|
- /*
- * Copyright (c) 2019 Eugene Lyapustin
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- /**
- * @file
- * 360 video conversion filter.
- * Principle of operation:
- *
- * (for each pixel in output frame)
- * 1) Calculate OpenGL-like coordinates (x, y, z) for pixel position (i, j)
- * 2) Apply 360 operations (rotation, mirror) to (x, y, z)
- * 3) Calculate pixel position (u, v) in input frame
- * 4) Calculate interpolation window and weight for each pixel
- *
- * (for each frame)
- * 5) Remap input frame to output frame using precalculated data
- */
-
- #include "libavutil/imgutils.h"
- #include "libavutil/pixdesc.h"
- #include "libavutil/opt.h"
- #include "avfilter.h"
- #include "formats.h"
- #include "internal.h"
- #include "video.h"
-
- enum Projections {
- EQUIRECTANGULAR,
- CUBEMAP_3_2,
- CUBEMAP_6_1,
- EQUIANGULAR,
- FLAT,
- DUAL_FISHEYE,
- FACEBOOK,
- CUBEMAP_1_6,
- NB_PROJECTIONS,
- };
-
- enum InterpMethod {
- NEAREST,
- BILINEAR,
- BICUBIC,
- LANCZOS,
- NB_INTERP_METHODS,
- };
-
- enum Faces {
- TOP_LEFT,
- TOP_MIDDLE,
- TOP_RIGHT,
- BOTTOM_LEFT,
- BOTTOM_MIDDLE,
- BOTTOM_RIGHT,
- NB_FACES,
- };
-
- enum Direction {
- RIGHT, ///< Axis +X
- LEFT, ///< Axis -X
- UP, ///< Axis +Y
- DOWN, ///< Axis -Y
- FRONT, ///< Axis -Z
- BACK, ///< Axis +Z
- NB_DIRECTIONS,
- };
-
- enum Rotation {
- ROT_0,
- ROT_90,
- ROT_180,
- ROT_270,
- NB_ROTATIONS,
- };
-
- typedef struct V360Context {
- const AVClass *class;
- int in, out;
- int interp;
- int width, height;
- char* in_forder;
- char* out_forder;
- char* in_frot;
- char* out_frot;
-
- int in_cubemap_face_order[6];
- int out_cubemap_direction_order[6];
- int in_cubemap_face_rotation[6];
- int out_cubemap_face_rotation[6];
-
- float in_pad, out_pad;
-
- float yaw, pitch, roll;
-
- int h_flip, v_flip, d_flip;
-
- float h_fov, v_fov;
- float flat_range[3];
-
- int planewidth[4], planeheight[4];
- int inplanewidth[4], inplaneheight[4];
- int nb_planes;
-
- void *remap[4];
-
- int (*remap_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
- } V360Context;
-
- typedef struct ThreadData {
- V360Context *s;
- AVFrame *in;
- AVFrame *out;
- int nb_planes;
- } ThreadData;
-
- #define OFFSET(x) offsetof(V360Context, x)
- #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
-
- static const AVOption v360_options[] = {
- { "input", "set input projection", OFFSET(in), AV_OPT_TYPE_INT, {.i64=EQUIRECTANGULAR}, 0, NB_PROJECTIONS-1, FLAGS, "in" },
- { "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "in" },
- { "c3x2", "cubemap3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, "in" },
- { "c6x1", "cubemap6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, "in" },
- { "eac", "equi-angular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, "in" },
- { "dfisheye", "dual fisheye", 0, AV_OPT_TYPE_CONST, {.i64=DUAL_FISHEYE}, 0, 0, FLAGS, "in" },
- { "fb", "facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=FACEBOOK}, 0, 0, FLAGS, "in" },
- { "c1x6", "cubemap1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, "in" },
- { "output", "set output projection", OFFSET(out), AV_OPT_TYPE_INT, {.i64=CUBEMAP_3_2}, 0, NB_PROJECTIONS-1, FLAGS, "out" },
- { "e", "equirectangular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIRECTANGULAR}, 0, 0, FLAGS, "out" },
- { "c3x2", "cubemap3x2", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_3_2}, 0, 0, FLAGS, "out" },
- { "c6x1", "cubemap6x1", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_6_1}, 0, 0, FLAGS, "out" },
- { "eac", "equi-angular", 0, AV_OPT_TYPE_CONST, {.i64=EQUIANGULAR}, 0, 0, FLAGS, "out" },
- { "flat", "regular video", 0, AV_OPT_TYPE_CONST, {.i64=FLAT}, 0, 0, FLAGS, "out" },
- { "fb", "facebook's 360 format", 0, AV_OPT_TYPE_CONST, {.i64=FACEBOOK}, 0, 0, FLAGS, "out" },
- { "c1x6", "cubemap1x6", 0, AV_OPT_TYPE_CONST, {.i64=CUBEMAP_1_6}, 0, 0, FLAGS, "out" },
- { "interp", "set interpolation method", OFFSET(interp), AV_OPT_TYPE_INT, {.i64=BILINEAR}, 0, NB_INTERP_METHODS-1, FLAGS, "interp" },
- { "near", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" },
- { "nearest", "nearest neighbour", 0, AV_OPT_TYPE_CONST, {.i64=NEAREST}, 0, 0, FLAGS, "interp" },
- { "line", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, "interp" },
- { "linear", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BILINEAR}, 0, 0, FLAGS, "interp" },
- { "cube", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, "interp" },
- { "cubic", "bicubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=BICUBIC}, 0, 0, FLAGS, "interp" },
- { "lanc", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, "interp" },
- { "lanczos", "lanczos interpolation", 0, AV_OPT_TYPE_CONST, {.i64=LANCZOS}, 0, 0, FLAGS, "interp" },
- { "w", "output width", OFFSET(width), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX, FLAGS, "w"},
- { "h", "output height", OFFSET(height), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX, FLAGS, "h"},
- { "in_forder", "input cubemap face order", OFFSET(in_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, "in_forder"},
- {"out_forder", "output cubemap face order", OFFSET(out_forder), AV_OPT_TYPE_STRING, {.str="rludfb"}, 0, NB_DIRECTIONS-1, FLAGS, "out_forder"},
- { "in_frot", "input cubemap face rotation", OFFSET(in_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, "in_frot"},
- { "out_frot", "output cubemap face rotation",OFFSET(out_frot), AV_OPT_TYPE_STRING, {.str="000000"}, 0, NB_DIRECTIONS-1, FLAGS, "out_frot"},
- { "in_pad", "input cubemap pads", OFFSET(in_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 1.f, FLAGS, "in_pad"},
- { "out_pad", "output cubemap pads", OFFSET(out_pad), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, 0.f, 1.f, FLAGS, "out_pad"},
- { "yaw", "yaw rotation", OFFSET(yaw), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f, FLAGS, "yaw"},
- { "pitch", "pitch rotation", OFFSET(pitch), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f, FLAGS, "pitch"},
- { "roll", "roll rotation", OFFSET(roll), AV_OPT_TYPE_FLOAT, {.dbl=0.f}, -180.f, 180.f, FLAGS, "roll"},
- { "h_fov", "horizontal field of view", OFFSET(h_fov), AV_OPT_TYPE_FLOAT, {.dbl=90.f}, 0.f, 180.f, FLAGS, "h_fov"},
- { "v_fov", "vertical field of view", OFFSET(v_fov), AV_OPT_TYPE_FLOAT, {.dbl=45.f}, 0.f, 90.f, FLAGS, "v_fov"},
- { "h_flip", "flip video horizontally", OFFSET(h_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "h_flip"},
- { "v_flip", "flip video vertically", OFFSET(v_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "v_flip"},
- { "d_flip", "flip video indepth", OFFSET(d_flip), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS, "d_flip"},
- { NULL }
- };
-
- AVFILTER_DEFINE_CLASS(v360);
-
- static int query_formats(AVFilterContext *ctx)
- {
- static const enum AVPixelFormat pix_fmts[] = {
- // YUVA444
- AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA444P9,
- AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P12,
- AV_PIX_FMT_YUVA444P16,
-
- // YUVA422
- AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA422P9,
- AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P12,
- AV_PIX_FMT_YUVA422P16,
-
- // YUVA420
- AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA420P9,
- AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
-
- // YUVJ
- AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
- AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
- AV_PIX_FMT_YUVJ411P,
-
- // YUV444
- AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV444P9,
- AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12,
- AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
-
- // YUV440
- AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV440P10,
- AV_PIX_FMT_YUV440P12,
-
- // YUV422
- AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV422P9,
- AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12,
- AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16,
-
- // YUV420
- AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV420P9,
- AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12,
- AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16,
-
- // YUV411
- AV_PIX_FMT_YUV411P,
-
- // YUV410
- AV_PIX_FMT_YUV410P,
-
- // GBR
- AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9,
- AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12,
- AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
-
- // GBRA
- AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10,
- AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
-
- // GRAY
- AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9,
- AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12,
- AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16,
-
- AV_PIX_FMT_NONE
- };
-
- AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
- if (!fmts_list)
- return AVERROR(ENOMEM);
- return ff_set_common_formats(ctx, fmts_list);
- }
-
- typedef struct XYRemap1 {
- uint16_t u;
- uint16_t v;
- } XYRemap1;
-
- /**
- * Generate no-interpolation remapping function with a given pixel depth.
