You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

788 lines
24KB

  1. /*
  2. * Copyright (c) 2017 Paul B Mahol
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * An arbitrary audio FIR filter
  23. */
  24. #include <float.h>
  25. #include "libavutil/common.h"
  26. #include "libavutil/float_dsp.h"
  27. #include "libavutil/intreadwrite.h"
  28. #include "libavutil/opt.h"
  29. #include "libavutil/xga_font_data.h"
  30. #include "libavcodec/avfft.h"
  31. #include "audio.h"
  32. #include "avfilter.h"
  33. #include "filters.h"
  34. #include "formats.h"
  35. #include "internal.h"
  36. #include "af_afir.h"
  37. static void fcmul_add_c(float *sum, const float *t, const float *c, ptrdiff_t len)
  38. {
  39. int n;
  40. for (n = 0; n < len; n++) {
  41. const float cre = c[2 * n ];
  42. const float cim = c[2 * n + 1];
  43. const float tre = t[2 * n ];
  44. const float tim = t[2 * n + 1];
  45. sum[2 * n ] += tre * cre - tim * cim;
  46. sum[2 * n + 1] += tre * cim + tim * cre;
  47. }
  48. sum[2 * n] += t[2 * n] * c[2 * n];
  49. }
  50. static int fir_channel(AVFilterContext *ctx, void *arg, int ch, int nb_jobs)
  51. {
  52. AudioFIRContext *s = ctx->priv;
  53. const float *src = (const float *)s->in[0]->extended_data[ch];
  54. int index1 = (s->index + 1) % 3;
  55. int index2 = (s->index + 2) % 3;
  56. float *sum = s->sum[ch];
  57. AVFrame *out = arg;
  58. float *block;
  59. float *dst;
  60. int n, i, j;
  61. memset(sum, 0, sizeof(*sum) * s->fft_length);
  62. block = s->block[ch] + s->part_index * s->block_size;
  63. memset(block, 0, sizeof(*block) * s->fft_length);
  64. s->fdsp->vector_fmul_scalar(block + s->part_size, src, s->dry_gain, FFALIGN(s->nb_samples, 4));
  65. emms_c();
  66. av_rdft_calc(s->rdft[ch], block);
  67. block[2 * s->part_size] = block[1];
  68. block[1] = 0;
  69. j = s->part_index;
  70. for (i = 0; i < s->nb_partitions; i++) {
  71. const int coffset = i * s->coeff_size;
  72. const FFTComplex *coeff = s->coeff[ch * !s->one2many] + coffset;
  73. block = s->block[ch] + j * s->block_size;
  74. s->fcmul_add(sum, block, (const float *)coeff, s->part_size);
  75. if (j == 0)
  76. j = s->nb_partitions;
  77. j--;
  78. }
  79. sum[1] = sum[2 * s->part_size];
  80. av_rdft_calc(s->irdft[ch], sum);
  81. dst = (float *)s->buffer->extended_data[ch] + index1 * s->part_size;
  82. for (n = 0; n < s->part_size; n++) {
  83. dst[n] += sum[n];
  84. }
  85. dst = (float *)s->buffer->extended_data[ch] + index2 * s->part_size;
  86. memcpy(dst, sum + s->part_size, s->part_size * sizeof(*dst));
  87. dst = (float *)s->buffer->extended_data[ch] + s->index * s->part_size;
  88. if (out) {
  89. float *ptr = (float *)out->extended_data[ch];
  90. s->fdsp->vector_fmul_scalar(ptr, dst, s->wet_gain, FFALIGN(out->nb_samples, 4));
  91. emms_c();
  92. }
  93. return 0;
  94. }
  95. static int fir_frame(AudioFIRContext *s, AVFrame *in, AVFilterLink *outlink)
  96. {
  97. AVFilterContext *ctx = outlink->src;
  98. AVFrame *out = NULL;
  99. s->nb_samples = in->nb_samples;
  100. out = ff_get_audio_buffer(outlink, s->nb_samples);
  101. if (!out) {
  102. av_frame_free(&in);
  103. return AVERROR(ENOMEM);
  104. }
  105. if (s->pts == AV_NOPTS_VALUE)
  106. s->pts = in->pts;
  107. s->in[0] = in;
  108. ctx->internal->execute(ctx, fir_channel, out, NULL, outlink->channels);
  109. s->part_index = (s->part_index + 1) % s->nb_partitions;
