You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2014 lines
69KB

  1. /*
  2. * QDM2 compatible decoder
  3. * Copyright (c) 2003 Ewald Snel
  4. * Copyright (c) 2005 Benjamin Larsson
  5. * Copyright (c) 2005 Alex Beregszaszi
  6. * Copyright (c) 2005 Roberto Togni
  7. *
  8. * This file is part of Libav.
  9. *
  10. * Libav is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * Libav is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with Libav; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. /**
  25. * @file
  26. * QDM2 decoder
  27. * @author Ewald Snel, Benjamin Larsson, Alex Beregszaszi, Roberto Togni
  28. *
  29. * The decoder is not perfect yet, there are still some distortions
  30. * especially on files encoded with 16 or 8 subbands.
  31. */
  32. #include <math.h>
  33. #include <stddef.h>
  34. #include <stdio.h>
  35. #include "libavutil/channel_layout.h"
  36. #define BITSTREAM_READER_LE
  37. #include "avcodec.h"
  38. #include "bitstream.h"
  39. #include "internal.h"
  40. #include "mpegaudio.h"
  41. #include "mpegaudiodsp.h"
  42. #include "rdft.h"
  43. #include "vlc.h"
  44. #include "qdm2data.h"
  45. #include "qdm2_tablegen.h"
  46. #define QDM2_LIST_ADD(list, size, packet) \
  47. do { \
  48. if (size > 0) { \
  49. list[size - 1].next = &list[size]; \
  50. } \
  51. list[size].packet = packet; \
  52. list[size].next = NULL; \
  53. size++; \
  54. } while(0)
  55. // Result is 8, 16 or 30
  56. #define QDM2_SB_USED(sub_sampling) (((sub_sampling) >= 2) ? 30 : 8 << (sub_sampling))
  57. #define FIX_NOISE_IDX(noise_idx) \
  58. if ((noise_idx) >= 3840) \
  59. (noise_idx) -= 3840; \
  60. #define SB_DITHERING_NOISE(sb,noise_idx) (noise_table[(noise_idx)++] * sb_noise_attenuation[(sb)])
  61. #define SAMPLES_NEEDED \
  62. av_log (NULL,AV_LOG_INFO,"This file triggers some untested code. Please contact the developers.\n");
  63. #define SAMPLES_NEEDED_2(why) \
  64. av_log (NULL,AV_LOG_INFO,"This file triggers some missing code. Please contact the developers.\nPosition: %s\n",why);
  65. #define QDM2_MAX_FRAME_SIZE 512
  66. typedef int8_t sb_int8_array[2][30][64];
  67. /**
  68. * Subpacket
  69. */
  70. typedef struct QDM2SubPacket {
  71. int type; ///< subpacket type
  72. unsigned int size; ///< subpacket size
  73. const uint8_t *data; ///< pointer to subpacket data (points to input data buffer, it's not a private copy)
  74. } QDM2SubPacket;
  75. /**
  76. * A node in the subpacket list
  77. */
  78. typedef struct QDM2SubPNode {
  79. QDM2SubPacket *packet; ///< packet
  80. struct QDM2SubPNode *next; ///< pointer to next packet in the list, NULL if leaf node
  81. } QDM2SubPNode;
  82. typedef struct QDM2Complex {
  83. float re;
  84. float im;
  85. } QDM2Complex;
  86. typedef struct FFTTone {
  87. float level;
  88. QDM2Complex *complex;
  89. const float *table;
  90. int phase;
  91. int phase_shift;
  92. int duration;
  93. short time_index;
  94. short cutoff;
  95. } FFTTone;
  96. typedef struct FFTCoefficient {
  97. int16_t sub_packet;
  98. uint8_t channel;
  99. int16_t offset;
  100. int16_t exp;
  101. uint8_t phase;
  102. } FFTCoefficient;
  103. typedef struct QDM2FFT {
  104. DECLARE_ALIGNED(32, QDM2Complex, complex)[MPA_MAX_CHANNELS][256];
  105. } QDM2FFT;
  106. /**
  107. * QDM2 decoder context
  108. */
  109. typedef struct QDM2Context {
  110. /// Parameters from codec header, do not change during playback
  111. int nb_channels; ///< number of channels
  112. int channels; ///< number of channels
  113. int group_size; ///< size of frame group (16 frames per group)
  114. int fft_size; ///< size of FFT, in complex numbers
  115. int checksum_size; ///< size of data block, used also for checksum
  116. /// Parameters built from header parameters, do not change during playback
  117. int group_order; ///< order of frame group
  118. int fft_order; ///< order of FFT (actually fftorder+1)
  119. int frame_size; ///< size of data frame
  120. int frequency_range;
  121. int sub_sampling; ///< subsampling: 0=25%, 1=50%, 2=100% */
  122. int coeff_per_sb_select; ///< selector for "num. of coeffs. per subband" tables. Can be 0, 1, 2
  123. int cm_table_select; ///< selector for "coding method" tables. Can be 0, 1 (from init: 0-4)
  124. /// Packets and packet lists
  125. QDM2SubPacket sub_packets[16]; ///< the packets themselves
  126. QDM2SubPNode sub_packet_list_A[16]; ///< list of all packets
  127. QDM2SubPNode sub_packet_list_B[16]; ///< FFT packets B are on list
  128. int sub_packets_B; ///< number of packets on 'B' list
  129. QDM2SubPNode sub_packet_list_C[16]; ///< packets with errors?
  130. QDM2SubPNode sub_packet_list_D[16]; ///< DCT packets
  131. /// FFT and tones
  132. FFTTone fft_tones[1000];
  133. int fft_tone_start;
  134. int fft_tone_end;
  135. FFTCoefficient fft_coefs[1000];
  136. int fft_coefs_index;
  137. int fft_coefs_min_index[5];
  138. int fft_coefs_max_index[5];
  139. int fft_level_exp[6];
  140. RDFTContext rdft_ctx;
  141. QDM2FFT fft;
  142. /// I/O data
  143. const uint8_t *compressed_data;
  144. int compressed_size;
  145. float output_buffer[QDM2_MAX_FRAME_SIZE * 2];
  146. /// Synthesis filter
  147. MPADSPContext mpadsp;
  148. DECLARE_ALIGNED(32, float, synth_buf)[MPA_MAX_CHANNELS][512*2];
  149. int synth_buf_offset[MPA_MAX_CHANNELS];
  150. DECLARE_ALIGNED(32, float, sb_samples)[MPA_MAX_CHANNELS][128][SBLIMIT];
  151. DECLARE_ALIGNED(32, float, samples)[MPA_MAX_CHANNELS * MPA_FRAME_SIZE];
  152. /// Mixed temporary data used in decoding
  153. float tone_level[MPA_MAX_CHANNELS][30][64];
  154. int8_t coding_method[MPA_MAX_CHANNELS][30][64];
  155. int8_t quantized_coeffs[MPA_MAX_CHANNELS][10][8];
  156. int8_t tone_level_idx_base[MPA_MAX_CHANNELS][30][8];
  157. int8_t tone_level_idx_hi1[MPA_MAX_CHANNELS][3][8][8];
  158. int8_t tone_level_idx_mid[MPA_MAX_CHANNELS][26][8];
  159. int8_t tone_level_idx_hi2[MPA_MAX_CHANNELS][26];
  160. int8_t tone_level_idx[MPA_MAX_CHANNELS][30][64];
  161. int8_t tone_level_idx_temp[MPA_MAX_CHANNELS][30][64];
  162. // Flags
  163. int has_errors; ///< packet has errors
  164. int superblocktype_2_3; ///< select fft tables and some algorithm based on superblock type
  165. int do_synth_filter; ///< used to perform or skip synthesis filter
  166. int sub_packet;
  167. int noise_idx; ///< index for dithering noise table
  168. } QDM2Context;
  169. static VLC vlc_tab_level;
  170. static VLC vlc_tab_diff;
  171. static VLC vlc_tab_run;
  172. static VLC fft_level_exp_alt_vlc;
  173. static VLC fft_level_exp_vlc;
  174. static VLC fft_stereo_exp_vlc;
  175. static VLC fft_stereo_phase_vlc;
  176. static VLC vlc_tab_tone_level_idx_hi1;
  177. static VLC vlc_tab_tone_level_idx_mid;
  178. static VLC vlc_tab_tone_level_idx_hi2;
  179. static VLC vlc_tab_type30;
  180. static VLC vlc_tab_type34;
  181. static VLC vlc_tab_fft_tone_offset[5];
  182. static const uint16_t qdm2_vlc_offs[] = {
  183. 0,260,566,598,894,1166,1230,1294,1678,1950,2214,2278,2310,2570,2834,3124,3448,3838,
  184. };
  185. static const int switchtable[23] = {
  186. 0, 5, 1, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 4
  187. };
  188. static av_cold void qdm2_init_vlc(void)
  189. {
  190. static VLC_TYPE qdm2_table[3838][2];
  191. vlc_tab_level.table = &qdm2_table[qdm2_vlc_offs[0]];
  192. vlc_tab_level.table_allocated = qdm2_vlc_offs[1] - qdm2_vlc_offs[0];
  193. init_vlc(&vlc_tab_level, 8, 24,
  194. vlc_tab_level_huffbits, 1, 1,
  195. vlc_tab_level_huffcodes, 2, 2,
  196. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  197. vlc_tab_diff.table = &qdm2_table[qdm2_vlc_offs[1]];
  198. vlc_tab_diff.table_allocated = qdm2_vlc_offs[2] - qdm2_vlc_offs[1];
  199. init_vlc(&vlc_tab_diff, 8, 37,
  200. vlc_tab_diff_huffbits, 1, 1,
  201. vlc_tab_diff_huffcodes, 2, 2,
  202. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  203. vlc_tab_run.table = &qdm2_table[qdm2_vlc_offs[2]];
  204. vlc_tab_run.table_allocated = qdm2_vlc_offs[3] - qdm2_vlc_offs[2];
  205. init_vlc(&vlc_tab_run, 5, 6,
