hfyu_median_prediction)(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top);
  319. int (*add_hfyu_left_prediction)(uint8_t *dst, const uint8_t *src, int w, int left);
  320. void (*add_hfyu_left_prediction_bgr32)(uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha);
  321. void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w);
  322. void (*bswap16_buf)(uint16_t *dst, const uint16_t *src, int len);
  323. void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
  324. void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
  325. void (*h261_loop_filter)(uint8_t *src, int stride);
  326. void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale);
  327. void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale);
  328. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  329. void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
  330. void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len);
  331. /* assume len is a multiple of 16, and arrays are 32-byte aligned */
  332. void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
  333. /* assume len is a multiple of 8, and src arrays are 16-byte aligned */
  334. void (*vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len);
  335. /* assume len is a multiple of 4, and arrays are 16-byte aligned */
  336. void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, int len);
  337. /* assume len is a multiple of 8, and arrays are 16-byte aligned */
  338. void (*vector_clipf)(float *dst /* align 16 */, const float *src /* align 16 */, float min, float max, int len /* align 16 */);
  339. /**
  340. * Multiply a vector of floats by a scalar float. Source and
  341. * destination vectors must overlap exactly or not at all.
  342. * @param dst result vector, 16-byte aligned
  343. * @param src input vector, 16-byte aligned
  344. * @param mul scalar value
  345. * @param len length of vector, multiple of 4
  346. */
  347. void (*vector_fmul_scalar)(float *dst, const float *src, float mul,
  348. int len);
  349. /**
  350. * Calculate the scalar product of two vectors of floats.
  351. * @param v1 first vector, 16-byte aligned
  352. * @param v2 second vector, 16-byte aligned
  353. * @param len length of vectors, multiple of 4
  354. */
  355. float (*scalarproduct_float)(const float *v1, const float *v2, int len);
  356. /**
  357. * Calculate the sum and difference of two vectors of floats.
  358. * @param v1 first input vector, sum output, 16-byte aligned
  359. * @param v2 second input vector, difference output, 16-byte aligned
  360. * @param len length of vectors, multiple of 4
  361. */
  362. void (*butterflies_float)(float *restrict v1, float *restrict v2, int len);
  363. /**
  364. * Calculate the sum and difference of two vectors of floats and interleave
  365. * results into a separate output vector of floats, with each sum
  366. * positioned before the corresponding difference.
  367. *
  368. * @param dst output vector
  369. * constraints: 16-byte aligned
  370. * @param src0 first input vector
  371. * constraints: 32-byte aligned
  372. * @param src1 second input vector
  373. * constraints: 32-byte aligned
  374. * @param len number of elements in the input
  375. * constraints: multiple of 8
  376. */
  377. void (*butterflies_float_interleave)(float *dst, const float *src0,
  378. const float *src1, int len);
  379. /* (I)DCT */
  380. void (*fdct)(DCTELEM *block/* align 16*/);
  381. void (*fdct248)(DCTELEM *block/* align 16*/);
  382. /* IDCT really*/
  383. void (*idct)(DCTELEM *block/* align 16*/);
  384. /**
  385. * block -> idct -> clip to unsigned 8 bit -> dest.
  386. * (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
  387. * @param line_size size in bytes of a horizontal line of dest
  388. */
  389. void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  390. /**
  391. * block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
  392. * @param line_size size in bytes of a horizontal line of dest
  393. */
  394. void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
  395. /**
  396. * idct input permutation.
  397. * several optimized IDCTs need a permutated input (relative to the normal order of the reference
  398. * IDCT)
  399. * this permutation must be performed before the idct_put/add, note, normally this can be merged
  400. * with the zigzag/alternate scan<br>
  401. * an example to avoid confusion:
  402. * - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
  403. * - (x -> reference dct -> reference idct -> x)
  404. * - (x -> reference dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
  405. * - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
  406. */
  407. uint8_t idct_permutation[64];
  408. int idct_permutation_type;
  409. #define FF_NO_IDCT_PERM 1
  410. #define FF_LIBMPEG2_IDCT_PERM 2
  411. #define FF_SIMPLE_IDCT_PERM 3
  412. #define FF_TRANSPOSE_IDCT_PERM 4
  413. #define FF_PARTTRANS_IDCT_PERM 5
  414. #define FF_SSE2_IDCT_PERM 6
  415. int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
  416. void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
  417. #define BASIS_SHIFT 16
  418. #define RECON_SHIFT 6
  419. void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w, int h, int sides);
  420. #define EDGE_WIDTH 16
  421. #define EDGE_TOP 1
  422. #define EDGE_BOTTOM 2
  423. void (*prefetch)(void *mem, int stride, int h);
  424. void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
  425. /* mlp/truehd functions */
  426. void (*mlp_filter_channel)(int32_t *state, const int32_t *coeff,
  427. int firorder, int iirorder,
  428. unsigned int filter_shift, int32_t mask, int blocksize,
  429. int32_t *sample_buffer);
  430. /* intrax8 functions */
  431. void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize);
  432. void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize,
  433. int * range, int * sum, int edges);
  434. /**
  435. * Calculate scalar product of two vectors.