- *
- * @param bits number of bits per pixel
- * @param div number of bytes per pixel
- */
- #define DEFINE_REMAP1(bits, div) \
- static int remap1_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
- { \
- ThreadData *td = (ThreadData*)arg; \
- const V360Context *s = td->s; \
- const AVFrame *in = td->in; \
- AVFrame *out = td->out; \
- \
- int plane, x, y; \
- \
- for (plane = 0; plane < td->nb_planes; plane++) { \
- const int in_linesize = in->linesize[plane] / div; \
- const int out_linesize = out->linesize[plane] / div; \
- const uint##bits##_t *src = (const uint##bits##_t *)in->data[plane]; \
- uint##bits##_t *dst = (uint##bits##_t *)out->data[plane]; \
- const XYRemap1 *remap = s->remap[plane]; \
- const int width = s->planewidth[plane]; \
- const int height = s->planeheight[plane]; \
- \
- const int slice_start = (height * jobnr ) / nb_jobs; \
- const int slice_end = (height * (jobnr + 1)) / nb_jobs; \
- \
- for (y = slice_start; y < slice_end; y++) { \
- uint##bits##_t *d = dst + y * out_linesize; \
- for (x = 0; x < width; x++) { \
- const XYRemap1 *r = &remap[y * width + x]; \
- \
- *d++ = src[r->v * in_linesize + r->u]; \
- } \
- } \
- } \
- \
- return 0; \
- }
-
- DEFINE_REMAP1( 8, 1)
- DEFINE_REMAP1(16, 2)
-
- typedef struct XYRemap2 {
- uint16_t u[2][2];
- uint16_t v[2][2];
- float ker[2][2];
- } XYRemap2;
-
- typedef struct XYRemap4 {
- uint16_t u[4][4];
- uint16_t v[4][4];
- float ker[4][4];
- } XYRemap4;
-
- /**
- * Generate remapping function with a given window size and pixel depth.
- *
- * @param window_size size of interpolation window
- * @param bits number of bits per pixel
- * @param div number of bytes per pixel
- */
- #define DEFINE_REMAP(window_size, bits, div) \
- static int remap##window_size##_##bits##bit_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
- { \
- ThreadData *td = (ThreadData*)arg; \
- const V360Context *s = td->s; \
- const AVFrame *in = td->in; \
- AVFrame *out = td->out; \
- \
- int plane, x, y, i, j; \
- \
- for (plane = 0; plane < td->nb_planes; plane++) { \
- const int in_linesize = in->linesize[plane] / div; \
- const int out_linesize = out->linesize[plane] / div; \
- const uint##bits##_t *src = (const uint##bits##_t *)in->data[plane]; \
- uint##bits##_t *dst = (uint##bits##_t *)out->data[plane]; \
- const XYRemap##window_size *remap = s->remap[plane]; \
- const int width = s->planewidth[plane]; \
- const int height = s->planeheight[plane]; \
- \
- const int slice_start = (height * jobnr ) / nb_jobs; \
- const int slice_end = (height * (jobnr + 1)) / nb_jobs; \
- \
- for (y = slice_start; y < slice_end; y++) { \
- uint##bits##_t *d = dst + y * out_linesize; \
- for (x = 0; x < width; x++) { \
- const XYRemap##window_size *r = &remap[y * width + x]; \
- float tmp = 0.f; \
- \
- for (i = 0; i < window_size; i++) { \
- for (j = 0; j < window_size; j++) { \
- tmp += r->ker[i][j] * src[r->v[i][j] * in_linesize + r->u[i][j]]; \
- } \
- } \
- \
- *d++ = av_clip_uint##bits(roundf(tmp)); \
- } \
- } \
- } \
- \
- return 0; \
- }
-
- DEFINE_REMAP(2, 8, 1)
- DEFINE_REMAP(4, 8, 1)
- DEFINE_REMAP(2, 16, 2)
- DEFINE_REMAP(4, 16, 2)
-
- /**
- * Save nearest pixel coordinates for remapping.
- *
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- * @param shift shift for remap array
- * @param r_tmp calculated 4x4 window
- * @param r_void remap data
- */
- static void nearest_kernel(float du, float dv, int shift, const XYRemap4 *r_tmp, void *r_void)
- {
- XYRemap1 *r = (XYRemap1*)r_void + shift;
- const int i = roundf(dv) + 1;
- const int j = roundf(du) + 1;
-
- r->u = r_tmp->u[i][j];
- r->v = r_tmp->v[i][j];
- }
-
- /**
- * Calculate kernel for bilinear interpolation.
- *
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- * @param shift shift for remap array
- * @param r_tmp calculated 4x4 window
- * @param r_void remap data
- */
- static void bilinear_kernel(float du, float dv, int shift, const XYRemap4 *r_tmp, void *r_void)
- {
- XYRemap2 *r = (XYRemap2*)r_void + shift;
- int i, j;
-
- for (i = 0; i < 2; i++) {
- for (j = 0; j < 2; j++) {
- r->u[i][j] = r_tmp->u[i + 1][j + 1];
- r->v[i][j] = r_tmp->v[i + 1][j + 1];
- }
- }
-
- r->ker[0][0] = (1.f - du) * (1.f - dv);
- r->ker[0][1] = du * (1.f - dv);
- r->ker[1][0] = (1.f - du) * dv;
- r->ker[1][1] = du * dv;
- }
-
- /**
- * Calculate 1-dimensional cubic coefficients.
- *
- * @param t relative coordinate
- * @param coeffs coefficients
- */
- static inline void calculate_bicubic_coeffs(float t, float *coeffs)
- {
- const float tt = t * t;
- const float ttt = t * t * t;
-
- coeffs[0] = - t / 3.f + tt / 2.f - ttt / 6.f;
- coeffs[1] = 1.f - t / 2.f - tt + ttt / 2.f;
- coeffs[2] = t + tt / 2.f - ttt / 2.f;
- coeffs[3] = - t / 6.f + ttt / 6.f;
- }
-
- /**
- * Calculate kernel for bicubic interpolation.
- *
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- * @param shift shift for remap array
- * @param r_tmp calculated 4x4 window
- * @param r_void remap data
- */
- static void bicubic_kernel(float du, float dv, int shift, const XYRemap4 *r_tmp, void *r_void)
- {
- XYRemap4 *r = (XYRemap4*)r_void + shift;
- int i, j;
- float du_coeffs[4];
- float dv_coeffs[4];
-
- calculate_bicubic_coeffs(du, du_coeffs);
- calculate_bicubic_coeffs(dv, dv_coeffs);
-
- for (i = 0; i < 4; i++) {
- for (j = 0; j < 4; j++) {
- r->u[i][j] = r_tmp->u[i][j];
- r->v[i][j] = r_tmp->v[i][j];
- r->ker[i][j] = du_coeffs[j] * dv_coeffs[i];
- }
- }
- }
-
- /**
- * Calculate 1-dimensional lanczos coefficients.