  206. vlc_tab_run_huffbits, 1, 1,
  207. vlc_tab_run_huffcodes, 1, 1,
  208. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  209. fft_level_exp_alt_vlc.table = &qdm2_table[qdm2_vlc_offs[3]];
  210. fft_level_exp_alt_vlc.table_allocated = qdm2_vlc_offs[4] -
  211. qdm2_vlc_offs[3];
  212. init_vlc(&fft_level_exp_alt_vlc, 8, 28,
  213. fft_level_exp_alt_huffbits, 1, 1,
  214. fft_level_exp_alt_huffcodes, 2, 2,
  215. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  216. fft_level_exp_vlc.table = &qdm2_table[qdm2_vlc_offs[4]];
  217. fft_level_exp_vlc.table_allocated = qdm2_vlc_offs[5] - qdm2_vlc_offs[4];
  218. init_vlc(&fft_level_exp_vlc, 8, 20,
  219. fft_level_exp_huffbits, 1, 1,
  220. fft_level_exp_huffcodes, 2, 2,
  221. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  222. fft_stereo_exp_vlc.table = &qdm2_table[qdm2_vlc_offs[5]];
  223. fft_stereo_exp_vlc.table_allocated = qdm2_vlc_offs[6] -
  224. qdm2_vlc_offs[5];
  225. init_vlc(&fft_stereo_exp_vlc, 6, 7,
  226. fft_stereo_exp_huffbits, 1, 1,
  227. fft_stereo_exp_huffcodes, 1, 1,
  228. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  229. fft_stereo_phase_vlc.table = &qdm2_table[qdm2_vlc_offs[6]];
  230. fft_stereo_phase_vlc.table_allocated = qdm2_vlc_offs[7] -
  231. qdm2_vlc_offs[6];
  232. init_vlc(&fft_stereo_phase_vlc, 6, 9,
  233. fft_stereo_phase_huffbits, 1, 1,
  234. fft_stereo_phase_huffcodes, 1, 1,
  235. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  236. vlc_tab_tone_level_idx_hi1.table =
  237. &qdm2_table[qdm2_vlc_offs[7]];
  238. vlc_tab_tone_level_idx_hi1.table_allocated = qdm2_vlc_offs[8] -
  239. qdm2_vlc_offs[7];
  240. init_vlc(&vlc_tab_tone_level_idx_hi1, 8, 20,
  241. vlc_tab_tone_level_idx_hi1_huffbits, 1, 1,
  242. vlc_tab_tone_level_idx_hi1_huffcodes, 2, 2,
  243. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  244. vlc_tab_tone_level_idx_mid.table =
  245. &qdm2_table[qdm2_vlc_offs[8]];
  246. vlc_tab_tone_level_idx_mid.table_allocated = qdm2_vlc_offs[9] -
  247. qdm2_vlc_offs[8];
  248. init_vlc(&vlc_tab_tone_level_idx_mid, 8, 24,
  249. vlc_tab_tone_level_idx_mid_huffbits, 1, 1,
  250. vlc_tab_tone_level_idx_mid_huffcodes, 2, 2,
  251. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  252. vlc_tab_tone_level_idx_hi2.table =
  253. &qdm2_table[qdm2_vlc_offs[9]];
  254. vlc_tab_tone_level_idx_hi2.table_allocated = qdm2_vlc_offs[10] -
  255. qdm2_vlc_offs[9];
  256. init_vlc(&vlc_tab_tone_level_idx_hi2, 8, 24,
  257. vlc_tab_tone_level_idx_hi2_huffbits, 1, 1,
  258. vlc_tab_tone_level_idx_hi2_huffcodes, 2, 2,
  259. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  260. vlc_tab_type30.table = &qdm2_table[qdm2_vlc_offs[10]];
  261. vlc_tab_type30.table_allocated = qdm2_vlc_offs[11] - qdm2_vlc_offs[10];
  262. init_vlc(&vlc_tab_type30, 6, 9,
  263. vlc_tab_type30_huffbits, 1, 1,
  264. vlc_tab_type30_huffcodes, 1, 1,
  265. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  266. vlc_tab_type34.table = &qdm2_table[qdm2_vlc_offs[11]];
  267. vlc_tab_type34.table_allocated = qdm2_vlc_offs[12] - qdm2_vlc_offs[11];
  268. init_vlc(&vlc_tab_type34, 5, 10,
  269. vlc_tab_type34_huffbits, 1, 1,
  270. vlc_tab_type34_huffcodes, 1, 1,
  271. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  272. vlc_tab_fft_tone_offset[0].table =
  273. &qdm2_table[qdm2_vlc_offs[12]];
  274. vlc_tab_fft_tone_offset[0].table_allocated = qdm2_vlc_offs[13] -
  275. qdm2_vlc_offs[12];
  276. init_vlc(&vlc_tab_fft_tone_offset[0], 8, 23,
  277. vlc_tab_fft_tone_offset_0_huffbits, 1, 1,
  278. vlc_tab_fft_tone_offset_0_huffcodes, 2, 2,
  279. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  280. vlc_tab_fft_tone_offset[1].table =
  281. &qdm2_table[qdm2_vlc_offs[13]];
  282. vlc_tab_fft_tone_offset[1].table_allocated = qdm2_vlc_offs[14] -
  283. qdm2_vlc_offs[13];
  284. init_vlc(&vlc_tab_fft_tone_offset[1], 8, 28,
  285. vlc_tab_fft_tone_offset_1_huffbits, 1, 1,
  286. vlc_tab_fft_tone_offset_1_huffcodes, 2, 2,
  287. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  288. vlc_tab_fft_tone_offset[2].table =
  289. &qdm2_table[qdm2_vlc_offs[14]];
  290. vlc_tab_fft_tone_offset[2].table_allocated = qdm2_vlc_offs[15] -
  291. qdm2_vlc_offs[14];
  292. init_vlc(&vlc_tab_fft_tone_offset[2], 8, 32,
  293. vlc_tab_fft_tone_offset_2_huffbits, 1, 1,
  294. vlc_tab_fft_tone_offset_2_huffcodes, 2, 2,
  295. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  296. vlc_tab_fft_tone_offset[3].table =
  297. &qdm2_table[qdm2_vlc_offs[15]];
  298. vlc_tab_fft_tone_offset[3].table_allocated = qdm2_vlc_offs[16] -
  299. qdm2_vlc_offs[15];
  300. init_vlc(&vlc_tab_fft_tone_offset[3], 8, 35,
  301. vlc_tab_fft_tone_offset_3_huffbits, 1, 1,
  302. vlc_tab_fft_tone_offset_3_huffcodes, 2, 2,
  303. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  304. vlc_tab_fft_tone_offset[4].table =
  305. &qdm2_table[qdm2_vlc_offs[16]];
  306. vlc_tab_fft_tone_offset[4].table_allocated = qdm2_vlc_offs[17] -
  307. qdm2_vlc_offs[16];
  308. init_vlc(&vlc_tab_fft_tone_offset[4], 8, 38,
  309. vlc_tab_fft_tone_offset_4_huffbits, 1, 1,
  310. vlc_tab_fft_tone_offset_4_huffcodes, 2, 2,
  311. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  312. }
  313. static int qdm2_get_vlc(BitstreamContext *bc, VLC *vlc, int flag, int depth)
  314. {
  315. int value;
  316. value = bitstream_read_vlc(bc, vlc->table, vlc->bits, depth);
  317. /* stage-2, 3 bits exponent escape sequence */
  318. if (value-- == 0)
  319. value = bitstream_read(bc, bitstream_read(bc, 3) + 1);
  320. /* stage-3, optional */
  321. if (flag) {
  322. int tmp = vlc_stage3_values[value];
  323. if ((value & ~3) > 0)
  324. tmp += bitstream_read(bc, value >> 2);
  325. value = tmp;
  326. }
  327. return value;
  328. }
  329. static int qdm2_get_se_vlc(VLC *vlc, BitstreamContext *bc, int depth)
  330. {
  331. int value = qdm2_get_vlc(bc, vlc, 0, depth);
  332. return (value & 1) ? ((value + 1) >> 1) : -(value >> 1);
  333. }
  334. /**
  335. * QDM2 checksum
  336. *
  337. * @param data pointer to data to be checksummed
  338. * @param length data length
  339. * @param value checksum value
  340. *
  341. * @return 0 if checksum is OK
  342. */
  343. static uint16_t qdm2_packet_checksum(const uint8_t *data, int length, int value)
  344. {
  345. int i;
  346. for (i = 0; i < length; i++)
  347. value -= data[i];
  348. return (uint16_t)(value & 0xffff);
  349. }
  350. /**
  351. * Fill a QDM2SubPacket structure with packet type, size, and data pointer.
  352. *
  353. * @param bc bitreader context
  354. * @param sub_packet packet under analysis
  355. */
  356. static void qdm2_decode_sub_packet_header(BitstreamContext *bc,
  357. QDM2SubPacket *sub_packet)
  358. {
  359. sub_packet->type = bitstream_read(bc, 8);
  360. if (sub_packet->type == 0) {
  361. sub_packet->size = 0;
  362. sub_packet->data = NULL;
  363. } else {
  364. sub_packet->size = bitstream_read(bc, 8);
  365. if (sub_packet->type & 0x80) {
  366. sub_packet->size <<= 8;
  367. sub_packet->size |= bitstream_read(bc, 8);
  368. sub_packet->type &= 0x7f;
  369. }
  370. if (sub_packet->type == 0x7f)
  371. sub_packet->type |= bitstream_read(bc, 8) << 8;
  372. // FIXME: this depends on bitreader-internal data
  373. sub_packet->data = &bc->buffer[bitstream_tell(bc) / 8];
  374. }
  375. av_log(NULL, AV_LOG_DEBUG, "Subpacket: type=%d size=%d start_offs=%x\n",
  376. sub_packet->type, sub_packet->size, bitstream_tell(bc) / 8);
  377. }
  378. /**
  379. * Return node pointer to first packet of requested type in list.
  380. *
  381. * @param list list of subpackets to be scanned
  382. * @param type type of searched subpacket
  383. * @return node pointer for subpacket if found, else NULL
  384. */
  385. static QDM2SubPNode *qdm2_search_subpacket_type_in_list(QDM2SubPNode *list,
  386. int type)
  387. {
  388. while (list && list->packet) {
  389. if (list->packet->type == type)
  390. return list;
  391. list = list->next;
  392. }
  393. return NULL;
  394. }
  395. /**
  396. * Replace 8 elements with their average value.
