You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1364 lines
46KB

  1. /*
  2. * Bink video decoder
  3. * Copyright (c) 2009 Konstantin Shishkov
  4. * Copyright (C) 2011 Peter Ross <pross@xvid.org>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "libavutil/attributes.h"
  23. #include "libavutil/imgutils.h"
  24. #include "libavutil/internal.h"
  25. #define BITSTREAM_READER_LE
  26. #include "avcodec.h"
  27. #include "binkdata.h"
  28. #include "binkdsp.h"
  29. #include "bitstream.h"
  30. #include "blockdsp.h"
  31. #include "hpeldsp.h"
  32. #include "internal.h"
  33. #include "mathops.h"
  34. #include "vlc.h"
  35. #define BINK_FLAG_ALPHA 0x00100000
  36. #define BINK_FLAG_GRAY 0x00020000
  37. static VLC bink_trees[16];
  38. /**
  39. * IDs for different data types used in old version of Bink video codec
  40. */
  41. enum OldSources {
  42. BINKB_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
  43. BINKB_SRC_COLORS, ///< pixel values used for different block types
  44. BINKB_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
  45. BINKB_SRC_X_OFF, ///< X components of motion value
  46. BINKB_SRC_Y_OFF, ///< Y components of motion value
  47. BINKB_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
  48. BINKB_SRC_INTER_DC, ///< DC values for interblocks with DCT
  49. BINKB_SRC_INTRA_Q, ///< quantizer values for intrablocks with DCT
  50. BINKB_SRC_INTER_Q, ///< quantizer values for interblocks with DCT
  51. BINKB_SRC_INTER_COEFS, ///< number of coefficients for residue blocks
  52. BINKB_NB_SRC
  53. };
  54. static const int binkb_bundle_sizes[BINKB_NB_SRC] = {
  55. 4, 8, 8, 5, 5, 11, 11, 4, 4, 7
  56. };
  57. static const int binkb_bundle_signed[BINKB_NB_SRC] = {
  58. 0, 0, 0, 1, 1, 0, 1, 0, 0, 0
  59. };
  60. static int32_t binkb_intra_quant[16][64];
  61. static int32_t binkb_inter_quant[16][64];
  62. /**
  63. * IDs for different data types used in Bink video codec
  64. */
  65. enum Sources {
  66. BINK_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
  67. BINK_SRC_SUB_BLOCK_TYPES, ///< 16x16 block types (a subset of 8x8 block types)
  68. BINK_SRC_COLORS, ///< pixel values used for different block types
  69. BINK_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
  70. BINK_SRC_X_OFF, ///< X components of motion value
  71. BINK_SRC_Y_OFF, ///< Y components of motion value
  72. BINK_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
  73. BINK_SRC_INTER_DC, ///< DC values for interblocks with DCT
  74. BINK_SRC_RUN, ///< run lengths for special fill block
  75. BINK_NB_SRC
  76. };
  77. /**
  78. * data needed to decode 4-bit Huffman-coded value
  79. */
  80. typedef struct Tree {
  81. int vlc_num; ///< tree number (in bink_trees[])
  82. uint8_t syms[16]; ///< leaf value to symbol mapping
  83. } Tree;
  84. #define GET_HUFF(bc, tree) \
  85. (tree).syms[bitstream_read_vlc(bc, bink_trees[(tree).vlc_num].table, \
  86. bink_trees[(tree).vlc_num].bits, 1)]
  87. /**
  88. * data structure used for decoding single Bink data type
  89. */
  90. typedef struct Bundle {
  91. int len; ///< length of number of entries to decode (in bits)
  92. Tree tree; ///< Huffman tree-related data
  93. uint8_t *data; ///< buffer for decoded symbols
  94. uint8_t *data_end; ///< buffer end
  95. uint8_t *cur_dec; ///< pointer to the not yet decoded part of the buffer
  96. uint8_t *cur_ptr; ///< pointer to the data that is not read from buffer yet
  97. } Bundle;
  98. /*
  99. * Decoder context
  100. */
  101. typedef struct BinkContext {
  102. AVCodecContext *avctx;
  103. BlockDSPContext bdsp;
  104. HpelDSPContext hdsp;
  105. BinkDSPContext binkdsp;
  106. AVFrame *last;
  107. int version; ///< internal Bink file version
  108. int has_alpha;
  109. int swap_planes;
  110. Bundle bundle[BINKB_NB_SRC]; ///< bundles for decoding all data types
  111. Tree col_high[16]; ///< trees for decoding high nibble in "colours" data type
  112. int col_lastval; ///< value of last decoded high nibble in "colours" data type
  113. } BinkContext;
  114. /**
  115. * Bink video block types
  116. */
  117. enum BlockTypes {
  118. SKIP_BLOCK = 0, ///< skipped block
  119. SCALED_BLOCK, ///< block has size 16x16
  120. MOTION_BLOCK, ///< block is copied from previous frame with some offset
  121. RUN_BLOCK, ///< block is composed from runs of colours with custom scan order
  122. RESIDUE_BLOCK, ///< motion block with some difference added
  123. INTRA_BLOCK, ///< intra DCT block
  124. FILL_BLOCK, ///< block is filled with single colour
  125. INTER_BLOCK, ///< motion block with DCT applied to the difference
  126. PATTERN_BLOCK, ///< block is filled with two colours following custom pattern
  127. RAW_BLOCK, ///< uncoded 8x8 block
  128. };
  129. /**
  130. * Initialize length length in all bundles.