- *
- * @param t relative coordinate
- * @param coeffs coefficients
- */
- static inline void calculate_lanczos_coeffs(float t, float *coeffs)
- {
- int i;
- float sum = 0.f;
-
- for (i = 0; i < 4; i++) {
- const float x = M_PI * (t - i + 1);
- if (x == 0.f) {
- coeffs[i] = 1.f;
- } else {
- coeffs[i] = sinf(x) * sinf(x / 2.f) / (x * x / 2.f);
- }
- sum += coeffs[i];
- }
-
- for (i = 0; i < 4; i++) {
- coeffs[i] /= sum;
- }
- }
-
- /**
- * Calculate kernel for lanczos interpolation.
- *
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- * @param shift shift for remap array
- * @param r_tmp calculated 4x4 window
- * @param r_void remap data
- */
- static void lanczos_kernel(float du, float dv, int shift, const XYRemap4 *r_tmp, void *r_void)
- {
- XYRemap4 *r = (XYRemap4*)r_void + shift;
- int i, j;
- float du_coeffs[4];
- float dv_coeffs[4];
-
- calculate_lanczos_coeffs(du, du_coeffs);
- calculate_lanczos_coeffs(dv, dv_coeffs);
-
- for (i = 0; i < 4; i++) {
- for (j = 0; j < 4; j++) {
- r->u[i][j] = r_tmp->u[i][j];
- r->v[i][j] = r_tmp->v[i][j];
- r->ker[i][j] = du_coeffs[j] * dv_coeffs[i];
- }
- }
- }
-
- /**
- * Modulo operation with only positive remainders.
- *
- * @param a dividend
- * @param b divisor
- *
- * @return positive remainder of (a / b)
- */
- static inline int mod(int a, int b)
- {
- const int res = a % b;
- if (res < 0) {
- return res + b;
- } else {
- return res;
- }
- }
-
- /**
- * Convert char to corresponding direction.
- * Used for cubemap options.
- */
- static int get_direction(char c)
- {
- switch (c) {
- case 'r':
- return RIGHT;
- case 'l':
- return LEFT;
- case 'u':
- return UP;
- case 'd':
- return DOWN;
- case 'f':
- return FRONT;
- case 'b':
- return BACK;
- default:
- return -1;
- }
- }
-
- /**
- * Convert char to corresponding rotation angle.
- * Used for cubemap options.
- */
- static int get_rotation(char c)
- {
- switch (c) {
- case '0':
- return ROT_0;
- case '1':
- return ROT_90;
- case '2':
- return ROT_180;
- case '3':
- return ROT_270;
- default:
- return -1;
- }
- }
-
- /**
- * Prepare data for processing cubemap input format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_cube_in(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- for (int face = 0; face < NB_FACES; face++) {
- const char c = s->in_forder[face];
- int direction;
-
- if (c == '\0') {
- av_log(ctx, AV_LOG_ERROR,
- "Incomplete in_forder option. Direction for all 6 faces should be specified.\n");
- return AVERROR(EINVAL);
- }
-
- direction = get_direction(c);
- if (direction == -1) {
- av_log(ctx, AV_LOG_ERROR,
- "Incorrect direction symbol '%c' in in_forder option.\n", c);
- return AVERROR(EINVAL);
- }
-
- s->in_cubemap_face_order[direction] = face;
- }
-
- for (int face = 0; face < NB_FACES; face++) {
- const char c = s->in_frot[face];
- int rotation;
-
- if (c == '\0') {
- av_log(ctx, AV_LOG_ERROR,
- "Incomplete in_frot option. Rotation for all 6 faces should be specified.\n");
- return AVERROR(EINVAL);
- }
-
- rotation = get_rotation(c);
- if (rotation == -1) {
- av_log(ctx, AV_LOG_ERROR,
- "Incorrect rotation symbol '%c' in in_frot option.\n", c);
- return AVERROR(EINVAL);
- }
-
- s->in_cubemap_face_rotation[face] = rotation;
- }
-
- return 0;
- }
-
- /**
- * Prepare data for processing cubemap output format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_cube_out(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- for (int face = 0; face < NB_FACES; face++) {
- const char c = s->out_forder[face];
- int direction;
-
- if (c == '\0') {
- av_log(ctx, AV_LOG_ERROR,
- "Incomplete out_forder option. Direction for all 6 faces should be specified.\n");
- return AVERROR(EINVAL);
- }
-
- direction = get_direction(c);
- if (direction == -1) {
- av_log(ctx, AV_LOG_ERROR,
- "Incorrect direction symbol '%c' in out_forder option.\n", c);
- return AVERROR(EINVAL);
- }
-
- s->out_cubemap_direction_order[face] = direction;
- }
-
- for (int face = 0; face < NB_FACES; face++) {
- const char c = s->out_frot[face];
- int rotation;
-
- if (c == '\0') {
- av_log(ctx, AV_LOG_ERROR,
- "Incomplete out_frot option. Rotation for all 6 faces should be specified.\n");
- return AVERROR(EINVAL);
- }
-
- rotation = get_rotation(c);
- if (rotation == -1) {
- av_log(ctx, AV_LOG_ERROR,
- "Incorrect rotation symbol '%c' in out_frot option.\n", c);
- return AVERROR(EINVAL);
- }
-
- s->out_cubemap_face_rotation[face] = rotation;
- }
-
- return 0;
- }
-
- static inline void rotate_cube_face(float *uf, float *vf, int rotation)
- {
- float tmp;
-
- switch (rotation) {
- case ROT_0:
- break;
- case ROT_90:
- tmp = *uf;
- *uf = -*vf;
- *vf = tmp;
- break;
- case ROT_180:
- *uf = -*uf;
- *vf = -*vf;
- break;
- case ROT_270:
- tmp = -*uf;
- *uf = *vf;
- *vf = tmp;
- break;
- }
- }
-
- static inline void rotate_cube_face_inverse(float *uf, float *vf, int rotation)
- {
- float tmp;
-
- switch (rotation) {
- case ROT_0:
- break;
- case ROT_90:
- tmp = -*uf;
- *uf = *vf;
- *vf = tmp;
- break;
- case ROT_180:
- *uf = -*uf;
- *vf = -*vf;
- break;
- case ROT_270:
- tmp = *uf;
- *uf = -*vf;
- *vf = tmp;
- break;
- }
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding cubemap position.
- * Common operation for every cubemap.
- *
- * @param s filter context
- * @param uf horizontal cubemap coordinate [0, 1)
- * @param vf vertical cubemap coordinate [0, 1)
- * @param face face of cubemap
- * @param vec coordinates on sphere
- */
- static void cube_to_xyz(const V360Context *s,
- float uf, float vf, int face,
- float *vec)
- {
- const int direction = s->out_cubemap_direction_order[face];
- float norm;
- float l_x, l_y, l_z;
-
- uf /= (1.f - s->out_pad);
- vf /= (1.f - s->out_pad);
-
- rotate_cube_face_inverse(&uf, &vf, s->out_cubemap_face_rotation[face]);
-
- switch (direction) {
- case RIGHT:
- l_x = 1.f;
- l_y = -vf;
- l_z = uf;
- break;
- case LEFT:
- l_x = -1.f;
- l_y = -vf;
- l_z = -uf;
- break;
- case UP:
- l_x = uf;
- l_y = 1.f;
- l_z = -vf;
- break;
- case DOWN:
- l_x = uf;
- l_y = -1.f;
- l_z = vf;
- break;
- case FRONT:
- l_x = uf;
- l_y = -vf;
- l_z = -1.f;
- break;
- case BACK:
- l_x = -uf;
- l_y = -vf;
- l_z = 1.f;
- break;
- }
-
- norm = sqrtf(l_x * l_x + l_y * l_y + l_z * l_z);
- vec[0] = l_x / norm;
- vec[1] = l_y / norm;
- vec[2] = l_z / norm;
- }
-
- /**
- * Calculate cubemap position for corresponding 3D coordinates on sphere.
- * Common operation for every cubemap.