  397. * Called by qdm2_decode_superblock before starting subblock decoding.
  398. *
  399. * @param q context
  400. */
  401. static void average_quantized_coeffs(QDM2Context *q)
  402. {
  403. int i, j, n, ch, sum;
  404. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  405. for (ch = 0; ch < q->nb_channels; ch++)
  406. for (i = 0; i < n; i++) {
  407. sum = 0;
  408. for (j = 0; j < 8; j++)
  409. sum += q->quantized_coeffs[ch][i][j];
  410. sum /= 8;
  411. if (sum > 0)
  412. sum--;
  413. for (j = 0; j < 8; j++)
  414. q->quantized_coeffs[ch][i][j] = sum;
  415. }
  416. }
  417. /**
  418. * Build subband samples with noise weighted by q->tone_level.
  419. * Called by synthfilt_build_sb_samples.
  420. *
  421. * @param q context
  422. * @param sb subband index
  423. */
  424. static void build_sb_samples_from_noise(QDM2Context *q, int sb)
  425. {
  426. int ch, j;
  427. FIX_NOISE_IDX(q->noise_idx);
  428. if (!q->nb_channels)
  429. return;
  430. for (ch = 0; ch < q->nb_channels; ch++) {
  431. for (j = 0; j < 64; j++) {
  432. q->sb_samples[ch][j * 2][sb] =
  433. SB_DITHERING_NOISE(sb, q->noise_idx) * q->tone_level[ch][sb][j];
  434. q->sb_samples[ch][j * 2 + 1][sb] =
  435. SB_DITHERING_NOISE(sb, q->noise_idx) * q->tone_level[ch][sb][j];
  436. }
  437. }
  438. }
  439. /**
  440. * Called while processing data from subpackets 11 and 12.
  441. * Used after making changes to coding_method array.
  442. *
  443. * @param sb subband index
  444. * @param channels number of channels
  445. * @param coding_method q->coding_method[0][0][0]
  446. */
  447. static int fix_coding_method_array(int sb, int channels,
  448. sb_int8_array coding_method)
  449. {
  450. int j, k;
  451. int ch;
  452. int run, case_val;
  453. for (ch = 0; ch < channels; ch++) {
  454. for (j = 0; j < 64; ) {
  455. if (coding_method[ch][sb][j] < 8)
  456. return -1;
  457. if ((coding_method[ch][sb][j] - 8) > 22) {
  458. run = 1;
  459. case_val = 8;
  460. } else {
  461. switch (switchtable[coding_method[ch][sb][j] - 8]) {
  462. case 0: run = 10;
  463. case_val = 10;
  464. break;
  465. case 1: run = 1;
  466. case_val = 16;
  467. break;
  468. case 2: run = 5;
  469. case_val = 24;
  470. break;
  471. case 3: run = 3;
  472. case_val = 30;
  473. break;
  474. case 4: run = 1;
  475. case_val = 30;
  476. break;
  477. case 5: run = 1;
  478. case_val = 8;
  479. break;
  480. default: run = 1;
  481. case_val = 8;
  482. break;
  483. }
  484. }
  485. for (k = 0; k < run; k++) {
  486. if (j + k < 128) {
  487. if (coding_method[ch][sb + (j + k) / 64][(j + k) % 64] > coding_method[ch][sb][j]) {
  488. if (k > 0) {
  489. SAMPLES_NEEDED
  490. //not debugged, almost never used
  491. memset(&coding_method[ch][sb][j + k], case_val,
  492. k *sizeof(int8_t));
  493. memset(&coding_method[ch][sb][j + k], case_val,
  494. 3 * sizeof(int8_t));
  495. }
  496. }
  497. }
  498. }
  499. j += run;
  500. }
  501. }
  502. return 0;
  503. }
  504. /**
  505. * Related to synthesis filter
  506. * Called by process_subpacket_10
  507. *
  508. * @param q context
  509. * @param flag 1 if called after getting data from subpacket 10, 0 if no subpacket 10
  510. */
  511. static void fill_tone_level_array(QDM2Context *q, int flag)
  512. {
  513. int i, sb, ch, sb_used;
  514. int tmp, tab;
  515. for (ch = 0; ch < q->nb_channels; ch++)
  516. for (sb = 0; sb < 30; sb++)
  517. for (i = 0; i < 8; i++) {
  518. if ((tab=coeff_per_sb_for_dequant[q->coeff_per_sb_select][sb]) < (last_coeff[q->coeff_per_sb_select] - 1))
  519. tmp = q->quantized_coeffs[ch][tab + 1][i] * dequant_table[q->coeff_per_sb_select][tab + 1][sb]+
  520. q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  521. else
  522. tmp = q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  523. if(tmp < 0)
  524. tmp += 0xff;
  525. q->tone_level_idx_base[ch][sb][i] = (tmp / 256) & 0xff;
  526. }
  527. sb_used = QDM2_SB_USED(q->sub_sampling);
  528. if ((q->superblocktype_2_3 != 0) && !flag) {
  529. for (sb = 0; sb < sb_used; sb++)
  530. for (ch = 0; ch < q->nb_channels; ch++)
  531. for (i = 0; i < 64; i++) {
  532. q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  533. if (q->tone_level_idx[ch][sb][i] < 0)
  534. q->tone_level[ch][sb][i] = 0;
  535. else
  536. q->tone_level[ch][sb][i] = fft_tone_level_table[0][q->tone_level_idx[ch][sb][i] & 0x3f];
  537. }
  538. } else {
  539. tab = q->superblocktype_2_3 ? 0 : 1;
  540. for (sb = 0; sb < sb_used; sb++) {
  541. if ((sb >= 4) && (sb <= 23)) {
  542. for (ch = 0; ch < q->nb_channels; ch++)
  543. for (i = 0; i < 64; i++) {
  544. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  545. q->tone_level_idx_hi1[ch][sb / 8][i / 8][i % 8] -
  546. q->tone_level_idx_mid[ch][sb - 4][i / 8] -
  547. q->tone_level_idx_hi2[ch][sb - 4];
  548. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  549. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  550. q->tone_level[ch][sb][i] = 0;
  551. else
  552. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  553. }
  554. } else {
  555. if (sb > 4) {
  556. for (ch = 0; ch < q->nb_channels; ch++)
  557. for (i = 0; i < 64; i++) {
  558. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  559. q->tone_level_idx_hi1[ch][2][i / 8][i % 8] -
  560. q->tone_level_idx_hi2[ch][sb - 4];
  561. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  562. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  563. q->tone_level[ch][sb][i] = 0;
  564. else
  565. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  566. }
  567. } else {
  568. for (ch = 0; ch < q->nb_channels; ch++)
  569. for (i = 0; i < 64; i++) {
  570. tmp = q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  571. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  572. q->tone_level[ch][sb][i] = 0;
  573. else
  574. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  575. }
  576. }
  577. }
  578. }
  579. }
  580. }
  581. /**
  582. * Related to synthesis filter
  583. * Called by process_subpacket_11
  584. * c is built with data from subpacket 11
  585. * Most of this function is used only if superblock_type_2_3 == 0,
  586. * never seen it in samples.
  587. *
  588. * @param tone_level_idx
  589. * @param tone_level_idx_temp
  590. * @param coding_method q->coding_method[0][0][0]
  591. * @param nb_channels number of channels
  592. * @param c coming from subpacket 11, passed as 8*c
  593. * @param superblocktype_2_3 flag based on superblock packet type
  594. * @param cm_table_select q->cm_table_select
  595. */
  596. static void fill_coding_method_array(sb_int8_array tone_level_idx,
  597. sb_int8_array tone_level_idx_temp,
  598. sb_int8_array coding_method,
  599. int nb_channels,
  600. int c, int superblocktype_2_3,
  601. int cm_table_select)
  602. {
  603. int ch, sb, j;
  604. int tmp, acc, esp_40, comp;
  605. int add1, add2, add3, add4;
  606. int64_t multres;
  607. if (!superblocktype_2_3) {
  608. /* This case is untested, no samples available */
  609. SAMPLES_NEEDED
  610. for (ch = 0; ch < nb_channels; ch++)
  611. for (sb = 0; sb < 30; sb++) {
  612. for (j = 1; j < 63; j++) { // The loop only iterates to 63 so the code doesn't overflow the buffer
  613. add1 = tone_level_idx[ch][sb][j] - 10;
  614. if (add1 < 0)
  615. add1 = 0;
  616. add2 = add3 = add4 = 0;
  617. if (sb > 1) {
  618. add2 = tone_level_idx[ch][sb - 2][j] + tone_level_idx_offset_table[sb][0] - 6;
  619. if (add2 < 0)
  620. add2 = 0;
  621. }
  622. if (sb > 0) {
  623. add3 = tone_level_idx[ch][sb - 1][j] + tone_level_idx_offset_table[sb][1] - 6;
  624. if (add3 < 0)
  625. add3 = 0;
  626. }
  627. if (sb < 29) {
  628. add4 = tone_level_idx[ch][sb + 1][j] + tone_level_idx_offset_table[sb][3] - 6;
  629. if (add4 < 0)
  630. add4 = 0;
  631. }
  632. tmp = tone_level_idx[ch][sb][j + 1] * 2 - add4 - add3 - add2 - add1;
  633. if (tmp < 0)
  634. tmp = 0;
  635. tone_level_idx_temp[ch][sb][j + 1] = tmp & 0xff;
  636. }
  637. tone_level_idx_temp[ch][sb][0] = tone_level_idx_temp[ch][sb][1];
  638. }
  639. acc = 0;
  640. for (ch = 0; ch < nb_channels; ch++)
  641. for (sb = 0; sb < 30; sb++)
  642. for (j = 0; j < 64; j++)
  643. acc += tone_level_idx_temp[ch][sb][j];
  644. multres = 0x66666667LL * (acc * 10);
  645. esp_40 = (multres >> 32) / 8 + ((multres & 0xffffffff) >> 31);
  646. for (ch = 0; ch < nb_channels; ch++)
  647. for (sb = 0; sb < 30; sb++)
  648. for (j = 0; j < 64; j++) {
  649. comp = tone_level_idx_temp[ch][sb][j]* esp_40 * 10;
  650. if (comp < 0)
  651. comp += 0xff;
  652. comp /= 256; // signed shift
  653. switch(sb) {
  654. case 0:
  655. if (comp < 30)
  656. comp = 30;
  657. comp += 15;
  658. break;
  659. case 1:
  660. if (comp < 24)
  661. comp = 24;
  662. comp += 10;
  663. break;
  664. case 2:
  665. case 3:
  666. case 4:
  667. if (comp < 16)
  668. comp = 16;
  669. }
  670. if (comp <= 5)
  671. tmp = 0;
  672. else if (comp <= 10)
  673. tmp = 10;
  674. else if (comp <= 16)
  675. tmp = 16;
  676. else if (comp <= 24)
  677. tmp = -1;
  678. else
  679. tmp = 0;
  680. coding_method[ch][sb][j] = ((tmp & 0xfffa) + 30 )& 0xff;
  681. }
  682. for (sb = 0; sb < 30; sb++)
  683. fix_coding_method_array(sb, nb_channels, coding_method);
  684. for (ch = 0; ch < nb_channels; ch++)
  685. for (sb = 0; sb < 30; sb++)
  686. for (j = 0; j < 64; j++)
  687. if (sb >= 10) {
  688. if (coding_method[ch][sb][j] < 10)
  689. coding_method[ch][sb][j] = 10;
  690. } else {
  691. if (sb >= 2) {
  692. if (coding_method[ch][sb][j] < 16)
  693. coding_method[ch][sb][j] = 16;
  694. } else {
  695. if (coding_method[ch][sb][j] < 30)
  696. coding_method[ch][sb][j] = 30;
  697. }
  698. }
  699. } else { // superblocktype_2_3 != 0
  700. for (ch = 0; ch < nb_channels; ch++)
  701. for (sb = 0; sb < 30; sb++)
  702. for (j = 0; j < 64; j++)
  703. coding_method[ch][sb][j] = coding_method_table[cm_table_select][sb];
  704. }
  705. }
  706. /**
  707. * Called by process_subpacket_11 to process more data from subpacket 11
  708. * with sb 0-8.