  110. out->pts = s->pts;
  111. if (s->pts != AV_NOPTS_VALUE)
  112. s->pts += av_rescale_q(out->nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base);
  113. s->index++;
  114. if (s->index == 3)
  115. s->index = 0;
  116. av_frame_free(&in);
  117. s->in[0] = NULL;
  118. return ff_filter_frame(outlink, out);
  119. }
  120. static void drawtext(AVFrame *pic, int x, int y, const char *txt, uint32_t color)
  121. {
  122. const uint8_t *font;
  123. int font_height;
  124. int i;
  125. font = avpriv_cga_font, font_height = 8;
  126. for (i = 0; txt[i]; i++) {
  127. int char_y, mask;
  128. uint8_t *p = pic->data[0] + y * pic->linesize[0] + (x + i * 8) * 4;
  129. for (char_y = 0; char_y < font_height; char_y++) {
  130. for (mask = 0x80; mask; mask >>= 1) {
  131. if (font[txt[i] * font_height + char_y] & mask)
  132. AV_WL32(p, color);
  133. p += 4;
  134. }
  135. p += pic->linesize[0] - 8 * 4;
  136. }
  137. }
  138. }
  139. static void draw_line(AVFrame *out, int x0, int y0, int x1, int y1, uint32_t color)
  140. {
  141. int dx = FFABS(x1-x0);
  142. int dy = FFABS(y1-y0), sy = y0 < y1 ? 1 : -1;
  143. int err = (dx>dy ? dx : -dy) / 2, e2;
  144. for (;;) {
  145. AV_WL32(out->data[0] + y0 * out->linesize[0] + x0 * 4, color);
  146. if (x0 == x1 && y0 == y1)
  147. break;
  148. e2 = err;
  149. if (e2 >-dx) {
  150. err -= dy;
  151. x0--;
  152. }
  153. if (e2 < dy) {
  154. err += dx;
  155. y0 += sy;
  156. }
  157. }
  158. }
  159. static void draw_response(AVFilterContext *ctx, AVFrame *out)
  160. {
  161. AudioFIRContext *s = ctx->priv;
  162. float *mag, *phase, *delay, min = FLT_MAX, max = FLT_MIN;
  163. float min_delay = FLT_MAX, max_delay = FLT_MIN;
  164. int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1;
  165. char text[32];
  166. int channel, i, x;
  167. memset(out->data[0], 0, s->h * out->linesize[0]);
  168. phase = av_malloc_array(s->w, sizeof(*phase));
  169. mag = av_malloc_array(s->w, sizeof(*mag));
  170. delay = av_malloc_array(s->w, sizeof(*delay));
  171. if (!mag || !phase || !delay)
  172. goto end;
  173. channel = av_clip(s->ir_channel, 0, s->in[1]->channels - 1);
  174. for (i = 0; i < s->w; i++) {
  175. const float *src = (const float *)s->in[1]->extended_data[channel];
  176. double w = i * M_PI / (s->w - 1);
  177. double div, real_num = 0., imag_num = 0., real = 0., imag = 0.;
  178. for (x = 0; x < s->nb_taps; x++) {
  179. real += cos(-x * w) * src[x];
  180. imag += sin(-x * w) * src[x];
  181. real_num += cos(-x * w) * src[x] * x;
  182. imag_num += sin(-x * w) * src[x] * x;
  183. }
  184. mag[i] = hypot(real, imag);
  185. phase[i] = atan2(imag, real);
  186. div = real * real + imag * imag;
  187. delay[i] = (real_num * real + imag_num * imag) / div;
  188. min = fminf(min, mag[i]);
  189. max = fmaxf(max, mag[i]);
  190. min_delay = fminf(min_delay, delay[i]);
  191. max_delay = fmaxf(max_delay, delay[i]);
  192. }
  193. for (i = 0; i < s->w; i++) {
  194. int ymag = mag[i] / max * (s->h - 1);
  195. int ydelay = (delay[i] - min_delay) / (max_delay - min_delay) * (s->h - 1);
  196. int yphase = (0.5 * (1. + phase[i] / M_PI)) * (s->h - 1);
  197. ymag = s->h - 1 - av_clip(ymag, 0, s->h - 1);
  198. yphase = s->h - 1 - av_clip(yphase, 0, s->h - 1);
  199. ydelay = s->h - 1 - av_clip(ydelay, 0, s->h - 1);
  200. if (prev_ymag < 0)
  201. prev_ymag = ymag;
  202. if (prev_yphase < 0)
  203. prev_yphase = yphase;