- *
- * @param s filter context
- * @param vec coordinated on sphere
- * @param uf horizontal cubemap coordinate [0, 1)
- * @param vf vertical cubemap coordinate [0, 1)
- * @param direction direction of view
- */
- static void xyz_to_cube(const V360Context *s,
- const float *vec,
- float *uf, float *vf, int *direction)
- {
- const float phi = atan2f(vec[0], -vec[2]);
- const float theta = asinf(-vec[1]);
- float phi_norm, theta_threshold;
- int face;
-
- if (phi >= -M_PI_4 && phi < M_PI_4) {
- *direction = FRONT;
- phi_norm = phi;
- } else if (phi >= -(M_PI_2 + M_PI_4) && phi < -M_PI_4) {
- *direction = LEFT;
- phi_norm = phi + M_PI_2;
- } else if (phi >= M_PI_4 && phi < M_PI_2 + M_PI_4) {
- *direction = RIGHT;
- phi_norm = phi - M_PI_2;
- } else {
- *direction = BACK;
- phi_norm = phi + ((phi > 0.f) ? -M_PI : M_PI);
- }
-
- theta_threshold = atanf(cosf(phi_norm));
- if (theta > theta_threshold) {
- *direction = DOWN;
- } else if (theta < -theta_threshold) {
- *direction = UP;
- }
-
- switch (*direction) {
- case RIGHT:
- *uf = vec[2] / vec[0];
- *vf = -vec[1] / vec[0];
- break;
- case LEFT:
- *uf = vec[2] / vec[0];
- *vf = vec[1] / vec[0];
- break;
- case UP:
- *uf = vec[0] / vec[1];
- *vf = -vec[2] / vec[1];
- break;
- case DOWN:
- *uf = -vec[0] / vec[1];
- *vf = -vec[2] / vec[1];
- break;
- case FRONT:
- *uf = -vec[0] / vec[2];
- *vf = vec[1] / vec[2];
- break;
- case BACK:
- *uf = -vec[0] / vec[2];
- *vf = -vec[1] / vec[2];
- break;
- }
-
- face = s->in_cubemap_face_order[*direction];
- rotate_cube_face(uf, vf, s->in_cubemap_face_rotation[face]);
- }
-
- /**
- * Find position on another cube face in case of overflow/underflow.
- * Used for calculation of interpolation window.
- *
- * @param s filter context
- * @param uf horizontal cubemap coordinate
- * @param vf vertical cubemap coordinate
- * @param direction direction of view
- * @param new_uf new horizontal cubemap coordinate
- * @param new_vf new vertical cubemap coordinate
- * @param face face position on cubemap
- */
- static void process_cube_coordinates(const V360Context *s,
- float uf, float vf, int direction,
- float *new_uf, float *new_vf, int *face)
- {
- /*
- * Cubemap orientation
- *
- * width
- * <------->
- * +-------+
- * | | U
- * | up | h ------->
- * +-------+-------+-------+-------+ ^ e |
- * | | | | | | i V |
- * | left | front | right | back | | g |
- * +-------+-------+-------+-------+ v h v
- * | | t
- * | down |
- * +-------+
- */
-
- *face = s->in_cubemap_face_order[direction];
- rotate_cube_face_inverse(&uf, &vf, s->in_cubemap_face_rotation[*face]);
-
- if ((uf < -1.f || uf >= 1.f) && (vf < -1.f || vf >= 1.f)) {
- // There are no pixels to use in this case
- *new_uf = uf;
- *new_vf = vf;
- } else if (uf < -1.f) {
- uf += 2.f;
- switch (direction) {
- case RIGHT:
- direction = FRONT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case LEFT:
- direction = BACK;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case UP:
- direction = LEFT;
- *new_uf = vf;
- *new_vf = -uf;
- break;
- case DOWN:
- direction = LEFT;
- *new_uf = -vf;
- *new_vf = uf;
- break;
- case FRONT:
- direction = LEFT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case BACK:
- direction = RIGHT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- }
- } else if (uf >= 1.f) {
- uf -= 2.f;
- switch (direction) {
- case RIGHT:
- direction = BACK;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case LEFT:
- direction = FRONT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case UP:
- direction = RIGHT;
- *new_uf = -vf;
- *new_vf = uf;
- break;
- case DOWN:
- direction = RIGHT;
- *new_uf = vf;
- *new_vf = -uf;
- break;
- case FRONT:
- direction = RIGHT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case BACK:
- direction = LEFT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- }
- } else if (vf < -1.f) {
- vf += 2.f;
- switch (direction) {
- case RIGHT:
- direction = UP;
- *new_uf = vf;
- *new_vf = -uf;
- break;
- case LEFT:
- direction = UP;
- *new_uf = -vf;
- *new_vf = uf;
- break;
- case UP:
- direction = BACK;
- *new_uf = -uf;
- *new_vf = -vf;
- break;
- case DOWN:
- direction = FRONT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case FRONT:
- direction = UP;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case BACK:
- direction = UP;
- *new_uf = -uf;
- *new_vf = -vf;
- break;
- }
- } else if (vf >= 1.f) {
- vf -= 2.f;
- switch (direction) {
- case RIGHT:
- direction = DOWN;
- *new_uf = -vf;
- *new_vf = uf;
- break;
- case LEFT:
- direction = DOWN;
- *new_uf = vf;
- *new_vf = -uf;
- break;
- case UP:
- direction = FRONT;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case DOWN:
- direction = BACK;
- *new_uf = -uf;
- *new_vf = -vf;
- break;
- case FRONT:
- direction = DOWN;
- *new_uf = uf;
- *new_vf = vf;
- break;
- case BACK:
- direction = DOWN;
- *new_uf = -uf;
- *new_vf = -vf;
- break;
- }
- } else {
- // Inside cube face
- *new_uf = uf;
- *new_vf = vf;
- }
-
- *face = s->in_cubemap_face_order[direction];
- rotate_cube_face(new_uf, new_vf, s->in_cubemap_face_rotation[*face]);
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in cubemap3x2 format.
- *
- * @param s filter context
- * @param i horizontal position on frame [0, height)
- * @param j vertical position on frame [0, width)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static void cube3x2_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float ew = width / 3.f;
- const float eh = height / 2.f;
-
- const int u_face = floorf(i / ew);
- const int v_face = floorf(j / eh);
- const int face = u_face + 3 * v_face;
-
- const int u_shift = ceilf(ew * u_face);
- const int v_shift = ceilf(eh * v_face);
- const int ewi = ceilf(ew * (u_face + 1)) - u_shift;
- const int ehi = ceilf(eh * (v_face + 1)) - v_shift;
-
- const float uf = 2.f * (i - u_shift) / ewi - 1.f;
- const float vf = 2.f * (j - v_shift) / ehi - 1.f;
-
- cube_to_xyz(s, uf, vf, face, vec);
- }
-
- /**
- * Calculate frame position in cubemap3x2 format for corresponding 3D coordinates on sphere.
- *
- * @param s filter context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static void xyz_to_cube3x2(const V360Context *s,
- const float *vec, int width, int height,
- uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
- {
- const float ew = width / 3.f;
- const float eh = height / 2.f;
- float uf, vf;
- int ui, vi;
- int ewi, ehi;
- int i, j;
- int direction, face;
- int u_face, v_face;
-
- xyz_to_cube(s, vec, &uf, &vf, &direction);
-
- uf *= (1.f - s->in_pad);
- vf *= (1.f - s->in_pad);
-
- face = s->in_cubemap_face_order[direction];
- u_face = face % 3;
- v_face = face / 3;
- ewi = ceilf(ew * (u_face + 1)) - ceilf(ew * u_face);
- ehi = ceilf(eh * (v_face + 1)) - ceilf(eh * v_face);
-
- uf = 0.5f * ewi * (uf + 1.f);
- vf = 0.5f * ehi * (vf + 1.f);
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (i = -1; i < 3; i++) {
- for (j = -1; j < 3; j++) {
- int new_ui = ui + j;
- int new_vi = vi + i;
- int u_shift, v_shift;
- int new_ewi, new_ehi;
-
- if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
- face = s->in_cubemap_face_order[direction];
-
- u_face = face % 3;
- v_face = face / 3;
- u_shift = ceilf(ew * u_face);
- v_shift = ceilf(eh * v_face);
- } else {
- uf = 2.f * new_ui / ewi - 1.f;
- vf = 2.f * new_vi / ehi - 1.f;
-
- uf /= (1.f - s->in_pad);
- vf /= (1.f - s->in_pad);
-
- process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
-
- uf *= (1.f - s->in_pad);
- vf *= (1.f - s->in_pad);
-
- u_face = face % 3;
- v_face = face / 3;
- u_shift = ceilf(ew * u_face);
- v_shift = ceilf(eh * v_face);
- new_ewi = ceilf(ew * (u_face + 1)) - u_shift;
- new_ehi = ceilf(eh * (v_face + 1)) - v_shift;
-
- new_ui = av_clip(roundf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
- new_vi = av_clip(roundf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
- }
-
-
- us[i + 1][j + 1] = u_shift + new_ui;
- vs[i + 1][j + 1] = v_shift + new_vi;
- }
- }
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in cubemap1x6 format.