  709. * Called by process_subpacket_12 to process data from subpacket 12 with
  710. * sb 8-sb_used.
  711. *
  712. * @param q context
  713. * @param bc bitreader context
  714. * @param length packet length in bits
  715. * @param sb_min lower subband processed (sb_min included)
  716. * @param sb_max higher subband processed (sb_max excluded)
  717. */
  718. static void synthfilt_build_sb_samples(QDM2Context *q, BitstreamContext *bc,
  719. int length, int sb_min, int sb_max)
  720. {
  721. int sb, j, k, n, ch, run, channels;
  722. int joined_stereo, zero_encoding;
  723. int type34_first;
  724. float type34_div = 0;
  725. float type34_predictor;
  726. float samples[10], sign_bits[16];
  727. if (length == 0) {
  728. // If no data use noise
  729. for (sb=sb_min; sb < sb_max; sb++)
  730. build_sb_samples_from_noise(q, sb);
  731. return;
  732. }
  733. for (sb = sb_min; sb < sb_max; sb++) {
  734. channels = q->nb_channels;
  735. if (q->nb_channels <= 1 || sb < 12)
  736. joined_stereo = 0;
  737. else if (sb >= 24)
  738. joined_stereo = 1;
  739. else
  740. joined_stereo = (bitstream_bits_left(bc) >= 1) ? bitstream_read_bit(bc) : 0;
  741. if (joined_stereo) {
  742. if (bitstream_bits_left(bc) >= 16)
  743. for (j = 0; j < 16; j++)
  744. sign_bits[j] = bitstream_read_bit(bc);
  745. for (j = 0; j < 64; j++)
  746. if (q->coding_method[1][sb][j] > q->coding_method[0][sb][j])
  747. q->coding_method[0][sb][j] = q->coding_method[1][sb][j];
  748. if (fix_coding_method_array(sb, q->nb_channels,
  749. q->coding_method)) {
  750. build_sb_samples_from_noise(q, sb);
  751. continue;
  752. }
  753. channels = 1;
  754. }
  755. for (ch = 0; ch < channels; ch++) {
  756. FIX_NOISE_IDX(q->noise_idx);
  757. zero_encoding = (bitstream_bits_left(bc) >= 1) ? bitstream_read_bit(bc) : 0;
  758. type34_predictor = 0.0;
  759. type34_first = 1;
  760. for (j = 0; j < 128; ) {
  761. switch (q->coding_method[ch][sb][j / 2]) {
  762. case 8:
  763. if (bitstream_bits_left(bc) >= 10) {
  764. if (zero_encoding) {
  765. for (k = 0; k < 5; k++) {
  766. if ((j + 2 * k) >= 128)
  767. break;
  768. samples[2 * k] = bitstream_read_bit(bc) ? dequant_1bit[joined_stereo][2 * bitstream_read_bit(bc)] : 0;
  769. }
  770. } else {
  771. n = bitstream_read(bc, 8);
  772. for (k = 0; k < 5; k++)
  773. samples[2 * k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  774. }
  775. for (k = 0; k < 5; k++)
  776. samples[2 * k + 1] = SB_DITHERING_NOISE(sb,q->noise_idx);
  777. } else {
  778. for (k = 0; k < 10; k++)
  779. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  780. }
  781. run = 10;
  782. break;
  783. case 10:
  784. if (bitstream_bits_left(bc) >= 1) {
  785. float f = 0.81;
  786. if (bitstream_read_bit(bc))
  787. f = -f;
  788. f -= noise_samples[((sb + 1) * (j +5 * ch + 1)) & 127] * 9.0 / 40.0;
  789. samples[0] = f;
  790. } else {
  791. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  792. }
  793. run = 1;
  794. break;
  795. case 16:
  796. if (bitstream_bits_left(bc) >= 10) {
  797. if (zero_encoding) {
  798. for (k = 0; k < 5; k++) {
  799. if ((j + k) >= 128)
  800. break;
  801. samples[k] = (bitstream_read_bit(bc) == 0) ? 0 : dequant_1bit[joined_stereo][2 * bitstream_read_bit(bc)];
  802. }
  803. } else {
  804. n = bitstream_read (bc, 8);
  805. for (k = 0; k < 5; k++)
  806. samples[k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  807. }
  808. } else {
  809. for (k = 0; k < 5; k++)
  810. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  811. }
  812. run = 5;
  813. break;
  814. case 24:
  815. if (bitstream_bits_left(bc) >= 7) {
  816. n = bitstream_read(bc, 7);
  817. for (k = 0; k < 3; k++)
  818. samples[k] = (random_dequant_type24[n][k] - 2.0) * 0.5;
  819. } else {
  820. for (k = 0; k < 3; k++)
  821. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  822. }
  823. run = 3;
  824. break;
  825. case 30:
  826. if (bitstream_bits_left(bc) >= 4) {
  827. unsigned index = qdm2_get_vlc(bc, &vlc_tab_type30, 0, 1);
  828. if (index < FF_ARRAY_ELEMS(type30_dequant)) {
  829. samples[0] = type30_dequant[index];
  830. } else
  831. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  832. } else
  833. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  834. run = 1;
  835. break;
  836. case 34:
  837. if (bitstream_bits_left(bc) >= 7) {
  838. if (type34_first) {
  839. type34_div = (float)(1 << bitstream_read(bc, 2));
  840. samples[0] = ((float)bitstream_read(bc, 5) - 16.0) / 15.0;
  841. type34_predictor = samples[0];
  842. type34_first = 0;
  843. } else {
  844. unsigned index = qdm2_get_vlc(bc, &vlc_tab_type34, 0, 1);
  845. if (index < FF_ARRAY_ELEMS(type34_delta)) {
  846. samples[0] = type34_delta[index] / type34_div + type34_predictor;
  847. type34_predictor = samples[0];
  848. } else
  849. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  850. }
  851. } else {
  852. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  853. }
  854. run = 1;
  855. break;
  856. default:
  857. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  858. run = 1;
  859. break;
  860. }
  861. if (joined_stereo) {
  862. for (k = 0; k < run && j + k < 128; k++) {
  863. q->sb_samples[0][j + k][sb] =
  864. q->tone_level[0][sb][(j + k) / 2] * samples[k];
  865. if (q->nb_channels == 2) {
  866. if (sign_bits[(j + k) / 8])
  867. q->sb_samples[1][j + k][sb] =
  868. q->tone_level[1][sb][(j + k) / 2] * -samples[k];
  869. else
  870. q->sb_samples[1][j + k][sb] =
  871. q->tone_level[1][sb][(j + k) / 2] * samples[k];
  872. }
  873. }
  874. } else {
  875. for (k = 0; k < run; k++)
  876. if ((j + k) < 128)
  877. q->sb_samples[ch][j + k][sb] = q->tone_level[ch][sb][(j + k)/2] * samples[k];
  878. }
  879. j += run;
  880. } // j loop
  881. } // channel loop
  882. } // subband loop
  883. }
  884. /**
  885. * Init the first element of a channel in quantized_coeffs with data
  886. * from packet 10 (quantized_coeffs[ch][0]).
  887. * This is similar to process_subpacket_9, but for a single channel
  888. * and for element [0]
  889. * same VLC tables as process_subpacket_9 are used.