  204. if (prev_ydelay < 0)
  205. prev_ydelay = ydelay;
  206. draw_line(out, i, ymag, FFMAX(i - 1, 0), prev_ymag, 0xFFFF00FF);
  207. draw_line(out, i, yphase, FFMAX(i - 1, 0), prev_yphase, 0xFF00FF00);
  208. draw_line(out, i, ydelay, FFMAX(i - 1, 0), prev_ydelay, 0xFF00FFFF);
  209. prev_ymag = ymag;
  210. prev_yphase = yphase;
  211. prev_ydelay = ydelay;
  212. }
  213. if (s->w > 400 && s->h > 100) {
  214. drawtext(out, 2, 2, "Max Magnitude:", 0xDDDDDDDD);
  215. snprintf(text, sizeof(text), "%.2f", max);
  216. drawtext(out, 15 * 8 + 2, 2, text, 0xDDDDDDDD);
  217. drawtext(out, 2, 12, "Min Magnitude:", 0xDDDDDDDD);
  218. snprintf(text, sizeof(text), "%.2f", min);
  219. drawtext(out, 15 * 8 + 2, 12, text, 0xDDDDDDDD);
  220. drawtext(out, 2, 22, "Max Delay:", 0xDDDDDDDD);
  221. snprintf(text, sizeof(text), "%.2f", max_delay);
  222. drawtext(out, 11 * 8 + 2, 22, text, 0xDDDDDDDD);
  223. drawtext(out, 2, 32, "Min Delay:", 0xDDDDDDDD);
  224. snprintf(text, sizeof(text), "%.2f", min_delay);
  225. drawtext(out, 11 * 8 + 2, 32, text, 0xDDDDDDDD);
  226. }
  227. end:
  228. av_free(delay);
  229. av_free(phase);
  230. av_free(mag);
  231. }
  232. static int convert_coeffs(AVFilterContext *ctx)
  233. {
  234. AudioFIRContext *s = ctx->priv;
  235. int ret, i, ch, n, N;
  236. float power = 0;
  237. s->nb_taps = ff_inlink_queued_samples(ctx->inputs[1]);
  238. if (s->nb_taps <= 0)
  239. return AVERROR(EINVAL);
  240. for (n = av_log2(s->minp); (1 << n) < s->nb_taps; n++);
  241. N = FFMIN(n, av_log2(s->maxp));
  242. s->ir_length = 1 << n;
  243. s->fft_length = (1 << (N + 1)) + 1;
  244. s->part_size = 1 << (N - 1);
  245. s->block_size = FFALIGN(s->fft_length, 32);
  246. s->coeff_size = FFALIGN(s->part_size + 1, 32);
  247. s->nb_partitions = (s->nb_taps + s->part_size - 1) / s->part_size;
  248. s->nb_coeffs = s->ir_length + s->nb_partitions;
  249. for (ch = 0; ch < ctx->inputs[0]->channels; ch++) {
  250. s->sum[ch] = av_calloc(s->fft_length, sizeof(**s->sum));
  251. if (!s->sum[ch])
  252. return AVERROR(ENOMEM);
  253. }
  254. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  255. s->coeff[ch] = av_calloc(s->nb_partitions * s->coeff_size, sizeof(**s->coeff));
  256. if (!s->coeff[ch])
  257. return AVERROR(ENOMEM);
  258. }
  259. for (ch = 0; ch < ctx->inputs[0]->channels; ch++) {
  260. s->block[ch] = av_calloc(s->nb_partitions * s->block_size, sizeof(**s->block));
  261. if (!s->block[ch])
  262. return AVERROR(ENOMEM);
  263. }
  264. for (ch = 0; ch < ctx->inputs[0]->channels; ch++) {
  265. s->rdft[ch] = av_rdft_init(N, DFT_R2C);
  266. s->irdft[ch] = av_rdft_init(N, IDFT_C2R);
  267. if (!s->rdft[ch] || !s->irdft[ch])
  268. return AVERROR(ENOMEM);
  269. }
  270. s->buffer = ff_get_audio_buffer(ctx->inputs[0], s->part_size * 3);
  271. if (!s->buffer)
  272. return AVERROR(ENOMEM);
  273. ret = ff_inlink_consume_samples(ctx->inputs[1], s->nb_taps, s->nb_taps, &s->in[1]);
  274. if (ret < 0)
  275. return ret;
  276. if (ret == 0)
  277. return AVERROR_BUG;
  278. if (s->response)
  279. draw_response(ctx, s->video);
  280. s->gain = 1;
  281. switch (s->gtype) {
  282. case -1:
  283. /* nothing to do */
  284. break;
  285. case 0:
  286. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  287. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  288. for (i = 0; i < s->nb_taps; i++)
  289. power += FFABS(time[i]);
  290. }