- *
- * @param s filter context
- * @param i horizontal position on frame [0, height)
- * @param j vertical position on frame [0, width)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static void cube1x6_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float ew = width;
- const float eh = height / 6.f;
-
- const int face = floorf(j / eh);
-
- const int v_shift = ceilf(eh * face);
- const int ehi = ceilf(eh * (face + 1)) - v_shift;
-
- const float uf = 2.f * i / ew - 1.f;
- const float vf = 2.f * (j - v_shift) / ehi - 1.f;
-
- cube_to_xyz(s, uf, vf, face, vec);
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in cubemap6x1 format.
- *
- * @param s filter context
- * @param i horizontal position on frame [0, height)
- * @param j vertical position on frame [0, width)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static void cube6x1_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float ew = width / 6.f;
- const float eh = height;
-
- const int face = floorf(i / ew);
-
- const int u_shift = ceilf(ew * face);
- const int ewi = ceilf(ew * (face + 1)) - u_shift;
-
- const float uf = 2.f * (i - u_shift) / ewi - 1.f;
- const float vf = 2.f * j / eh - 1.f;
-
- cube_to_xyz(s, uf, vf, face, vec);
- }
-
- /**
- * Calculate frame position in cubemap1x6 format for corresponding 3D coordinates on sphere.
- *
- * @param s filter context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static void xyz_to_cube1x6(const V360Context *s,
- const float *vec, int width, int height,
- uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
- {
- const float eh = height / 6.f;
- const int ewi = width;
- float uf, vf;
- int ui, vi;
- int ehi;
- int i, j;
- int direction, face;
-
- xyz_to_cube(s, vec, &uf, &vf, &direction);
-
- uf *= (1.f - s->in_pad);
- vf *= (1.f - s->in_pad);
-
- face = s->in_cubemap_face_order[direction];
- ehi = ceilf(eh * (face + 1)) - ceilf(eh * face);
-
- uf = 0.5f * ewi * (uf + 1.f);
- vf = 0.5f * ehi * (vf + 1.f);
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (i = -1; i < 3; i++) {
- for (j = -1; j < 3; j++) {
- int new_ui = ui + j;
- int new_vi = vi + i;
- int v_shift;
- int new_ehi;
-
- if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
- face = s->in_cubemap_face_order[direction];
-
- v_shift = ceilf(eh * face);
- } else {
- uf = 2.f * new_ui / ewi - 1.f;
- vf = 2.f * new_vi / ehi - 1.f;
-
- uf /= (1.f - s->in_pad);
- vf /= (1.f - s->in_pad);
-
- process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
-
- uf *= (1.f - s->in_pad);
- vf *= (1.f - s->in_pad);
-
- v_shift = ceilf(eh * face);
- new_ehi = ceilf(eh * (face + 1)) - v_shift;
-
- new_ui = av_clip(roundf(0.5f * ewi * (uf + 1.f)), 0, ewi - 1);
- new_vi = av_clip(roundf(0.5f * new_ehi * (vf + 1.f)), 0, new_ehi - 1);
- }
-
-
- us[i + 1][j + 1] = new_ui;
- vs[i + 1][j + 1] = v_shift + new_vi;
- }
- }
- }
-
- /**
- * Calculate frame position in cubemap6x1 format for corresponding 3D coordinates on sphere.
- *
- * @param s filter context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static void xyz_to_cube6x1(const V360Context *s,
- const float *vec, int width, int height,
- uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
- {
- const float ew = width / 6.f;
- const int ehi = height;
- float uf, vf;
- int ui, vi;
- int ewi;
- int i, j;
- int direction, face;
-
- xyz_to_cube(s, vec, &uf, &vf, &direction);
-
- uf *= (1.f - s->in_pad);
- vf *= (1.f - s->in_pad);
-
- face = s->in_cubemap_face_order[direction];
- ewi = ceilf(ew * (face + 1)) - ceilf(ew * face);
-
- uf = 0.5f * ewi * (uf + 1.f);
- vf = 0.5f * ehi * (vf + 1.f);
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (i = -1; i < 3; i++) {
- for (j = -1; j < 3; j++) {
- int new_ui = ui + j;
- int new_vi = vi + i;
- int u_shift;
- int new_ewi;
-
- if (new_ui >= 0 && new_ui < ewi && new_vi >= 0 && new_vi < ehi) {
- face = s->in_cubemap_face_order[direction];
-
- u_shift = ceilf(ew * face);
- } else {
- uf = 2.f * new_ui / ewi - 1.f;
- vf = 2.f * new_vi / ehi - 1.f;
-
- uf /= (1.f - s->in_pad);
- vf /= (1.f - s->in_pad);
-
- process_cube_coordinates(s, uf, vf, direction, &uf, &vf, &face);
-
- uf *= (1.f - s->in_pad);
- vf *= (1.f - s->in_pad);
-
- u_shift = ceilf(ew * face);
- new_ewi = ceilf(ew * (face + 1)) - u_shift;
-
- new_ui = av_clip(roundf(0.5f * new_ewi * (uf + 1.f)), 0, new_ewi - 1);
- new_vi = av_clip(roundf(0.5f * ehi * (vf + 1.f)), 0, ehi - 1);
- }
-
-
- us[i + 1][j + 1] = u_shift + new_ui;
- vs[i + 1][j + 1] = new_vi;
- }
- }
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in equirectangular format.
- *
- * @param s filter context
- * @param i horizontal position on frame [0, height)
- * @param j vertical position on frame [0, width)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static void equirect_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float phi = ((2.f * i) / width - 1.f) * M_PI;
- const float theta = ((2.f * j) / height - 1.f) * M_PI_2;
-
- const float sin_phi = sinf(phi);
- const float cos_phi = cosf(phi);
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
-
- vec[0] = cos_theta * sin_phi;
- vec[1] = -sin_theta;
- vec[2] = -cos_theta * cos_phi;
- }
-
- /**
- * Calculate frame position in equirectangular format for corresponding 3D coordinates on sphere.
- *
- * @param s filter context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static void xyz_to_equirect(const V360Context *s,
- const float *vec, int width, int height,
- uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
- {
- const float phi = atan2f(vec[0], -vec[2]);
- const float theta = asinf(-vec[1]);
- float uf, vf;
- int ui, vi;
- int i, j;
-
- uf = (phi / M_PI + 1.f) * width / 2.f;
- vf = (theta / M_PI_2 + 1.f) * height / 2.f;
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (i = -1; i < 3; i++) {
- for (j = -1; j < 3; j++) {
- us[i + 1][j + 1] = mod(ui + j, width);
- vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
- }
- }
- }
-
- /**
- * Prepare data for processing equi-angular cubemap input format.