  890. *
  891. * @param quantized_coeffs pointer to quantized_coeffs[ch][0]
  892. * @param bc bitreader context
  893. */
  894. static void init_quantized_coeffs_elem0(int8_t *quantized_coeffs,
  895. BitstreamContext *bc)
  896. {
  897. int i, k, run, level, diff;
  898. if (bitstream_bits_left(bc) < 16)
  899. return;
  900. level = qdm2_get_vlc(bc, &vlc_tab_level, 0, 2);
  901. quantized_coeffs[0] = level;
  902. for (i = 0; i < 7; ) {
  903. if (bitstream_bits_left(bc) < 16)
  904. break;
  905. run = qdm2_get_vlc(bc, &vlc_tab_run, 0, 1) + 1;
  906. if (bitstream_bits_left(bc) < 16)
  907. break;
  908. diff = qdm2_get_se_vlc(&vlc_tab_diff, bc, 2);
  909. for (k = 1; k <= run; k++)
  910. quantized_coeffs[i + k] = (level + ((k * diff) / run));
  911. level += diff;
  912. i += run;
  913. }
  914. }
  915. /**
  916. * Related to synthesis filter, process data from packet 10
  917. * Init part of quantized_coeffs via function init_quantized_coeffs_elem0
  918. * Init tone_level_idx_hi1, tone_level_idx_hi2, tone_level_idx_mid with
  919. * data from packet 10
  920. *
  921. * @param q context
  922. * @param bc bitreader context
  923. */
  924. static void init_tone_level_dequantization(QDM2Context *q, BitstreamContext *bc)
  925. {
  926. int sb, j, k, n, ch;
  927. for (ch = 0; ch < q->nb_channels; ch++) {
  928. init_quantized_coeffs_elem0(q->quantized_coeffs[ch][0], bc);
  929. if (bitstream_bits_left(bc) < 16) {
  930. memset(q->quantized_coeffs[ch][0], 0, 8);
  931. break;
  932. }
  933. }
  934. n = q->sub_sampling + 1;
  935. for (sb = 0; sb < n; sb++)
  936. for (ch = 0; ch < q->nb_channels; ch++)
  937. for (j = 0; j < 8; j++) {
  938. if (bitstream_bits_left(bc) < 1)
  939. break;
  940. if (bitstream_read_bit(bc)) {
  941. for (k=0; k < 8; k++) {
  942. if (bitstream_bits_left(bc) < 16)
  943. break;
  944. q->tone_level_idx_hi1[ch][sb][j][k] = qdm2_get_vlc(bc, &vlc_tab_tone_level_idx_hi1, 0, 2);
  945. }
  946. } else {
  947. for (k=0; k < 8; k++)
  948. q->tone_level_idx_hi1[ch][sb][j][k] = 0;
  949. }
  950. }
  951. n = QDM2_SB_USED(q->sub_sampling) - 4;
  952. for (sb = 0; sb < n; sb++)
  953. for (ch = 0; ch < q->nb_channels; ch++) {
  954. if (bitstream_bits_left(bc) < 16)
  955. break;
  956. q->tone_level_idx_hi2[ch][sb] = qdm2_get_vlc(bc, &vlc_tab_tone_level_idx_hi2, 0, 2);
  957. if (sb > 19)
  958. q->tone_level_idx_hi2[ch][sb] -= 16;
  959. else
  960. for (j = 0; j < 8; j++)
  961. q->tone_level_idx_mid[ch][sb][j] = -16;
  962. }
  963. n = QDM2_SB_USED(q->sub_sampling) - 5;
  964. for (sb = 0; sb < n; sb++)
  965. for (ch = 0; ch < q->nb_channels; ch++)
  966. for (j = 0; j < 8; j++) {
  967. if (bitstream_bits_left(bc) < 16)
  968. break;
  969. q->tone_level_idx_mid[ch][sb][j] = qdm2_get_vlc(bc, &vlc_tab_tone_level_idx_mid, 0, 2) - 32;
  970. }
  971. }
  972. /**
  973. * Process subpacket 9, init quantized_coeffs with data from it
  974. *
  975. * @param q context
  976. * @param node pointer to node with packet
  977. */
  978. static void process_subpacket_9(QDM2Context *q, QDM2SubPNode *node)
  979. {
  980. BitstreamContext bc;
  981. int i, j, k, n, ch, run, level, diff;
  982. bitstream_init8(&bc, node->packet->data, node->packet->size);
  983. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  984. for (i = 1; i < n; i++)
  985. for (ch = 0; ch < q->nb_channels; ch++) {
  986. level = qdm2_get_vlc(&bc, &vlc_tab_level, 0, 2);
  987. q->quantized_coeffs[ch][i][0] = level;
  988. for (j = 0; j < (8 - 1); ) {
  989. run = qdm2_get_vlc(&bc, &vlc_tab_run, 0, 1) + 1;
  990. diff = qdm2_get_se_vlc(&vlc_tab_diff, &bc, 2);
  991. for (k = 1; k <= run; k++)
  992. q->quantized_coeffs[ch][i][j + k] = (level + ((k * diff) / run));
  993. level += diff;
  994. j += run;
  995. }
  996. }
  997. for (ch = 0; ch < q->nb_channels; ch++)
  998. for (i = 0; i < 8; i++)
  999. q->quantized_coeffs[ch][0][i] = 0;
  1000. }
  1001. /**
  1002. * Process subpacket 10 if not null, else
  1003. *
  1004. * @param q context
  1005. * @param node pointer to node with packet
  1006. */
  1007. static void process_subpacket_10(QDM2Context *q, QDM2SubPNode *node)
  1008. {
  1009. BitstreamContext bc;
  1010. if (node) {
  1011. bitstream_init8(&bc, node->packet->data, node->packet->size);
  1012. init_tone_level_dequantization(q, &bc);
  1013. fill_tone_level_array(q, 1);
  1014. } else {
  1015. fill_tone_level_array(q, 0);
  1016. }
  1017. }
  1018. /**
  1019. * Process subpacket 11
  1020. *
  1021. * @param q context
  1022. * @param node pointer to node with packet
  1023. */
  1024. static void process_subpacket_11(QDM2Context *q, QDM2SubPNode *node)
  1025. {
  1026. BitstreamContext bc;
  1027. int length = 0;
  1028. if (node) {
  1029. length = node->packet->size * 8;
  1030. bitstream_init(&bc, node->packet->data, length);
  1031. }
  1032. if (length >= 32) {
  1033. int c = bitstream_read(&bc, 13);
  1034. if (c > 3)
  1035. fill_coding_method_array(q->tone_level_idx,
  1036. q->tone_level_idx_temp, q->coding_method,
  1037. q->nb_channels, 8 * c,
  1038. q->superblocktype_2_3, q->cm_table_select);
  1039. }
  1040. synthfilt_build_sb_samples(q, &bc, length, 0, 8);
  1041. }
  1042. /**
  1043. * Process subpacket 12
  1044. *
  1045. * @param q context
  1046. * @param node pointer to node with packet
  1047. */
  1048. static void process_subpacket_12(QDM2Context *q, QDM2SubPNode *node)
  1049. {
  1050. BitstreamContext bc;
  1051. int length = 0;
  1052. if (node) {
  1053. length = node->packet->size * 8;
  1054. bitstream_init(&bc, node->packet->data, length);
  1055. }
  1056. synthfilt_build_sb_samples(q, &bc, length, 8, QDM2_SB_USED(q->sub_sampling));
  1057. }
  1058. /*
  1059. * Process new subpackets for synthesis filter
  1060. *
  1061. * @param q context
  1062. * @param list list with synthesis filter packets (list D)
  1063. */
  1064. static void process_synthesis_subpackets(QDM2Context *q, QDM2SubPNode *list)
  1065. {
  1066. QDM2SubPNode *nodes[4];
  1067. nodes[0] = qdm2_search_subpacket_type_in_list(list, 9);
  1068. if (nodes[0])
  1069. process_subpacket_9(q, nodes[0]);
  1070. nodes[1] = qdm2_search_subpacket_type_in_list(list, 10);
  1071. if (nodes[1])
  1072. process_subpacket_10(q, nodes[1]);
  1073. else
  1074. process_subpacket_10(q, NULL);
  1075. nodes[2] = qdm2_search_subpacket_type_in_list(list, 11);
  1076. if (nodes[0] && nodes[1] && nodes[2])
  1077. process_subpacket_11(q, nodes[2]);
  1078. else
  1079. process_subpacket_11(q, NULL);
  1080. nodes[3] = qdm2_search_subpacket_type_in_list(list, 12);
  1081. if (nodes[0] && nodes[1] && nodes[3])
  1082. process_subpacket_12(q, nodes[3]);
  1083. else
  1084. process_subpacket_12(q, NULL);
  1085. }
  1086. /*
  1087. * Decode superblock, fill packet lists.