  291. s->gain = ctx->inputs[1]->channels / power;
  292. break;
  293. case 1:
  294. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  295. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  296. for (i = 0; i < s->nb_taps; i++)
  297. power += time[i];
  298. }
  299. s->gain = ctx->inputs[1]->channels / power;
  300. break;
  301. case 2:
  302. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  303. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  304. for (i = 0; i < s->nb_taps; i++)
  305. power += time[i] * time[i];
  306. }
  307. s->gain = sqrtf(ch / power);
  308. break;
  309. default:
  310. return AVERROR_BUG;
  311. }
  312. s->gain = FFMIN(s->gain * s->ir_gain, 1.f);
  313. av_log(ctx, AV_LOG_DEBUG, "power %f, gain %f\n", power, s->gain);
  314. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  315. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  316. s->fdsp->vector_fmul_scalar(time, time, s->gain, FFALIGN(s->nb_taps, 4));
  317. }
  318. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  319. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  320. float *block = s->block[ch];
  321. FFTComplex *coeff = s->coeff[ch];
  322. for (i = FFMAX(1, s->length * s->nb_taps); i < s->nb_taps; i++)
  323. time[i] = 0;
  324. for (i = 0; i < s->nb_partitions; i++) {
  325. const float scale = 1.f / s->part_size;
  326. const int toffset = i * s->part_size;
  327. const int coffset = i * s->coeff_size;
  328. const int boffset = s->part_size;
  329. const int remaining = s->nb_taps - (i * s->part_size);
  330. const int size = remaining >= s->part_size ? s->part_size : remaining;
  331. memset(block, 0, sizeof(*block) * s->fft_length);
  332. memcpy(block + boffset, time + toffset, size * sizeof(*block));
  333. av_rdft_calc(s->rdft[0], block);
  334. coeff[coffset].re = block[0] * scale;
  335. coeff[coffset].im = 0;
  336. for (n = 1; n < s->part_size; n++) {
  337. coeff[coffset + n].re = block[2 * n] * scale;
  338. coeff[coffset + n].im = block[2 * n + 1] * scale;
  339. }
  340. coeff[coffset + s->part_size].re = block[1] * scale;
  341. coeff[coffset + s->part_size].im = 0;
  342. }
  343. }
  344. av_frame_free(&s->in[1]);
  345. av_log(ctx, AV_LOG_DEBUG, "nb_taps: %d\n", s->nb_taps);
  346. av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", s->nb_partitions);
  347. av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", s->part_size);
  348. av_log(ctx, AV_LOG_DEBUG, "ir_length: %d\n", s->ir_length);
  349. s->have_coeffs = 1;
  350. return 0;
  351. }
  352. static int check_ir(AVFilterLink *link, AVFrame *frame)
  353. {
  354. AVFilterContext *ctx = link->dst;
  355. AudioFIRContext *s = ctx->priv;
  356. int nb_taps, max_nb_taps;
  357. nb_taps = ff_inlink_queued_samples(link);
  358. max_nb_taps = s->max_ir_len * ctx->outputs[0]->sample_rate;
  359. if (nb_taps > max_nb_taps) {
  360. av_log(ctx, AV_LOG_ERROR, "Too big number of coefficients: %d > %d.\n", nb_taps, max_nb_taps);
  361. return AVERROR(EINVAL);
  362. }
  363. return 0;
  364. }
  365. static int activate(AVFilterContext *ctx)
  366. {
  367. AudioFIRContext *s = ctx->priv;
  368. AVFilterLink *outlink = ctx->outputs[0];
  369. AVFrame *in = NULL;
  370. int ret, status;
  371. int64_t pts;
  372. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
  373. if (s->response)
  374. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[1], ctx);
  375. if (!s->eof_coeffs) {