  436. * @param len length of vectors, should be multiple of 16
  437. */
  438. int32_t (*scalarproduct_int16)(const int16_t *v1, const int16_t *v2/*align 16*/, int len);
  439. /* ape functions */
  440. /**
  441. * Calculate scalar product of v1 and v2,
  442. * and v1[i] += v3[i] * mul
  443. * @param len length of vectors, should be multiple of 16
  444. */
  445. int32_t (*scalarproduct_and_madd_int16)(int16_t *v1/*align 16*/, const int16_t *v2, const int16_t *v3, int len, int mul);
  446. /**
  447. * Apply symmetric window in 16-bit fixed-point.
  448. * @param output destination array
  449. * constraints: 16-byte aligned
  450. * @param input source array
  451. * constraints: 16-byte aligned
  452. * @param window window array
  453. * constraints: 16-byte aligned, at least len/2 elements
  454. * @param len full window length
  455. * constraints: multiple of ? greater than zero
  456. */
  457. void (*apply_window_int16)(int16_t *output, const int16_t *input,
  458. const int16_t *window, unsigned int len);
  459. /**
  460. * Clip each element in an array of int32_t to a given minimum and maximum value.
  461. * @param dst destination array
  462. * constraints: 16-byte aligned
  463. * @param src source array
  464. * constraints: 16-byte aligned
  465. * @param min minimum value
  466. * constraints: must be in the range [-(1 << 24), 1 << 24]
  467. * @param max maximum value
  468. * constraints: must be in the range [-(1 << 24), 1 << 24]
  469. * @param len number of elements in the array
  470. * constraints: multiple of 32 greater than zero
  471. */
  472. void (*vector_clip_int32)(int32_t *dst, const int32_t *src, int32_t min,
  473. int32_t max, unsigned int len);
  474. op_fill_func fill_block_tab[2];
  475. } DSPContext;
  476. void ff_dsputil_static_init(void);
  477. void ff_dsputil_init(DSPContext* p, AVCodecContext *avctx);
  478. int ff_check_alignment(void);
  479. /**
  480. * permute block according to permuatation.
  481. * @param last last non zero element in scantable order
  482. */
  483. void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
  484. void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
  485. #define BYTE_VEC32(c) ((c)*0x01010101UL)
  486. #define BYTE_VEC64(c) ((c)*0x0001000100010001UL)
  487. static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
  488. {
  489. return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  490. }
  491. static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
  492. {
  493. return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
  494. }
  495. static inline uint64_t rnd_avg64(uint64_t a, uint64_t b)
  496. {
  497. return (a | b) - (((a ^ b) & ~BYTE_VEC64(0x01)) >> 1);
  498. }
  499. static inline uint64_t no_rnd_avg64(uint64_t a, uint64_t b)
  500. {
  501. return (a & b) + (((a ^ b) & ~BYTE_VEC64(0x01)) >> 1);
  502. }
  503. static inline int get_penalty_factor(int lambda, int lambda2, int type){
  504. switch(type&0xFF){
  505. default:
  506. case FF_CMP_SAD:
  507. return lambda>>FF_LAMBDA_SHIFT;
  508. case FF_CMP_DCT:
  509. return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
  510. case FF_CMP_W53:
  511. return (4*lambda)>>(FF_LAMBDA_SHIFT);
  512. case FF_CMP_W97:
  513. return (2*lambda)>>(FF_LAMBDA_SHIFT);
  514. case FF_CMP_SATD:
  515. case FF_CMP_DCT264:
  516. return (2*lambda)>>FF_LAMBDA_SHIFT;
  517. case FF_CMP_RD:
  518. case FF_CMP_PSNR:
  519. case FF_CMP_SSE:
  520. case FF_CMP_NSSE:
  521. return lambda2>>FF_LAMBDA_SHIFT;
  522. case FF_CMP_BIT:
  523. return 1;
  524. }
  525. }
  526. void ff_dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
  527. void ff_dsputil_init_arm(DSPContext* c, AVCodecContext *avctx);
  528. void ff_dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
  529. void ff_dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
  530. void ff_dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