  1088. *
  1089. * @param q context
  1090. */
  1091. static void qdm2_decode_super_block(QDM2Context *q)
  1092. {
  1093. BitstreamContext bc;
  1094. QDM2SubPacket header, *packet;
  1095. int i, packet_bytes, sub_packet_size, sub_packets_D;
  1096. unsigned int next_index = 0;
  1097. memset(q->tone_level_idx_hi1, 0, sizeof(q->tone_level_idx_hi1));
  1098. memset(q->tone_level_idx_mid, 0, sizeof(q->tone_level_idx_mid));
  1099. memset(q->tone_level_idx_hi2, 0, sizeof(q->tone_level_idx_hi2));
  1100. q->sub_packets_B = 0;
  1101. sub_packets_D = 0;
  1102. average_quantized_coeffs(q); // average elements in quantized_coeffs[max_ch][10][8]
  1103. bitstream_init8(&bc, q->compressed_data, q->compressed_size);
  1104. qdm2_decode_sub_packet_header(&bc, &header);
  1105. if (header.type < 2 || header.type >= 8) {
  1106. q->has_errors = 1;
  1107. av_log(NULL, AV_LOG_ERROR, "bad superblock type\n");
  1108. return;
  1109. }
  1110. q->superblocktype_2_3 = (header.type == 2 || header.type == 3);
  1111. packet_bytes = (q->compressed_size - bitstream_tell(&bc) / 8);
  1112. bitstream_init8(&bc, header.data, header.size);
  1113. if (header.type == 2 || header.type == 4 || header.type == 5) {
  1114. int csum = 257 * bitstream_read(&bc, 8);
  1115. csum += 2 * bitstream_read(&bc, 8);
  1116. csum = qdm2_packet_checksum(q->compressed_data, q->checksum_size, csum);
  1117. if (csum != 0) {
  1118. q->has_errors = 1;
  1119. av_log(NULL, AV_LOG_ERROR, "bad packet checksum\n");
  1120. return;
  1121. }
  1122. }
  1123. q->sub_packet_list_B[0].packet = NULL;
  1124. q->sub_packet_list_D[0].packet = NULL;
  1125. for (i = 0; i < 6; i++)
  1126. if (--q->fft_level_exp[i] < 0)
  1127. q->fft_level_exp[i] = 0;
  1128. for (i = 0; packet_bytes > 0; i++) {
  1129. int j;
  1130. if (i >= FF_ARRAY_ELEMS(q->sub_packet_list_A)) {
  1131. SAMPLES_NEEDED_2("too many packet bytes");
  1132. return;
  1133. }
  1134. q->sub_packet_list_A[i].next = NULL;
  1135. if (i > 0) {
  1136. q->sub_packet_list_A[i - 1].next = &q->sub_packet_list_A[i];
  1137. /* seek to next block */
  1138. bitstream_init8(&bc, header.data, header.size);
  1139. bitstream_skip(&bc, next_index * 8);
  1140. if (next_index >= header.size)
  1141. break;
  1142. }
  1143. /* decode subpacket */
  1144. packet = &q->sub_packets[i];
  1145. qdm2_decode_sub_packet_header(&bc, packet);
  1146. next_index = packet->size + bitstream_tell(&bc) / 8;
  1147. sub_packet_size = ((packet->size > 0xff) ? 1 : 0) + packet->size + 2;
  1148. if (packet->type == 0)
  1149. break;
  1150. if (sub_packet_size > packet_bytes) {
  1151. if (packet->type != 10 && packet->type != 11 && packet->type != 12)
  1152. break;
  1153. packet->size += packet_bytes - sub_packet_size;
  1154. }
  1155. packet_bytes -= sub_packet_size;
  1156. /* add subpacket to 'all subpackets' list */
  1157. q->sub_packet_list_A[i].packet = packet;
  1158. /* add subpacket to related list */
  1159. if (packet->type == 8) {
  1160. SAMPLES_NEEDED_2("packet type 8");
  1161. return;
  1162. } else if (packet->type >= 9 && packet->type <= 12) {
  1163. /* packets for MPEG Audio like Synthesis Filter */
  1164. QDM2_LIST_ADD(q->sub_packet_list_D, sub_packets_D, packet);
  1165. } else if (packet->type == 13) {
  1166. for (j = 0; j < 6; j++)
  1167. q->fft_level_exp[j] = bitstream_read(&bc, 6);
  1168. } else if (packet->type == 14) {
  1169. for (j = 0; j < 6; j++)
  1170. q->fft_level_exp[j] = qdm2_get_vlc(&bc, &fft_level_exp_vlc, 0, 2);
  1171. } else if (packet->type == 15) {
  1172. SAMPLES_NEEDED_2("packet type 15")
  1173. return;
  1174. } else if (packet->type >= 16 && packet->type < 48 &&
  1175. !fft_subpackets[packet->type - 16]) {
  1176. /* packets for FFT */
  1177. QDM2_LIST_ADD(q->sub_packet_list_B, q->sub_packets_B, packet);
  1178. }
  1179. } // Packet bytes loop
  1180. if (q->sub_packet_list_D[0].packet) {
  1181. process_synthesis_subpackets(q, q->sub_packet_list_D);
  1182. q->do_synth_filter = 1;
  1183. } else if (q->do_synth_filter) {
  1184. process_subpacket_10(q, NULL);
  1185. process_subpacket_11(q, NULL);
  1186. process_subpacket_12(q, NULL);
  1187. }
  1188. }
  1189. static void qdm2_fft_init_coefficient(QDM2Context *q, int sub_packet,
  1190. int offset, int duration, int channel,
  1191. int exp, int phase)
  1192. {
  1193. if (q->fft_coefs_min_index[duration] < 0)
  1194. q->fft_coefs_min_index[duration] = q->fft_coefs_index;
  1195. q->fft_coefs[q->fft_coefs_index].sub_packet =
  1196. ((sub_packet >= 16) ? (sub_packet - 16) : sub_packet);
  1197. q->fft_coefs[q->fft_coefs_index].channel = channel;
  1198. q->fft_coefs[q->fft_coefs_index].offset = offset;
  1199. q->fft_coefs[q->fft_coefs_index].exp = exp;
  1200. q->fft_coefs[q->fft_coefs_index].phase = phase;
  1201. q->fft_coefs_index++;
  1202. }
  1203. static void qdm2_fft_decode_tones(QDM2Context *q, int duration,
  1204. BitstreamContext *bc, int b)
  1205. {
  1206. int channel, stereo, phase, exp;
  1207. int local_int_4, local_int_8, stereo_phase, local_int_10;
  1208. int local_int_14, stereo_exp, local_int_20, local_int_28;
  1209. int n, offset;
  1210. local_int_4 = 0;
  1211. local_int_28 = 0;
  1212. local_int_20 = 2;
  1213. local_int_8 = (4 - duration);
  1214. local_int_10 = 1 << (q->group_order - duration - 1);
  1215. offset = 1;
  1216. while (1) {
  1217. if (q->superblocktype_2_3) {
  1218. while ((n = qdm2_get_vlc(bc, &vlc_tab_fft_tone_offset[local_int_8], 1, 2)) < 2) {
  1219. offset = 1;
  1220. if (n == 0) {
  1221. local_int_4 += local_int_10;
  1222. local_int_28 += (1 << local_int_8);
  1223. } else {
  1224. local_int_4 += 8 * local_int_10;
  1225. local_int_28 += (8 << local_int_8);
  1226. }
  1227. }
  1228. offset += (n - 2);
  1229. } else {
  1230. offset += qdm2_get_vlc(bc, &vlc_tab_fft_tone_offset[local_int_8], 1, 2);
  1231. while (offset >= (local_int_10 - 1)) {
  1232. offset += (1 - (local_int_10 - 1));
  1233. local_int_4 += local_int_10;
  1234. local_int_28 += (1 << local_int_8);
  1235. }
  1236. }
  1237. if (local_int_4 >= q->group_size)
  1238. return;
  1239. local_int_14 = (offset >> local_int_8);
  1240. if (local_int_14 >= FF_ARRAY_ELEMS(fft_level_index_table))
  1241. return;
  1242. if (q->nb_channels > 1) {
  1243. channel = bitstream_read_bit(bc);
  1244. stereo = bitstream_read_bit(bc);
  1245. } else {
  1246. channel = 0;
  1247. stereo = 0;
  1248. }
  1249. exp = qdm2_get_vlc(bc, (b ? &fft_level_exp_vlc : &fft_level_exp_alt_vlc), 0, 2);
  1250. exp += q->fft_level_exp[fft_level_index_table[local_int_14]];
  1251. exp = (exp < 0) ? 0 : exp;
  1252. phase = bitstream_read(bc, 3);
  1253. stereo_exp = 0;
  1254. stereo_phase = 0;
  1255. if (stereo) {
  1256. stereo_exp = (exp - qdm2_get_vlc(bc, &fft_stereo_exp_vlc, 0, 1));
  1257. stereo_phase = (phase - qdm2_get_vlc(bc, &fft_stereo_phase_vlc, 0, 1));
  1258. if (stereo_phase < 0)
  1259. stereo_phase += 8;
  1260. }
  1261. if (q->frequency_range > (local_int_14 + 1)) {
  1262. int sub_packet = (local_int_20 + local_int_28);
  1263. qdm2_fft_init_coefficient(q, sub_packet, offset, duration,
  1264. channel, exp, phase);
  1265. if (stereo)
  1266. qdm2_fft_init_coefficient(q, sub_packet, offset, duration,
  1267. 1 - channel,
  1268. stereo_exp, stereo_phase);
  1269. }
  1270. offset++;
  1271. }
  1272. }
  1273. static void qdm2_decode_fft_packets(QDM2Context *q)
  1274. {
  1275. int i, j, min, max, value, type, unknown_flag;
  1276. BitstreamContext bc;
  1277. if (!q->sub_packet_list_B[0].packet)
  1278. return;
  1279. /* reset minimum indexes for FFT coefficients */
  1280. q->fft_coefs_index = 0;
  1281. for (i = 0; i < 5; i++)
  1282. q->fft_coefs_min_index[i] = -1;
  1283. /* process subpackets ordered by type, largest type first */
  1284. for (i = 0, max = 256; i < q->sub_packets_B; i++) {
  1285. QDM2SubPacket *packet = NULL;
  1286. /* find subpacket with largest type less than max */
  1287. for (j = 0, min = 0; j < q->sub_packets_B; j++) {
  1288. value = q->sub_packet_list_B[j].packet->type;
  1289. if (value > min && value < max) {
  1290. min = value;
  1291. packet = q->sub_packet_list_B[j].packet;
  1292. }
  1293. }
  1294. max = min;
  1295. /* check for errors (?) */
  1296. if (!packet)
  1297. return;
  1298. if (i == 0 &&
  1299. (packet->type < 16 || packet->type >= 48 ||
  1300. fft_subpackets[packet->type - 16]))
  1301. return;
  1302. /* decode FFT tones */
  1303. bitstream_init8(&bc, packet->data, packet->size);
  1304. if (packet->type >= 32 && packet->type < 48 && !fft_subpackets[packet->type - 16])
  1305. unknown_flag = 1;
  1306. else
  1307. unknown_flag = 0;