  376. AVFrame *ir = NULL;
  377. ret = check_ir(ctx->inputs[1], ir);
  378. if (ret < 0)
  379. return ret;
  380. if (ff_outlink_get_status(ctx->inputs[1]) == AVERROR_EOF)
  381. s->eof_coeffs = 1;
  382. if (!s->eof_coeffs) {
  383. if (ff_outlink_frame_wanted(ctx->outputs[0]))
  384. ff_inlink_request_frame(ctx->inputs[1]);
  385. else if (s->response && ff_outlink_frame_wanted(ctx->outputs[1]))
  386. ff_inlink_request_frame(ctx->inputs[1]);
  387. return 0;
  388. }
  389. }
  390. if (!s->have_coeffs && s->eof_coeffs) {
  391. ret = convert_coeffs(ctx);
  392. if (ret < 0)
  393. return ret;
  394. }
  395. ret = ff_inlink_consume_samples(ctx->inputs[0], s->part_size, s->part_size, &in);
  396. if (ret > 0)
  397. ret = fir_frame(s, in, outlink);
  398. if (ret < 0)
  399. return ret;
  400. if (s->response && s->have_coeffs) {
  401. int64_t old_pts = s->video->pts;
  402. int64_t new_pts = av_rescale_q(s->pts, ctx->inputs[0]->time_base, ctx->outputs[1]->time_base);
  403. if (ff_outlink_frame_wanted(ctx->outputs[1]) && old_pts < new_pts) {
  404. s->video->pts = new_pts;
  405. return ff_filter_frame(ctx->outputs[1], av_frame_clone(s->video));
  406. }
  407. }
  408. if (ff_inlink_queued_samples(ctx->inputs[0]) >= s->part_size) {
  409. ff_filter_set_ready(ctx, 10);
  410. return 0;
  411. }
  412. if (ff_inlink_acknowledge_status(ctx->inputs[0], &status, &pts)) {
  413. if (status == AVERROR_EOF) {
  414. ff_outlink_set_status(ctx->outputs[0], status, pts);
  415. if (s->response)
  416. ff_outlink_set_status(ctx->outputs[1], status, pts);
  417. return 0;
  418. }
  419. }
  420. if (ff_outlink_frame_wanted(ctx->outputs[0]) &&
  421. !ff_outlink_get_status(ctx->inputs[0])) {
  422. ff_inlink_request_frame(ctx->inputs[0]);
  423. return 0;
  424. }
  425. if (s->response &&
  426. ff_outlink_frame_wanted(ctx->outputs[1]) &&
  427. !ff_outlink_get_status(ctx->inputs[0])) {
  428. ff_inlink_request_frame(ctx->inputs[0]);
  429. return 0;
  430. }
  431. return FFERROR_NOT_READY;
  432. }
  433. static int query_formats(AVFilterContext *ctx)
  434. {
  435. AudioFIRContext *s = ctx->priv;
  436. AVFilterFormats *formats;
  437. AVFilterChannelLayouts *layouts;
  438. static const enum AVSampleFormat sample_fmts[] = {
  439. AV_SAMPLE_FMT_FLTP,
  440. AV_SAMPLE_FMT_NONE
  441. };
  442. static const enum AVPixelFormat pix_fmts[] = {
  443. AV_PIX_FMT_RGB0,
  444. AV_PIX_FMT_NONE
  445. };
  446. int ret;
  447. if (s->response) {
  448. AVFilterLink *videolink = ctx->outputs[1];
  449. formats = ff_make_format_list(pix_fmts);
  450. if ((ret = ff_formats_ref(formats, &videolink->in_formats)) < 0)
  451. return ret;
  452. }
  453. layouts = ff_all_channel_counts();
  454. if (!layouts)
  455. return AVERROR(ENOMEM);
  456. if (s->ir_format) {
  457. ret = ff_set_common_channel_layouts(ctx, layouts);
  458. if (ret < 0)
  459. return ret;
  460. } else {
  461. AVFilterChannelLayouts *mono = NULL;
  462. ret = ff_add_channel_layout(&mono, AV_CH_LAYOUT_MONO);
  463. if (ret)
  464. return ret;
  465. if ((ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts)) < 0)
  466. return ret;
  467. if ((ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts)) < 0)
  468. return ret;
  469. if ((ret = ff_channel_layouts_ref(mono, &ctx->inputs[1]->out_channel_layouts)) < 0)
  470. return ret;
  471. }
  472. formats = ff_make_format_list(sample_fmts);