  131. *
  132. * @param c decoder context
  133. * @param width plane width
  134. * @param bw plane width in 8x8 blocks
  135. */
  136. static void init_lengths(BinkContext *c, int width, int bw)
  137. {
  138. width = FFALIGN(width, 8);
  139. c->bundle[BINK_SRC_BLOCK_TYPES].len = av_log2((width >> 3) + 511) + 1;
  140. c->bundle[BINK_SRC_SUB_BLOCK_TYPES].len = av_log2((width >> 4) + 511) + 1;
  141. c->bundle[BINK_SRC_COLORS].len = av_log2(bw*64 + 511) + 1;
  142. c->bundle[BINK_SRC_INTRA_DC].len =
  143. c->bundle[BINK_SRC_INTER_DC].len =
  144. c->bundle[BINK_SRC_X_OFF].len =
  145. c->bundle[BINK_SRC_Y_OFF].len = av_log2((width >> 3) + 511) + 1;
  146. c->bundle[BINK_SRC_PATTERN].len = av_log2((bw << 3) + 511) + 1;
  147. c->bundle[BINK_SRC_RUN].len = av_log2(bw*48 + 511) + 1;
  148. }
  149. /**
  150. * Allocate memory for bundles.
  151. *
  152. * @param c decoder context
  153. */
  154. static av_cold void init_bundles(BinkContext *c)
  155. {
  156. int bw, bh, blocks;
  157. int i;
  158. bw = (c->avctx->width + 7) >> 3;
  159. bh = (c->avctx->height + 7) >> 3;
  160. blocks = bw * bh;
  161. for (i = 0; i < BINKB_NB_SRC; i++) {
  162. c->bundle[i].data = av_malloc(blocks * 64);
  163. c->bundle[i].data_end = c->bundle[i].data + blocks * 64;
  164. }
  165. }
  166. /**
  167. * Free memory used by bundles.
  168. *
  169. * @param c decoder context
  170. */
  171. static av_cold void free_bundles(BinkContext *c)
  172. {
  173. int i;
  174. for (i = 0; i < BINKB_NB_SRC; i++)
  175. av_freep(&c->bundle[i].data);
  176. }
  177. /**
  178. * Merge two consequent lists of equal size depending on bits read.
  179. *
  180. * @param bc context for reading bits
  181. * @param dst buffer where merged list will be written to
  182. * @param src pointer to the head of the first list (the second lists starts at src+size)
  183. * @param size input lists size
  184. */
  185. static void merge(BitstreamContext *bc, uint8_t *dst, uint8_t *src, int size)
  186. {
  187. uint8_t *src2 = src + size;
  188. int size2 = size;
  189. do {
  190. if (!bitstream_read_bit(bc)) {
  191. *dst++ = *src++;
  192. size--;
  193. } else {
  194. *dst++ = *src2++;
  195. size2--;
  196. }
  197. } while (size && size2);
  198. while (size--)
  199. *dst++ = *src++;
  200. while (size2--)
  201. *dst++ = *src2++;
  202. }
  203. /**
  204. * Read information about Huffman tree used to decode data.