  1308. type = packet->type;
  1309. if ((type >= 17 && type < 24) || (type >= 33 && type < 40)) {
  1310. int duration = q->sub_sampling + 5 - (type & 15);
  1311. if (duration >= 0 && duration < 4)
  1312. qdm2_fft_decode_tones(q, duration, &bc, unknown_flag);
  1313. } else if (type == 31) {
  1314. for (j = 0; j < 4; j++)
  1315. qdm2_fft_decode_tones(q, j, &bc, unknown_flag);
  1316. } else if (type == 46) {
  1317. for (j = 0; j < 6; j++)
  1318. q->fft_level_exp[j] = bitstream_read(&bc, 6);
  1319. for (j = 0; j < 4; j++)
  1320. qdm2_fft_decode_tones(q, j, &bc, unknown_flag);
  1321. }
  1322. } // Loop on B packets
  1323. /* calculate maximum indexes for FFT coefficients */
  1324. for (i = 0, j = -1; i < 5; i++)
  1325. if (q->fft_coefs_min_index[i] >= 0) {
  1326. if (j >= 0)
  1327. q->fft_coefs_max_index[j] = q->fft_coefs_min_index[i];
  1328. j = i;
  1329. }
  1330. if (j >= 0)
  1331. q->fft_coefs_max_index[j] = q->fft_coefs_index;
  1332. }
  1333. static void qdm2_fft_generate_tone(QDM2Context *q, FFTTone *tone)
  1334. {
  1335. float level, f[6];
  1336. int i;
  1337. QDM2Complex c;
  1338. const double iscale = 2.0 * M_PI / 512.0;
  1339. tone->phase += tone->phase_shift;
  1340. /* calculate current level (maximum amplitude) of tone */
  1341. level = fft_tone_envelope_table[tone->duration][tone->time_index] * tone->level;
  1342. c.im = level * sin(tone->phase * iscale);
  1343. c.re = level * cos(tone->phase * iscale);
  1344. /* generate FFT coefficients for tone */
  1345. if (tone->duration >= 3 || tone->cutoff >= 3) {
  1346. tone->complex[0].im += c.im;
  1347. tone->complex[0].re += c.re;
  1348. tone->complex[1].im -= c.im;
  1349. tone->complex[1].re -= c.re;
  1350. } else {
  1351. f[1] = -tone->table[4];
  1352. f[0] = tone->table[3] - tone->table[0];
  1353. f[2] = 1.0 - tone->table[2] - tone->table[3];
  1354. f[3] = tone->table[1] + tone->table[4] - 1.0;
  1355. f[4] = tone->table[0] - tone->table[1];
  1356. f[5] = tone->table[2];
  1357. for (i = 0; i < 2; i++) {
  1358. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].re +=
  1359. c.re * f[i];
  1360. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].im +=
  1361. c.im * ((tone->cutoff <= i) ? -f[i] : f[i]);
  1362. }
  1363. for (i = 0; i < 4; i++) {
  1364. tone->complex[i].re += c.re * f[i + 2];
  1365. tone->complex[i].im += c.im * f[i + 2];
  1366. }
  1367. }
  1368. /* copy the tone if it has not yet died out */
  1369. if (++tone->time_index < ((1 << (5 - tone->duration)) - 1)) {
  1370. memcpy(&q->fft_tones[q->fft_tone_end], tone, sizeof(FFTTone));
  1371. q->fft_tone_end = (q->fft_tone_end + 1) % 1000;
  1372. }
  1373. }
  1374. static void qdm2_fft_tone_synthesizer(QDM2Context *q, int sub_packet)
  1375. {
  1376. int i, j, ch;
  1377. const double iscale = 0.25 * M_PI;
  1378. for (ch = 0; ch < q->channels; ch++) {
  1379. memset(q->fft.complex[ch], 0, q->fft_size * sizeof(QDM2Complex));
  1380. }
  1381. /* apply FFT tones with duration 4 (1 FFT period) */
  1382. if (q->fft_coefs_min_index[4] >= 0)
  1383. for (i = q->fft_coefs_min_index[4]; i < q->fft_coefs_max_index[4]; i++) {
  1384. float level;
  1385. QDM2Complex c;
  1386. if (q->fft_coefs[i].sub_packet != sub_packet)
  1387. break;
  1388. ch = (q->channels == 1) ? 0 : q->fft_coefs[i].channel;
  1389. level = (q->fft_coefs[i].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[i].exp & 63];
  1390. c.re = level * cos(q->fft_coefs[i].phase * iscale);
  1391. c.im = level * sin(q->fft_coefs[i].phase * iscale);
  1392. q->fft.complex[ch][q->fft_coefs[i].offset + 0].re += c.re;
  1393. q->fft.complex[ch][q->fft_coefs[i].offset + 0].im += c.im;
  1394. q->fft.complex[ch][q->fft_coefs[i].offset + 1].re -= c.re;
  1395. q->fft.complex[ch][q->fft_coefs[i].offset + 1].im -= c.im;
  1396. }
  1397. /* generate existing FFT tones */
  1398. for (i = q->fft_tone_end; i != q->fft_tone_start; ) {
  1399. qdm2_fft_generate_tone(q, &q->fft_tones[q->fft_tone_start]);
  1400. q->fft_tone_start = (q->fft_tone_start + 1) % 1000;
  1401. }
  1402. /* create and generate new FFT tones with duration 0 (long) to 3 (short) */
  1403. for (i = 0; i < 4; i++)
  1404. if (q->fft_coefs_min_index[i] >= 0) {
  1405. for (j = q->fft_coefs_min_index[i]; j < q->fft_coefs_max_index[i]; j++) {
  1406. int offset, four_i;
  1407. FFTTone tone;
  1408. if (q->fft_coefs[j].sub_packet != sub_packet)
  1409. break;
  1410. four_i = (4 - i);
  1411. offset = q->fft_coefs[j].offset >> four_i;
  1412. ch = (q->channels == 1) ? 0 : q->fft_coefs[j].channel;
  1413. if (offset < q->frequency_range) {
  1414. if (offset < 2)
  1415. tone.cutoff = offset;
  1416. else
  1417. tone.cutoff = (offset >= 60) ? 3 : 2;
  1418. tone.level = (q->fft_coefs[j].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[j].exp & 63];
  1419. tone.complex = &q->fft.complex[ch][offset];
  1420. tone.table = fft_tone_sample_table[i][q->fft_coefs[j].offset - (offset << four_i)];
  1421. tone.phase = 64 * q->fft_coefs[j].phase - (offset << 8) - 128;
  1422. tone.phase_shift = (2 * q->fft_coefs[j].offset + 1) << (7 - four_i);
  1423. tone.duration = i;
  1424. tone.time_index = 0;
  1425. qdm2_fft_generate_tone(q, &tone);
  1426. }
  1427. }
  1428. q->fft_coefs_min_index[i] = j;
  1429. }
  1430. }
  1431. static void qdm2_calculate_fft(QDM2Context *q, int channel, int sub_packet)
  1432. {
  1433. const float gain = (q->channels == 1 && q->nb_channels == 2) ? 0.5f : 1.0f;
  1434. float *out = q->output_buffer + channel;
  1435. int i;
  1436. q->fft.complex[channel][0].re *= 2.0f;
  1437. q->fft.complex[channel][0].im = 0.0f;
  1438. q->rdft_ctx.rdft_calc(&q->rdft_ctx, (FFTSample *)q->fft.complex[channel]);
  1439. /* add samples to output buffer */
  1440. for (i = 0; i < FFALIGN(q->fft_size, 8); i++) {
  1441. out[0] += q->fft.complex[channel][i].re * gain;
  1442. out[q->channels] += q->fft.complex[channel][i].im * gain;
  1443. out += 2 * q->channels;
  1444. }
  1445. }
  1446. /**
  1447. * @param q context
  1448. * @param index subpacket number
  1449. */
  1450. static void qdm2_synthesis_filter(QDM2Context *q, int index)
  1451. {
  1452. int i, k, ch, sb_used, sub_sampling, dither_state = 0;
  1453. /* copy sb_samples */
  1454. sb_used = QDM2_SB_USED(q->sub_sampling);
  1455. for (ch = 0; ch < q->channels; ch++)
  1456. for (i = 0; i < 8; i++)
  1457. for (k = sb_used; k < SBLIMIT; k++)
  1458. q->sb_samples[ch][(8 * index) + i][k] = 0;
  1459. for (ch = 0; ch < q->nb_channels; ch++) {
  1460. float *samples_ptr = q->samples + ch;
  1461. for (i = 0; i < 8; i++) {
  1462. ff_mpa_synth_filter_float(&q->mpadsp,
  1463. q->synth_buf[ch], &(q->synth_buf_offset[ch]),
  1464. ff_mpa_synth_window_float, &dither_state,
  1465. samples_ptr, q->nb_channels,
  1466. q->sb_samples[ch][(8 * index) + i]);
  1467. samples_ptr += 32 * q->nb_channels;
  1468. }
  1469. }
  1470. /* add samples to output buffer */
  1471. sub_sampling = (4 >> q->sub_sampling);
  1472. for (ch = 0; ch < q->channels; ch++)
  1473. for (i = 0; i < q->frame_size; i++)
  1474. q->output_buffer[q->channels * i + ch] += (1 << 23) * q->samples[q->nb_channels * sub_sampling * i + ch];
  1475. }
  1476. /**
  1477. * Init static data (does not depend on specific file)
  1478. *
  1479. * @param q context
  1480. */
  1481. static av_cold void qdm2_init_static_data(AVCodec *codec) {
  1482. qdm2_init_vlc();
  1483. ff_mpa_synth_init_float(ff_mpa_synth_window_float);
  1484. softclip_table_init();
  1485. rnd_table_init();
  1486. init_noise_samples();
  1487. }
  1488. /**
  1489. * Init parameters from codec extradata
  1490. */
  1491. static av_cold int qdm2_decode_init(AVCodecContext *avctx)
  1492. {
  1493. QDM2Context *s = avctx->priv_data;
  1494. uint8_t *extradata;
  1495. int extradata_size;
  1496. int tmp_val, tmp, size;
  1497. /* extradata parsing
  1498. Structure:
  1499. wave {
  1500. frma (QDM2)
  1501. QDCA
  1502. QDCP
  1503. }
  1504. 32 size (including this field)
  1505. 32 tag (=frma)
  1506. 32 type (=QDM2 or QDMC)
  1507. 32 size (including this field, in bytes)
  1508. 32 tag (=QDCA) // maybe mandatory parameters
  1509. 32 unknown (=1)
  1510. 32 channels (=2)
  1511. 32 samplerate (=44100)
  1512. 32 bitrate (=96000)
  1513. 32 block size (=4096)
  1514. 32 frame size (=256) (for one channel)
  1515. 32 packet size (=1300)
  1516. 32 size (including this field, in bytes)
  1517. 32 tag (=QDCP) // maybe some tuneable parameters
  1518. 32 float1 (=1.0)
  1519. 32 zero ?
  1520. 32 float2 (=1.0)
  1521. 32 float3 (=1.0)
  1522. 32 unknown (27)
  1523. 32 unknown (8)
  1524. 32 zero ?