  473. if ((ret = ff_set_common_formats(ctx, formats)) < 0)
  474. return ret;
  475. formats = ff_all_samplerates();
  476. return ff_set_common_samplerates(ctx, formats);
  477. }
  478. static int config_output(AVFilterLink *outlink)
  479. {
  480. AVFilterContext *ctx = outlink->src;
  481. AudioFIRContext *s = ctx->priv;
  482. s->one2many = ctx->inputs[1]->channels == 1;
  483. outlink->sample_rate = ctx->inputs[0]->sample_rate;
  484. outlink->time_base = ctx->inputs[0]->time_base;
  485. outlink->channel_layout = ctx->inputs[0]->channel_layout;
  486. outlink->channels = ctx->inputs[0]->channels;
  487. s->sum = av_calloc(outlink->channels, sizeof(*s->sum));
  488. s->coeff = av_calloc(ctx->inputs[1]->channels, sizeof(*s->coeff));
  489. s->block = av_calloc(ctx->inputs[0]->channels, sizeof(*s->block));
  490. s->rdft = av_calloc(outlink->channels, sizeof(*s->rdft));
  491. s->irdft = av_calloc(outlink->channels, sizeof(*s->irdft));
  492. if (!s->sum || !s->coeff || !s->block || !s->rdft || !s->irdft)
  493. return AVERROR(ENOMEM);
  494. s->nb_channels = outlink->channels;
  495. s->nb_coef_channels = ctx->inputs[1]->channels;
  496. s->pts = AV_NOPTS_VALUE;
  497. return 0;
  498. }
  499. static av_cold void uninit(AVFilterContext *ctx)
  500. {
  501. AudioFIRContext *s = ctx->priv;
  502. int ch;
  503. if (s->sum) {
  504. for (ch = 0; ch < s->nb_channels; ch++) {
  505. av_freep(&s->sum[ch]);
  506. }
  507. }
  508. av_freep(&s->sum);
  509. if (s->coeff) {
  510. for (ch = 0; ch < s->nb_coef_channels; ch++) {
  511. av_freep(&s->coeff[ch]);
  512. }
  513. }
  514. av_freep(&s->coeff);
  515. if (s->block) {
  516. for (ch = 0; ch < s->nb_channels; ch++) {
  517. av_freep(&s->block[ch]);
  518. }
  519. }
  520. av_freep(&s->block);
  521. if (s->rdft) {
  522. for (ch = 0; ch < s->nb_channels; ch++) {
  523. av_rdft_end(s->rdft[ch]);
  524. }
  525. }
  526. av_freep(&s->rdft);
  527. if (s->irdft) {
  528. for (ch = 0; ch < s->nb_channels; ch++) {
  529. av_rdft_end(s->irdft[ch]);
  530. }
  531. }
  532. av_freep(&s->irdft);
  533. av_frame_free(&s->in[1]);
  534. av_frame_free(&s->buffer);
  535. av_freep(&s->fdsp);
  536. for (int i = 0; i < ctx->nb_outputs; i++)
  537. av_freep(&ctx->output_pads[i].name);
  538. av_frame_free(&s->video);
  539. }
  540. static int config_video(AVFilterLink *outlink)
  541. {
  542. AVFilterContext *ctx = outlink->src;
  543. AudioFIRContext *s = ctx->priv;
  544. outlink->sample_aspect_ratio = (AVRational){1,1};
  545. outlink->w = s->w;
  546. outlink->h = s->h;
  547. outlink->frame_rate = s->frame_rate;
  548. outlink->time_base = av_inv_q(outlink->frame_rate);
  549. av_frame_free(&s->video);
  550. s->video = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  551. if (!s->video)
  552. return AVERROR(ENOMEM);
  553. return 0;
  554. }
  555. static av_cold int init(AVFilterContext *ctx)
  556. {
  557. AudioFIRContext *s = ctx->priv;
  558. AVFilterPad pad, vpad;
  559. int ret;
  560. pad = (AVFilterPad){
  561. .name = av_strdup("default"),
  562. .type = AVMEDIA_TYPE_AUDIO,
  563. .config_props = config_output,
  564. };
  565. if (!pad.name)
  566. return AVERROR(ENOMEM);
  567. if (s->response) {
  568. vpad = (AVFilterPad){
  569. .name = av_strdup("filter_response"),
  570. .type = AVMEDIA_TYPE_VIDEO,
  571. .config_props = config_video,
  572. };
  573. if (!vpad.name)
  574. return AVERROR(ENOMEM);
  575. }