  205. *
  206. * @param bc context for reading bits
  207. * @param tree pointer for storing tree data
  208. */
  209. static void read_tree(BitstreamContext *bc, Tree *tree)
  210. {
  211. uint8_t tmp1[16] = { 0 }, tmp2[16], *in = tmp1, *out = tmp2;
  212. int i, t, len;
  213. tree->vlc_num = bitstream_read(bc, 4);
  214. if (!tree->vlc_num) {
  215. for (i = 0; i < 16; i++)
  216. tree->syms[i] = i;
  217. return;
  218. }
  219. if (bitstream_read_bit(bc)) {
  220. len = bitstream_read(bc, 3);
  221. for (i = 0; i <= len; i++) {
  222. tree->syms[i] = bitstream_read(bc, 4);
  223. tmp1[tree->syms[i]] = 1;
  224. }
  225. for (i = 0; i < 16 && len < 16 - 1; i++)
  226. if (!tmp1[i])
  227. tree->syms[++len] = i;
  228. } else {
  229. len = bitstream_read(bc, 2);
  230. for (i = 0; i < 16; i++)
  231. in[i] = i;
  232. for (i = 0; i <= len; i++) {
  233. int size = 1 << i;
  234. for (t = 0; t < 16; t += size << 1)
  235. merge(bc, out + t, in + t, size);
  236. FFSWAP(uint8_t*, in, out);
  237. }
  238. memcpy(tree->syms, in, 16);
  239. }
  240. }
  241. /**
  242. * Prepare bundle for decoding data.
  243. *
  244. * @param bc context for reading bits
  245. * @param c decoder context
  246. * @param bundle_num number of the bundle to initialize
  247. */
  248. static void read_bundle(BitstreamContext *bc, BinkContext *c, int bundle_num)
  249. {
  250. int i;
  251. if (bundle_num == BINK_SRC_COLORS) {
  252. for (i = 0; i < 16; i++)
  253. read_tree(bc, &c->col_high[i]);
  254. c->col_lastval = 0;
  255. }
  256. if (bundle_num != BINK_SRC_INTRA_DC && bundle_num != BINK_SRC_INTER_DC)
  257. read_tree(bc, &c->bundle[bundle_num].tree);
  258. c->bundle[bundle_num].cur_dec =
  259. c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
  260. }
  261. /**
  262. * common check before starting decoding bundle data
  263. *
  264. * @param bc context for reading bits
  265. * @param b bundle
  266. * @param t variable where number of elements to decode will be stored
  267. */
  268. #define CHECK_READ_VAL(bc, b, t) \
  269. if (!b->cur_dec || (b->cur_dec > b->cur_ptr)) \
  270. return 0; \
  271. t = bitstream_read(bc, b->len); \
  272. if (!t) { \
  273. b->cur_dec = NULL; \
  274. return 0; \
  275. } \
  276. static int read_runs(AVCodecContext *avctx, BitstreamContext *bc, Bundle *b)
  277. {
  278. int t, v;
  279. const uint8_t *dec_end;
  280. CHECK_READ_VAL(bc, b, t);
  281. dec_end = b->cur_dec + t;
  282. if (dec_end > b->data_end) {
  283. av_log(avctx, AV_LOG_ERROR, "Run value went out of bounds\n");
  284. return AVERROR_INVALIDDATA;
  285. }
  286. if (bitstream_read_bit(bc)) {
  287. v = bitstream_read(bc, 4);
  288. memset(b->cur_dec, v, t);
  289. b->cur_dec += t;
  290. } else {
  291. while (b->cur_dec < dec_end)
  292. *b->cur_dec++ = GET_HUFF(bc, b->tree);
  293. }
  294. return 0;
  295. }
  296. static int read_motion_values(AVCodecContext *avctx, BitstreamContext *bc, Bundle *b)
  297. {
  298. int t, v;
  299. const uint8_t *dec_end;
  300. CHECK_READ_VAL(bc, b, t);
  301. dec_end = b->cur_dec + t;
  302. if (dec_end > b->data_end) {
  303. av_log(avctx, AV_LOG_ERROR, "Too many motion values\n");