- *
- * @param ctx filter context
-
- * @return error code
- */
- static int prepare_eac_in(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- s->in_cubemap_face_order[RIGHT] = TOP_RIGHT;
- s->in_cubemap_face_order[LEFT] = TOP_LEFT;
- s->in_cubemap_face_order[UP] = BOTTOM_RIGHT;
- s->in_cubemap_face_order[DOWN] = BOTTOM_LEFT;
- s->in_cubemap_face_order[FRONT] = TOP_MIDDLE;
- s->in_cubemap_face_order[BACK] = BOTTOM_MIDDLE;
-
- s->in_cubemap_face_rotation[TOP_LEFT] = ROT_0;
- s->in_cubemap_face_rotation[TOP_MIDDLE] = ROT_0;
- s->in_cubemap_face_rotation[TOP_RIGHT] = ROT_0;
- s->in_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270;
- s->in_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
- s->in_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270;
-
- return 0;
- }
-
- /**
- * Prepare data for processing equi-angular cubemap output format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_eac_out(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- s->out_cubemap_direction_order[TOP_LEFT] = LEFT;
- s->out_cubemap_direction_order[TOP_MIDDLE] = FRONT;
- s->out_cubemap_direction_order[TOP_RIGHT] = RIGHT;
- s->out_cubemap_direction_order[BOTTOM_LEFT] = DOWN;
- s->out_cubemap_direction_order[BOTTOM_MIDDLE] = BACK;
- s->out_cubemap_direction_order[BOTTOM_RIGHT] = UP;
-
- s->out_cubemap_face_rotation[TOP_LEFT] = ROT_0;
- s->out_cubemap_face_rotation[TOP_MIDDLE] = ROT_0;
- s->out_cubemap_face_rotation[TOP_RIGHT] = ROT_0;
- s->out_cubemap_face_rotation[BOTTOM_LEFT] = ROT_270;
- s->out_cubemap_face_rotation[BOTTOM_MIDDLE] = ROT_90;
- s->out_cubemap_face_rotation[BOTTOM_RIGHT] = ROT_270;
-
- return 0;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in equi-angular cubemap format.
- *
- * @param s filter context
- * @param i horizontal position on frame [0, height)
- * @param j vertical position on frame [0, width)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static void eac_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float pixel_pad = 2;
- const float u_pad = pixel_pad / width;
- const float v_pad = pixel_pad / height;
-
- int u_face, v_face, face;
-
- float l_x, l_y, l_z;
- float norm;
-
- float uf = (float)i / width;
- float vf = (float)j / height;
-
- // EAC has 2-pixel padding on faces except between faces on the same row
- // Padding pixels seems not to be stretched with tangent as regular pixels
- // Formulas below approximate original padding as close as I could get experimentally
-
- // Horizontal padding
- uf = 3.f * (uf - u_pad) / (1.f - 2.f * u_pad);
- if (uf < 0.f) {
- u_face = 0;
- uf -= 0.5f;
- } else if (uf >= 3.f) {
- u_face = 2;
- uf -= 2.5f;
- } else {
- u_face = floorf(uf);
- uf = fmodf(uf, 1.f) - 0.5f;
- }
-
- // Vertical padding
- v_face = floorf(vf * 2.f);
- vf = (vf - v_pad - 0.5f * v_face) / (0.5f - 2.f * v_pad) - 0.5f;
-
- if (uf >= -0.5f && uf < 0.5f) {
- uf = tanf(M_PI_2 * uf);
- } else {
- uf = 2.f * uf;
- }
- if (vf >= -0.5f && vf < 0.5f) {
- vf = tanf(M_PI_2 * vf);
- } else {
- vf = 2.f * vf;
- }
-
- face = u_face + 3 * v_face;
-
- switch (face) {
- case TOP_LEFT:
- l_x = -1.f;
- l_y = -vf;
- l_z = -uf;
- break;
- case TOP_MIDDLE:
- l_x = uf;
- l_y = -vf;
- l_z = -1.f;
- break;
- case TOP_RIGHT:
- l_x = 1.f;
- l_y = -vf;
- l_z = uf;
- break;
- case BOTTOM_LEFT:
- l_x = -vf;
- l_y = -1.f;
- l_z = uf;
- break;
- case BOTTOM_MIDDLE:
- l_x = -vf;
- l_y = uf;
- l_z = 1.f;
- break;
- case BOTTOM_RIGHT:
- l_x = -vf;
- l_y = 1.f;
- l_z = -uf;
- break;
- }
-
- norm = sqrtf(l_x * l_x + l_y * l_y + l_z * l_z);
- vec[0] = l_x / norm;
- vec[1] = l_y / norm;
- vec[2] = l_z / norm;
- }
-
- /**
- * Calculate frame position in equi-angular cubemap format for corresponding 3D coordinates on sphere.
- *
- * @param s filter context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static void xyz_to_eac(const V360Context *s,
- const float *vec, int width, int height,
- uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
- {
- const float pixel_pad = 2;
- const float u_pad = pixel_pad / width;
- const float v_pad = pixel_pad / height;
-
- float uf, vf;
- int ui, vi;
- int i, j;
- int direction, face;
- int u_face, v_face;
-
- xyz_to_cube(s, vec, &uf, &vf, &direction);
-
- face = s->in_cubemap_face_order[direction];
- u_face = face % 3;
- v_face = face / 3;
-
- uf = M_2_PI * atanf(uf) + 0.5f;
- vf = M_2_PI * atanf(vf) + 0.5f;
-
- // These formulas are inversed from eac_to_xyz ones
- uf = (uf + u_face) * (1.f - 2.f * u_pad) / 3.f + u_pad;
- vf = vf * (0.5f - 2.f * v_pad) + v_pad + 0.5f * v_face;
-
- uf *= width;
- vf *= height;
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (i = -1; i < 3; i++) {
- for (j = -1; j < 3; j++) {
- us[i + 1][j + 1] = av_clip(ui + j, 0, width - 1);
- vs[i + 1][j + 1] = av_clip(vi + i, 0, height - 1);
- }
- }
- }
-
- /**
- * Prepare data for processing flat output format.
- *
- * @param ctx filter context
- *
- * @return error code
- */
- static int prepare_flat_out(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
-
- const float h_angle = 0.5f * s->h_fov * M_PI / 180.f;
- const float v_angle = 0.5f * s->v_fov * M_PI / 180.f;
-
- const float sin_phi = sinf(h_angle);
- const float cos_phi = cosf(h_angle);
- const float sin_theta = sinf(v_angle);
- const float cos_theta = cosf(v_angle);
-
- s->flat_range[0] = cos_theta * sin_phi;
- s->flat_range[1] = sin_theta;
- s->flat_range[2] = -cos_theta * cos_phi;
-
- return 0;
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in flat format.
- *
- * @param s filter context
- * @param i horizontal position on frame [0, height)
- * @param j vertical position on frame [0, width)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static void flat_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float l_x = s->flat_range[0] * (2.f * i / width - 1.f);
- const float l_y = -s->flat_range[1] * (2.f * j / height - 1.f);
- const float l_z = s->flat_range[2];
-
- const float norm = sqrtf(l_x * l_x + l_y * l_y + l_z * l_z);
-
- vec[0] = l_x / norm;
- vec[1] = l_y / norm;
- vec[2] = l_z / norm;
- }
-
- /**
- * Calculate frame position in dual fisheye format for corresponding 3D coordinates on sphere.
- *
- * @param s filter context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static void xyz_to_dfisheye(const V360Context *s,
- const float *vec, int width, int height,
- uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
- {
- const float scale = 1.f - s->in_pad;
-
- const float ew = width / 2.f;
- const float eh = height;
-
- const float phi = atan2f(-vec[1], -vec[0]);
- const float theta = acosf(fabsf(vec[2])) / M_PI;
-
- float uf = (theta * cosf(phi) * scale + 0.5f) * ew;
- float vf = (theta * sinf(phi) * scale + 0.5f) * eh;
-
- int ui, vi;
- int u_shift;
- int i, j;
-
- if (vec[2] >= 0) {
- u_shift = 0;
- } else {
- u_shift = ceilf(ew);
- uf = ew - uf;
- }
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (i = -1; i < 3; i++) {
- for (j = -1; j < 3; j++) {
- us[i + 1][j + 1] = av_clip(u_shift + ui + j, 0, width - 1);
- vs[i + 1][j + 1] = av_clip( vi + i, 0, height - 1);
- }
- }
- }
-
- /**
- * Calculate 3D coordinates on sphere for corresponding frame position in facebook's format.