  576. ret = ff_insert_outpad(ctx, 0, &pad);
  577. if (ret < 0) {
  578. av_freep(&pad.name);
  579. return ret;
  580. }
  581. if (s->response) {
  582. ret = ff_insert_outpad(ctx, 1, &vpad);
  583. if (ret < 0) {
  584. av_freep(&vpad.name);
  585. return ret;
  586. }
  587. }
  588. s->fcmul_add = fcmul_add_c;
  589. s->fdsp = avpriv_float_dsp_alloc(0);
  590. if (!s->fdsp)
  591. return AVERROR(ENOMEM);
  592. if (ARCH_X86)
  593. ff_afir_init_x86(s);
  594. return 0;
  595. }
  596. static const AVFilterPad afir_inputs[] = {
  597. {
  598. .name = "main",
  599. .type = AVMEDIA_TYPE_AUDIO,
  600. },{
  601. .name = "ir",
  602. .type = AVMEDIA_TYPE_AUDIO,
  603. },
  604. { NULL }
  605. };
  606. #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  607. #define VF AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  608. #define OFFSET(x) offsetof(AudioFIRContext, x)
  609. static const AVOption afir_options[] = {
  610. { "dry", "set dry gain", OFFSET(dry_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  611. { "wet", "set wet gain", OFFSET(wet_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  612. { "length", "set IR length", OFFSET(length), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF },
  613. { "gtype", "set IR auto gain type",OFFSET(gtype), AV_OPT_TYPE_INT, {.i64=0}, -1, 2, AF, "gtype" },
  614. { "none", "without auto gain", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "gtype" },
  615. { "peak", "peak gain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "gtype" },
  616. { "dc", "DC gain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "gtype" },
  617. { "gn", "gain to noise", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "gtype" },
  618. { "irgain", "set IR gain", OFFSET(ir_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF },
  619. { "irfmt", "set IR format", OFFSET(ir_format), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, AF, "irfmt" },
  620. { "mono", "single channel", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "irfmt" },
  621. { "input", "same as input", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "irfmt" },
  622. { "maxir", "set max IR length", OFFSET(max_ir_len), AV_OPT_TYPE_FLOAT, {.dbl=30}, 0.1, 60, AF },
  623. { "response", "show IR frequency response", OFFSET(response), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, VF },
  624. { "channel", "set IR channel to display frequency response", OFFSET(ir_channel), AV_OPT_TYPE_INT, {.i64=0}, 0, 1024, VF },
  625. { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "hd720"}, 0, 0, VF },
  626. { "rate", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT32_MAX, VF },
  627. { "minp", "set min partition size", OFFSET(minp), AV_OPT_TYPE_INT, {.i64=16}, 16, 65536, AF },
  628. { "maxp", "set max partition size", OFFSET(maxp), AV_OPT_TYPE_INT, {.i64=65536}, 16, 65536, AF },
  629. { NULL }
  630. };
  631. AVFILTER_DEFINE_CLASS(afir);
  632. AVFilter ff_af_afir = {
  633. .name = "afir",
  634. .description = NULL_IF_CONFIG_SMALL("Apply Finite Impulse Response filter with supplied coefficients in 2nd stream."),
  635. .priv_size = sizeof(AudioFIRContext),
  636. .priv_class = &afir_class,
  637. .query_formats = query_formats,
  638. .init = init,
  639. .activate = activate,
  640. .uninit = uninit,
  641. .inputs = afir_inputs,
  642. .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS |
  643. AVFILTER_FLAG_SLICE_THREADS,
  644. };