  304. return AVERROR_INVALIDDATA;
  305. }
  306. if (bitstream_read_bit(bc)) {
  307. v = bitstream_read(bc, 4);
  308. if (v) {
  309. v = bitstream_apply_sign(bc, v);
  310. }
  311. memset(b->cur_dec, v, t);
  312. b->cur_dec += t;
  313. } else {
  314. while (b->cur_dec < dec_end) {
  315. v = GET_HUFF(bc, b->tree);
  316. if (v) {
  317. v = bitstream_apply_sign(bc, v);
  318. }
  319. *b->cur_dec++ = v;
  320. }
  321. }
  322. return 0;
  323. }
  324. static const uint8_t bink_rlelens[4] = { 4, 8, 12, 32 };
  325. static int read_block_types(AVCodecContext *avctx, BitstreamContext *bc, Bundle *b)
  326. {
  327. int t, v;
  328. int last = 0;
  329. const uint8_t *dec_end;
  330. CHECK_READ_VAL(bc, b, t);
  331. dec_end = b->cur_dec + t;
  332. if (dec_end > b->data_end) {
  333. av_log(avctx, AV_LOG_ERROR, "Too many block type values\n");
  334. return AVERROR_INVALIDDATA;
  335. }
  336. if (bitstream_read_bit(bc)) {
  337. v = bitstream_read(bc, 4);
  338. memset(b->cur_dec, v, t);
  339. b->cur_dec += t;
  340. } else {
  341. while (b->cur_dec < dec_end) {
  342. v = GET_HUFF(bc, b->tree);
  343. if (v < 12) {
  344. last = v;
  345. *b->cur_dec++ = v;
  346. } else {
  347. int run = bink_rlelens[v - 12];
  348. if (dec_end - b->cur_dec < run)
  349. return AVERROR_INVALIDDATA;
  350. memset(b->cur_dec, last, run);
  351. b->cur_dec += run;
  352. }
  353. }
  354. }
  355. return 0;
  356. }
  357. static int read_patterns(AVCodecContext *avctx, BitstreamContext *bc, Bundle *b)
  358. {
  359. int t, v;
  360. const uint8_t *dec_end;
  361. CHECK_READ_VAL(bc, b, t);
  362. dec_end = b->cur_dec + t;
  363. if (dec_end > b->data_end) {
  364. av_log(avctx, AV_LOG_ERROR, "Too many pattern values\n");
  365. return AVERROR_INVALIDDATA;
  366. }
  367. while (b->cur_dec < dec_end) {
  368. v = GET_HUFF(bc, b->tree);
  369. v |= GET_HUFF(bc, b->tree) << 4;
  370. *b->cur_dec++ = v;
  371. }
  372. return 0;
  373. }
  374. static int read_colors(BitstreamContext *bc, Bundle *b, BinkContext *c)
  375. {
  376. int t, sign, v;
  377. const uint8_t *dec_end;
  378. CHECK_READ_VAL(bc, b, t);
  379. dec_end = b->cur_dec + t;
  380. if (dec_end > b->data_end) {
  381. av_log(c->avctx, AV_LOG_ERROR, "Too many color values\n");
  382. return AVERROR_INVALIDDATA;
  383. }
  384. if (bitstream_read_bit(bc)) {
  385. c->col_lastval = GET_HUFF(bc, c->col_high[c->col_lastval]);
  386. v = GET_HUFF(bc, b->tree);
  387. v = (c->col_lastval << 4) | v;
  388. if (c->version < 'i') {
  389. sign = ((int8_t) v) >> 7;
  390. v = ((v & 0x7F) ^ sign) - sign;
  391. v += 0x80;
  392. }
  393. memset(b->cur_dec, v, t);
  394. b->cur_dec += t;
  395. } else {
  396. while (b->cur_dec < dec_end) {
  397. c->col_lastval = GET_HUFF(bc, c->col_high[c->col_lastval]);
  398. v = GET_HUFF(bc, b->tree);
  399. v = (c->col_lastval << 4) | v;
  400. if (c->version < 'i') {
  401. sign = ((int8_t) v) >> 7;
  402. v = ((v & 0x7F) ^ sign) - sign;
  403. v += 0x80;
  404. }
  405. *b->cur_dec++ = v;
  406. }
  407. }
  408. return 0;
  409. }
  410. /** number of bits used to store first DC value in bundle */
  411. #define DC_START_BITS 11