- *
- * @param s filter context
- * @param i horizontal position on frame [0, height)
- * @param j vertical position on frame [0, width)
- * @param width frame width
- * @param height frame height
- * @param vec coordinates on sphere
- */
- static void fb_to_xyz(const V360Context *s,
- int i, int j, int width, int height,
- float *vec)
- {
- const float scale = 0.99f;
- float l_x, l_y, l_z;
-
- if (i < 4 * width / 5) {
- const float theta_range = M_PI / 4.f;
-
- const int ew = 4 * width / 5;
- const int eh = height;
-
- const float phi = ((2.f * i) / ew - 1.f) * M_PI / scale;
- const float theta = ((2.f * j) / eh - 1.f) * theta_range / scale;
-
- const float sin_phi = sinf(phi);
- const float cos_phi = cosf(phi);
- const float sin_theta = sinf(theta);
- const float cos_theta = cosf(theta);
-
- l_x = cos_theta * sin_phi;
- l_y = -sin_theta;
- l_z = -cos_theta * cos_phi;
- } else {
- const int ew = width / 5;
- const int eh = height / 2;
-
- float uf, vf;
- float norm;
-
- if (j < eh) { // UP
- uf = 2.f * (i - 4 * ew) / ew - 1.f;
- vf = 2.f * (j ) / eh - 1.f;
-
- uf /= scale;
- vf /= scale;
-
- l_x = uf;
- l_y = 1.f;
- l_z = -vf;
- } else { // DOWN
- uf = 2.f * (i - 4 * ew) / ew - 1.f;
- vf = 2.f * (j - eh) / eh - 1.f;
-
- uf /= scale;
- vf /= scale;
-
- l_x = uf;
- l_y = -1.f;
- l_z = vf;
- }
-
- norm = sqrtf(l_x * l_x + l_y * l_y + l_z * l_z);
-
- l_x /= norm;
- l_y /= norm;
- l_z /= norm;
- }
-
- vec[0] = l_x;
- vec[1] = l_y;
- vec[2] = l_z;
- }
-
- /**
- * Calculate frame position in facebook's format for corresponding 3D coordinates on sphere.
- *
- * @param s filter context
- * @param vec coordinates on sphere
- * @param width frame width
- * @param height frame height
- * @param us horizontal coordinates for interpolation window
- * @param vs vertical coordinates for interpolation window
- * @param du horizontal relative coordinate
- * @param dv vertical relative coordinate
- */
- static void xyz_to_fb(const V360Context *s,
- const float *vec, int width, int height,
- uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv)
- {
- const float scale = 0.99f;
-
- const float phi = atan2f(vec[0], -vec[2]);
- const float theta = asinf(-vec[1]);
- const float theta_range = M_PI / 4.f;
-
- int ew, eh;
- int u_shift, v_shift;
- float uf, vf;
- int ui, vi;
- int i, j;
-
- if (theta > -theta_range && theta < theta_range) {
- ew = 4 * width / 5;
- eh = height;
-
- u_shift = 0;
- v_shift = 0;
-
- uf = (phi / M_PI * scale + 1.f) * ew / 2.f;
- vf = (theta / theta_range * scale + 1.f) * eh / 2.f;
- } else {
- ew = width / 5;
- eh = height / 2;
-
- u_shift = 4 * ew;
-
- if (theta < 0.f) { // UP
- uf = vec[0] / vec[1];
- vf = -vec[2] / vec[1];
- v_shift = 0;
- } else { // DOWN
- uf = -vec[0] / vec[1];
- vf = -vec[2] / vec[1];
- v_shift = eh;
- }
-
- uf = 0.5f * ew * (uf * scale + 1.f);
- vf = 0.5f * eh * (vf * scale + 1.f);
- }
-
- ui = floorf(uf);
- vi = floorf(vf);
-
- *du = uf - ui;
- *dv = vf - vi;
-
- for (i = -1; i < 3; i++) {
- for (j = -1; j < 3; j++) {
- us[i + 1][j + 1] = u_shift + av_clip(ui + j, 0, ew - 1);
- vs[i + 1][j + 1] = v_shift + av_clip(vi + i, 0, eh - 1);
- }
- }
-
- }
-
- /**
- * Calculate rotation matrix for yaw/pitch/roll angles.
- */
- static inline void calculate_rotation_matrix(float yaw, float pitch, float roll,
- float rot_mat[3][3])
- {
- const float yaw_rad = yaw * M_PI / 180.f;
- const float pitch_rad = pitch * M_PI / 180.f;
- const float roll_rad = roll * M_PI / 180.f;
-
- const float sin_yaw = sinf(-yaw_rad);
- const float cos_yaw = cosf(-yaw_rad);
- const float sin_pitch = sinf(pitch_rad);
- const float cos_pitch = cosf(pitch_rad);
- const float sin_roll = sinf(roll_rad);
- const float cos_roll = cosf(roll_rad);
-
- rot_mat[0][0] = sin_yaw * sin_pitch * sin_roll + cos_yaw * cos_roll;
- rot_mat[0][1] = sin_yaw * sin_pitch * cos_roll - cos_yaw * sin_roll;
- rot_mat[0][2] = sin_yaw * cos_pitch;
-
- rot_mat[1][0] = cos_pitch * sin_roll;
- rot_mat[1][1] = cos_pitch * cos_roll;
- rot_mat[1][2] = -sin_pitch;
-
- rot_mat[2][0] = cos_yaw * sin_pitch * sin_roll - sin_yaw * cos_roll;
- rot_mat[2][1] = cos_yaw * sin_pitch * cos_roll + sin_yaw * sin_roll;
- rot_mat[2][2] = cos_yaw * cos_pitch;
- }
-
- /**
- * Rotate vector with given rotation matrix.
- *
- * @param rot_mat rotation matrix
- * @param vec vector
- */
- static inline void rotate(const float rot_mat[3][3],
- float *vec)
- {
- const float x_tmp = vec[0] * rot_mat[0][0] + vec[1] * rot_mat[0][1] + vec[2] * rot_mat[0][2];
- const float y_tmp = vec[0] * rot_mat[1][0] + vec[1] * rot_mat[1][1] + vec[2] * rot_mat[1][2];
- const float z_tmp = vec[0] * rot_mat[2][0] + vec[1] * rot_mat[2][1] + vec[2] * rot_mat[2][2];
-
- vec[0] = x_tmp;
- vec[1] = y_tmp;
- vec[2] = z_tmp;
- }
-
- static inline void set_mirror_modifier(int h_flip, int v_flip, int d_flip,
- float *modifier)
- {
- modifier[0] = h_flip ? -1.f : 1.f;
- modifier[1] = v_flip ? -1.f : 1.f;
- modifier[2] = d_flip ? -1.f : 1.f;
- }
-
- static inline void mirror(const float *modifier,
- float *vec)
- {
- vec[0] *= modifier[0];
- vec[1] *= modifier[1];
- vec[2] *= modifier[2];
- }
-
- static int config_output(AVFilterLink *outlink)
- {
- AVFilterContext *ctx = outlink->src;
- AVFilterLink *inlink = ctx->inputs[0];
- V360Context *s = ctx->priv;
- const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
- const int depth = desc->comp[0].depth;
- float remap_data_size = 0.f;
- int sizeof_remap;
- int err;
- int p, h, w;
- float hf, wf;
- float mirror_modifier[3];
- void (*in_transform)(const V360Context *s,
- const float *vec, int width, int height,
- uint16_t us[4][4], uint16_t vs[4][4], float *du, float *dv);
- void (*out_transform)(const V360Context *s,
- int i, int j, int width, int height,
- float *vec);
- void (*calculate_kernel)(float du, float dv, int shift, const XYRemap4 *r_tmp, void *r);
- float rot_mat[3][3];
-
- switch (s->interp) {
- case NEAREST:
- calculate_kernel = nearest_kernel;
- s->remap_slice = depth <= 8 ? remap1_8bit_slice : remap1_16bit_slice;
- sizeof_remap = sizeof(XYRemap1);
- break;
- case BILINEAR:
- calculate_kernel = bilinear_kernel;
- s->remap_slice = depth <= 8 ? remap2_8bit_slice : remap2_16bit_slice;
- sizeof_remap = sizeof(XYRemap2);
- break;
- case BICUBIC:
- calculate_kernel = bicubic_kernel;