  1525. */
  1526. if (!avctx->extradata || (avctx->extradata_size < 48)) {
  1527. av_log(avctx, AV_LOG_ERROR, "extradata missing or truncated\n");
  1528. return AVERROR_INVALIDDATA;
  1529. }
  1530. extradata = avctx->extradata;
  1531. extradata_size = avctx->extradata_size;
  1532. while (extradata_size > 7) {
  1533. if (!memcmp(extradata, "frmaQDM", 7))
  1534. break;
  1535. extradata++;
  1536. extradata_size--;
  1537. }
  1538. if (extradata_size < 12) {
  1539. av_log(avctx, AV_LOG_ERROR, "not enough extradata (%i)\n",
  1540. extradata_size);
  1541. return AVERROR_INVALIDDATA;
  1542. }
  1543. if (memcmp(extradata, "frmaQDM", 7)) {
  1544. av_log(avctx, AV_LOG_ERROR, "invalid headers, QDM? not found\n");
  1545. return AVERROR_INVALIDDATA;
  1546. }
  1547. if (extradata[7] == 'C') {
  1548. // s->is_qdmc = 1;
  1549. avpriv_report_missing_feature(avctx, "QDMC version 1");
  1550. return AVERROR_PATCHWELCOME;
  1551. }
  1552. extradata += 8;
  1553. extradata_size -= 8;
  1554. size = AV_RB32(extradata);
  1555. if(size > extradata_size){
  1556. av_log(avctx, AV_LOG_ERROR, "extradata size too small, %i < %i\n",
  1557. extradata_size, size);
  1558. return AVERROR_INVALIDDATA;
  1559. }
  1560. extradata += 4;
  1561. av_log(avctx, AV_LOG_DEBUG, "size: %d\n", size);
  1562. if (AV_RB32(extradata) != MKBETAG('Q','D','C','A')) {
  1563. av_log(avctx, AV_LOG_ERROR, "invalid extradata, expecting QDCA\n");
  1564. return AVERROR_INVALIDDATA;
  1565. }
  1566. extradata += 8;
  1567. avctx->channels = s->nb_channels = s->channels = AV_RB32(extradata);
  1568. extradata += 4;
  1569. if (s->channels <= 0 || s->channels > MPA_MAX_CHANNELS)
  1570. return AVERROR_INVALIDDATA;
  1571. avctx->channel_layout = avctx->channels == 2 ? AV_CH_LAYOUT_STEREO :
  1572. AV_CH_LAYOUT_MONO;
  1573. avctx->sample_rate = AV_RB32(extradata);
  1574. extradata += 4;
  1575. avctx->bit_rate = AV_RB32(extradata);
  1576. extradata += 4;
  1577. s->group_size = AV_RB32(extradata);
  1578. extradata += 4;
  1579. s->fft_size = AV_RB32(extradata);
  1580. extradata += 4;
  1581. s->checksum_size = AV_RB32(extradata);
  1582. if (s->checksum_size >= 1U << 28) {
  1583. av_log(avctx, AV_LOG_ERROR, "data block size too large (%u)\n", s->checksum_size);
  1584. return AVERROR_INVALIDDATA;
  1585. }
  1586. s->fft_order = av_log2(s->fft_size) + 1;
  1587. // something like max decodable tones
  1588. s->group_order = av_log2(s->group_size) + 1;
  1589. s->frame_size = s->group_size / 16; // 16 iterations per super block
  1590. if (s->frame_size > QDM2_MAX_FRAME_SIZE)
  1591. return AVERROR_INVALIDDATA;
  1592. s->sub_sampling = s->fft_order - 7;
  1593. s->frequency_range = 255 / (1 << (2 - s->sub_sampling));
  1594. switch ((s->sub_sampling * 2 + s->channels - 1)) {
  1595. case 0: tmp = 40; break;
  1596. case 1: tmp = 48; break;
  1597. case 2: tmp = 56; break;
  1598. case 3: tmp = 72; break;
  1599. case 4: tmp = 80; break;
  1600. case 5: tmp = 100;break;
  1601. default: tmp=s->sub_sampling; break;
  1602. }
  1603. tmp_val = 0;
  1604. if ((tmp * 1000) < avctx->bit_rate) tmp_val = 1;
  1605. if ((tmp * 1440) < avctx->bit_rate) tmp_val = 2;
  1606. if ((tmp * 1760) < avctx->bit_rate) tmp_val = 3;
  1607. if ((tmp * 2240) < avctx->bit_rate) tmp_val = 4;
  1608. s->cm_table_select = tmp_val;
  1609. if (s->sub_sampling == 0)
  1610. tmp = 7999;
  1611. else
  1612. tmp = ((-(s->sub_sampling -1)) & 8000) + 20000;
  1613. /*
  1614. 0: 7999 -> 0
  1615. 1: 20000 -> 2
  1616. 2: 28000 -> 2
  1617. */
  1618. if (tmp < 8000)
  1619. s->coeff_per_sb_select = 0;
  1620. else if (tmp <= 16000)
  1621. s->coeff_per_sb_select = 1;
  1622. else
  1623. s->coeff_per_sb_select = 2;
  1624. // Fail on unknown fft order
  1625. if ((s->fft_order < 7) || (s->fft_order > 9)) {
  1626. avpriv_request_sample(avctx, "Unknown FFT order %d", s->fft_order);
  1627. return AVERROR_PATCHWELCOME;
  1628. }
  1629. if (s->fft_size != (1 << (s->fft_order - 1))) {
  1630. av_log(avctx, AV_LOG_ERROR, "FFT size %d not power of 2.\n", s->fft_size);
  1631. return AVERROR_INVALIDDATA;
  1632. }
  1633. ff_rdft_init(&s->rdft_ctx, s->fft_order, IDFT_C2R);
  1634. ff_mpadsp_init(&s->mpadsp);
  1635. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  1636. return 0;
  1637. }
  1638. static av_cold int qdm2_decode_close(AVCodecContext *avctx)
  1639. {
  1640. QDM2Context *s = avctx->priv_data;
  1641. ff_rdft_end(&s->rdft_ctx);
  1642. return 0;
  1643. }
  1644. static int qdm2_decode(QDM2Context *q, const uint8_t *in, int16_t *out)
  1645. {
  1646. int ch, i;
  1647. const int frame_size = (q->frame_size * q->channels);
  1648. /* select input buffer */
  1649. q->compressed_data = in;
  1650. q->compressed_size = q->checksum_size;
  1651. /* copy old block, clear new block of output samples */
  1652. memmove(q->output_buffer, &q->output_buffer[frame_size], frame_size * sizeof(float));
  1653. memset(&q->output_buffer[frame_size], 0, frame_size * sizeof(float));
  1654. /* decode block of QDM2 compressed data */
  1655. if (q->sub_packet == 0) {
  1656. q->has_errors = 0; // zero it for a new super block
  1657. av_log(NULL,AV_LOG_DEBUG,"Superblock follows\n");
  1658. qdm2_decode_super_block(q);
  1659. }
  1660. /* parse subpackets */
  1661. if (!q->has_errors) {
  1662. if (q->sub_packet == 2)
  1663. qdm2_decode_fft_packets(q);
  1664. qdm2_fft_tone_synthesizer(q, q->sub_packet);
  1665. }
  1666. /* sound synthesis stage 1 (FFT) */
  1667. for (ch = 0; ch < q->channels; ch++) {
  1668. qdm2_calculate_fft(q, ch, q->sub_packet);
  1669. if (!q->has_errors && q->sub_packet_list_C[0].packet) {
  1670. SAMPLES_NEEDED_2("has errors, and C list is not empty")
  1671. return -1;
  1672. }
  1673. }
  1674. /* sound synthesis stage 2 (MPEG audio like synthesis filter) */
  1675. if (!q->has_errors && q->do_synth_filter)
  1676. qdm2_synthesis_filter(q, q->sub_packet);
  1677. q->sub_packet = (q->sub_packet + 1) % 16;
  1678. /* clip and convert output float[] to 16-bit signed samples */
  1679. for (i = 0; i < frame_size; i++) {
  1680. int value = (int)q->output_buffer[i];
  1681. if (value > SOFTCLIP_THRESHOLD)
  1682. value = (value > HARDCLIP_THRESHOLD) ? 32767 : softclip_table[ value - SOFTCLIP_THRESHOLD];
  1683. else if (value < -SOFTCLIP_THRESHOLD)
  1684. value = (value < -HARDCLIP_THRESHOLD) ? -32767 : -softclip_table[-value - SOFTCLIP_THRESHOLD];
  1685. out[i] = value;
  1686. }
  1687. return 0;
  1688. }
  1689. static int qdm2_decode_frame(AVCodecContext *avctx, void *data,
  1690. int *got_frame_ptr, AVPacket *avpkt)
  1691. {
  1692. AVFrame *frame = data;
  1693. const uint8_t *buf = avpkt->data;
  1694. int buf_size = avpkt->size;
  1695. QDM2Context *s = avctx->priv_data;
  1696. int16_t *out;
  1697. int i, ret;
  1698. if(!buf)
  1699. return 0;
  1700. if(buf_size < s->checksum_size)
  1701. return -1;
  1702. /* get output buffer */
  1703. frame->nb_samples = 16 * s->frame_size;
  1704. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  1705. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1706. return ret;
  1707. }
  1708. out = (int16_t *)frame->data[0];
  1709. for (i = 0; i < 16; i++) {
  1710. if ((ret = qdm2_decode(s, buf, out)) < 0)
  1711. return ret;
  1712. out += s->channels * s->frame_size;
  1713. }
  1714. *got_frame_ptr = 1;
  1715. return s->checksum_size;
  1716. }
  1717. AVCodec ff_qdm2_decoder = {
  1718. .name = "qdm2",
  1719. .long_name = NULL_IF_CONFIG_SMALL("QDesign Music Codec 2"),
  1720. .type = AVMEDIA_TYPE_AUDIO,
  1721. .id = AV_CODEC_ID_QDM2,
  1722. .priv_data_size = sizeof(QDM2Context),
  1723. .init = qdm2_decode_init,
  1724. .init_static_data = qdm2_init_static_data,
  1725. .close = qdm2_decode_close,
  1726. .decode = qdm2_decode_frame,
  1727. .capabilities = AV_CODEC_CAP_DR1,
  1728. };