  531. void ff_dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
  532. void ff_dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
  533. void ff_dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
  534. void ff_dsputil_init_dwt(DSPContext *c);
  535. void ff_intrax8dsp_init(DSPContext* c, AVCodecContext *avctx);
  536. void ff_mlp_init(DSPContext* c, AVCodecContext *avctx);
  537. void ff_mlp_init_x86(DSPContext* c, AVCodecContext *avctx);
  538. #if (ARCH_ARM && HAVE_NEON) || ARCH_PPC || HAVE_MMI || HAVE_MMX
  539. # define STRIDE_ALIGN 16
  540. #else
  541. # define STRIDE_ALIGN 8
  542. #endif
  543. #define LOCAL_ALIGNED_A(a, t, v, s, o, ...) \
  544. uint8_t la_##v[sizeof(t s o) + (a)]; \
  545. t (*v) o = (void *)FFALIGN((uintptr_t)la_##v, a)
  546. #define LOCAL_ALIGNED_D(a, t, v, s, o, ...) DECLARE_ALIGNED(a, t, v) s o
  547. #define LOCAL_ALIGNED(a, t, v, ...) LOCAL_ALIGNED_A(a, t, v, __VA_ARGS__,,)
  548. #if HAVE_LOCAL_ALIGNED_8
  549. # define LOCAL_ALIGNED_8(t, v, ...) LOCAL_ALIGNED_D(8, t, v, __VA_ARGS__,,)
  550. #else
  551. # define LOCAL_ALIGNED_8(t, v, ...) LOCAL_ALIGNED(8, t, v, __VA_ARGS__)
  552. #endif
  553. #if HAVE_LOCAL_ALIGNED_16
  554. # define LOCAL_ALIGNED_16(t, v, ...) LOCAL_ALIGNED_D(16, t, v, __VA_ARGS__,,)
  555. #else
  556. # define LOCAL_ALIGNED_16(t, v, ...) LOCAL_ALIGNED(16, t, v, __VA_ARGS__)
  557. #endif
  558. #define WRAPPER8_16(name8, name16)\
  559. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  560. return name8(s, dst , src , stride, h)\
  561. +name8(s, dst+8 , src+8 , stride, h);\
  562. }
  563. #define WRAPPER8_16_SQ(name8, name16)\
  564. static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
  565. int score=0;\
  566. score +=name8(s, dst , src , stride, 8);\
  567. score +=name8(s, dst+8 , src+8 , stride, 8);\
  568. if(h==16){\
  569. dst += 8*stride;\
  570. src += 8*stride;\
  571. score +=name8(s, dst , src , stride, 8);\
  572. score +=name8(s, dst+8 , src+8 , stride, 8);\
  573. }\
  574. return score;\
  575. }
  576. static inline void copy_block2(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  577. {
  578. int i;
  579. for(i=0; i<h; i++)
  580. {
  581. AV_WN16(dst , AV_RN16(src ));
  582. dst+=dstStride;
  583. src+=srcStride;
  584. }
  585. }
  586. static inline void copy_block4(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  587. {
  588. int i;
  589. for(i=0; i<h; i++)
  590. {
  591. AV_WN32(dst , AV_RN32(src ));
  592. dst+=dstStride;
  593. src+=srcStride;
  594. }
  595. }
  596. static inline void copy_block8(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  597. {
  598. int i;
  599. for(i=0; i<h; i++)
  600. {
  601. AV_WN32(dst , AV_RN32(src ));
  602. AV_WN32(dst+4 , AV_RN32(src+4 ));
  603. dst+=dstStride;
  604. src+=srcStride;
  605. }
  606. }
  607. static inline void copy_block9(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  608. {
  609. int i;
  610. for(i=0; i<h; i++)
  611. {
  612. AV_WN32(dst , AV_RN32(src ));
  613. AV_WN32(dst+4 , AV_RN32(src+4 ));
  614. dst[8]= src[8];
  615. dst+=dstStride;
  616. src+=srcStride;
  617. }
  618. }
  619. static inline void copy_block16(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  620. {
  621. int i;
  622. for(i=0; i<h; i++)
  623. {
  624. AV_WN32(dst , AV_RN32(src ));
  625. AV_WN32(dst+4 , AV_RN32(src+4 ));
  626. AV_WN32(dst+8 , AV_RN32(src+8 ));
  627. AV_WN32(dst+12, AV_RN32(src+12));
  628. dst+=dstStride;
  629. src+=srcStride;
  630. }
  631. }
  632. static inline void copy_block17(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
  633. {
  634. int i;
  635. for(i=0; i<h; i++)
  636. {
  637. AV_WN32(dst , AV_RN32(src ));
  638. AV_WN32(dst+4 , AV_RN32(src+4 ));
  639. AV_WN32(dst+8 , AV_RN32(src+8 ));
  640. AV_WN32(dst+12, AV_RN32(src+12));
  641. dst[16]= src[16];
  642. dst+=dstStride;
  643. src+=srcStride;
  644. }
  645. }
  646. #endif /* AVCODEC_DSPUTIL_H */