- s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
- sizeof_remap = sizeof(XYRemap4);
- break;
- case LANCZOS:
- calculate_kernel = lanczos_kernel;
- s->remap_slice = depth <= 8 ? remap4_8bit_slice : remap4_16bit_slice;
- sizeof_remap = sizeof(XYRemap4);
- break;
- }
-
- switch (s->in) {
- case EQUIRECTANGULAR:
- in_transform = xyz_to_equirect;
- err = 0;
- wf = inlink->w;
- hf = inlink->h;
- break;
- case CUBEMAP_3_2:
- in_transform = xyz_to_cube3x2;
- err = prepare_cube_in(ctx);
- wf = inlink->w / 3.f * 4.f;
- hf = inlink->h;
- break;
- case CUBEMAP_1_6:
- in_transform = xyz_to_cube1x6;
- err = prepare_cube_in(ctx);
- wf = inlink->w * 4.f;
- hf = inlink->h / 3.f;
- break;
- case CUBEMAP_6_1:
- in_transform = xyz_to_cube6x1;
- err = prepare_cube_in(ctx);
- wf = inlink->w / 3.f * 2.f;
- hf = inlink->h * 2.f;
- break;
- case EQUIANGULAR:
- in_transform = xyz_to_eac;
- err = prepare_eac_in(ctx);
- wf = inlink->w;
- hf = inlink->h / 9.f * 8.f;
- break;
- case FLAT:
- av_log(ctx, AV_LOG_ERROR, "Flat format is not accepted as input.\n");
- return AVERROR(EINVAL);
- case DUAL_FISHEYE:
- in_transform = xyz_to_dfisheye;
- err = 0;
- wf = inlink->w;
- hf = inlink->h;
- break;
- case FACEBOOK:
- in_transform = xyz_to_fb;
- err = 0;
- wf = inlink->w / 5.f * 4.f;
- hf = inlink->h;
- break;
- default:
- av_log(ctx, AV_LOG_ERROR, "Specified input format is not handled.\n");
- return AVERROR_BUG;
- }
-
- if (err != 0) {
- return err;
- }
-
- switch (s->out) {
- case EQUIRECTANGULAR:
- out_transform = equirect_to_xyz;
- err = 0;
- w = roundf(wf);
- h = roundf(hf);
- break;
- case CUBEMAP_3_2:
- out_transform = cube3x2_to_xyz;
- err = prepare_cube_out(ctx);
- w = roundf(wf / 4.f * 3.f);
- h = roundf(hf);
- break;
- case CUBEMAP_1_6:
- out_transform = cube1x6_to_xyz;
- err = prepare_cube_out(ctx);
- w = roundf(wf / 4.f);
- h = roundf(hf * 3.f);
- break;
- case CUBEMAP_6_1:
- out_transform = cube6x1_to_xyz;
- err = prepare_cube_out(ctx);
- w = roundf(wf / 2.f * 3.f);
- h = roundf(hf / 2.f);
- break;
- case EQUIANGULAR:
- out_transform = eac_to_xyz;
- err = prepare_eac_out(ctx);
- w = roundf(wf);
- h = roundf(hf / 8.f * 9.f);
- break;
- case FLAT:
- out_transform = flat_to_xyz;
- err = prepare_flat_out(ctx);
- w = roundf(wf * s->flat_range[0] / s->flat_range[1] / 2.f);
- h = roundf(hf);
- break;
- case DUAL_FISHEYE:
- av_log(ctx, AV_LOG_ERROR, "Dual fisheye format is not accepted as output.\n");
- return AVERROR(EINVAL);
- case FACEBOOK:
- out_transform = fb_to_xyz;
- err = 0;
- w = roundf(wf / 4.f * 5.f);
- h = roundf(hf);
- break;
- default:
- av_log(ctx, AV_LOG_ERROR, "Specified output format is not handled.\n");
- return AVERROR_BUG;
- }
-
- if (err != 0) {
- return err;
- }
-
- // Override resolution with user values if specified
- if (s->width > 0 && s->height > 0) {
- w = s->width;
- h = s->height;
- } else if (s->width > 0 || s->height > 0) {
- av_log(ctx, AV_LOG_ERROR, "Both width and height values should be specified.\n");
- return AVERROR(EINVAL);
- }
-
- s->planeheight[1] = s->planeheight[2] = FF_CEIL_RSHIFT(h, desc->log2_chroma_h);
- s->planeheight[0] = s->planeheight[3] = h;
- s->planewidth[1] = s->planewidth[2] = FF_CEIL_RSHIFT(w, desc->log2_chroma_w);
- s->planewidth[0] = s->planewidth[3] = w;
-
- outlink->h = h;
- outlink->w = w;
-
- s->inplaneheight[1] = s->inplaneheight[2] = FF_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h);
- s->inplaneheight[0] = s->inplaneheight[3] = inlink->h;
- s->inplanewidth[1] = s->inplanewidth[2] = FF_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w);
- s->inplanewidth[0] = s->inplanewidth[3] = inlink->w;
- s->nb_planes = av_pix_fmt_count_planes(inlink->format);
-
- for (p = 0; p < s->nb_planes; p++) {
- remap_data_size += (float)s->planewidth[p] * s->planeheight[p] * sizeof_remap;
- }
-
- for (p = 0; p < s->nb_planes; p++) {
- s->remap[p] = av_calloc(s->planewidth[p] * s->planeheight[p], sizeof_remap);
- if (!s->remap[p]) {
- av_log(ctx, AV_LOG_ERROR,
- "Not enough memory to allocate remap data. Need at least %.3f GiB.\n",
- remap_data_size / (1024 * 1024 * 1024));
- return AVERROR(ENOMEM);
- }
- }
-
- calculate_rotation_matrix(s->yaw, s->pitch, s->roll, rot_mat);
- set_mirror_modifier(s->h_flip, s->v_flip, s->d_flip, mirror_modifier);
-
- // Calculate remap data
- for (p = 0; p < s->nb_planes; p++) {
- const int width = s->planewidth[p];
- const int height = s->planeheight[p];
- const int in_width = s->inplanewidth[p];
- const int in_height = s->inplaneheight[p];
- void *r = s->remap[p];
- float du, dv;
- float vec[3];
- XYRemap4 r_tmp;
- int i, j;
-
- for (i = 0; i < width; i++) {
- for (j = 0; j < height; j++) {
- out_transform(s, i, j, width, height, vec);
- rotate(rot_mat, vec);
- mirror(mirror_modifier, vec);
- in_transform(s, vec, in_width, in_height, r_tmp.u, r_tmp.v, &du, &dv);
- calculate_kernel(du, dv, j * width + i, &r_tmp, r);
- }
- }
- }
-
- return 0;
- }
-
- static int filter_frame(AVFilterLink *inlink, AVFrame *in)
- {
- AVFilterContext *ctx = inlink->dst;
- AVFilterLink *outlink = ctx->outputs[0];
- V360Context *s = ctx->priv;
- AVFrame *out;
- ThreadData td;
-
- out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
- if (!out) {
- av_frame_free(&in);
- return AVERROR(ENOMEM);
- }
- av_frame_copy_props(out, in);
-
- td.s = s;
- td.in = in;
- td.out = out;
- td.nb_planes = s->nb_planes;
-
- ctx->internal->execute(ctx, s->remap_slice, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
-
- av_frame_free(&in);
- return ff_filter_frame(outlink, out);
- }
-
- static av_cold void uninit(AVFilterContext *ctx)
- {
- V360Context *s = ctx->priv;
- int p;
-
- for (p = 0; p < s->nb_planes; p++)
- av_freep(&s->remap[p]);
- }
-
- static const AVFilterPad inputs[] = {
- {
- .name = "default",
- .type = AVMEDIA_TYPE_VIDEO,
- .filter_frame = filter_frame,
- },
- { NULL }
- };
-
- static const AVFilterPad outputs[] = {
- {
- .name = "default",
- .type = AVMEDIA_TYPE_VIDEO,
- .config_props = config_output,
- },
- { NULL }
- };
-
- AVFilter ff_vf_v360 = {
- .name = "v360",
- .description = NULL_IF_CONFIG_SMALL("Convert 360 projection of video."),
- .priv_size = sizeof(V360Context),
- .uninit = uninit,
- .query_formats = query_formats,
- .inputs = inputs,
- .outputs = outputs,
- .priv_class = &v360_class,
- .flags = AVFILTER_FLAG_SLICE_THREADS,
- };
|