  412. static int read_dcs(AVCodecContext *avctx, BitstreamContext *bc, Bundle *b,
  413. int start_bits, int has_sign)
  414. {
  415. int i, j, len, len2, bsize, v, v2;
  416. int16_t *dst = (int16_t*)b->cur_dec;
  417. int16_t *dst_end = (int16_t*)b->data_end;
  418. CHECK_READ_VAL(bc, b, len);
  419. v = bitstream_read(bc, start_bits - has_sign);
  420. if (v && has_sign) {
  421. v = bitstream_apply_sign(bc, v);
  422. }
  423. if (dst_end - dst < 1)
  424. return AVERROR_INVALIDDATA;
  425. *dst++ = v;
  426. len--;
  427. for (i = 0; i < len; i += 8) {
  428. len2 = FFMIN(len - i, 8);
  429. if (dst_end - dst < len2)
  430. return AVERROR_INVALIDDATA;
  431. bsize = bitstream_read(bc, 4);
  432. if (bsize) {
  433. for (j = 0; j < len2; j++) {
  434. v2 = bitstream_read(bc, bsize);
  435. if (v2) {
  436. v2 = bitstream_apply_sign(bc, v2);
  437. }
  438. v += v2;
  439. *dst++ = v;
  440. if (v < -32768 || v > 32767) {
  441. av_log(avctx, AV_LOG_ERROR, "DC value went out of bounds: %d\n", v);
  442. return AVERROR_INVALIDDATA;
  443. }
  444. }
  445. } else {
  446. for (j = 0; j < len2; j++)
  447. *dst++ = v;
  448. }
  449. }
  450. b->cur_dec = (uint8_t*)dst;
  451. return 0;
  452. }
  453. /**
  454. * Retrieve next value from bundle.
  455. *
  456. * @param c decoder context
  457. * @param bundle bundle number
  458. */
  459. static inline int get_value(BinkContext *c, int bundle)
  460. {
  461. int ret;
  462. if (bundle < BINK_SRC_X_OFF || bundle == BINK_SRC_RUN)
  463. return *c->bundle[bundle].cur_ptr++;
  464. if (bundle == BINK_SRC_X_OFF || bundle == BINK_SRC_Y_OFF)
  465. return (int8_t)*c->bundle[bundle].cur_ptr++;
  466. ret = *(int16_t*)c->bundle[bundle].cur_ptr;
  467. c->bundle[bundle].cur_ptr += 2;
  468. return ret;
  469. }
  470. static av_cold void binkb_init_bundle(BinkContext *c, int bundle_num)
  471. {
  472. c->bundle[bundle_num].cur_dec =
  473. c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
  474. c->bundle[bundle_num].len = 13;
  475. }
  476. static av_cold void binkb_init_bundles(BinkContext *c)
  477. {
  478. int i;
  479. for (i = 0; i < BINKB_NB_SRC; i++)
  480. binkb_init_bundle(c, i);
  481. }
  482. static int binkb_read_bundle(BinkContext *c, BitstreamContext *bc, int bundle_num)
  483. {
  484. const int bits = binkb_bundle_sizes[bundle_num];
  485. const int mask = 1 << (bits - 1);
  486. const int issigned = binkb_bundle_signed[bundle_num];
  487. Bundle *b = &c->bundle[bundle_num];
  488. int i, len;
  489. CHECK_READ_VAL(bc, b, len);
  490. if (b->data_end - b->cur_dec < len * (1 + (bits > 8)))
  491. return AVERROR_INVALIDDATA;
  492. if (bits <= 8) {
  493. if (!issigned) {
  494. for (i = 0; i < len; i++)
  495. *b->cur_dec++ = bitstream_read(bc, bits);
  496. } else {
  497. for (i = 0; i < len; i++)
  498. *b->cur_dec++ = bitstream_read(bc, bits) - mask;
  499. }
  500. } else {
  501. int16_t *dst = (int16_t*)b->cur_dec;
  502. if (!issigned) {
  503. for (i = 0; i < len; i++)
  504. *dst++ = bitstream_read(bc, bits);
  505. } else {
  506. for (i = 0; i < len; i++)
  507. *dst++ = bitstream_read(bc, bits) - mask;
  508. }
  509. b->cur_dec = (uint8_t*)dst;
  510. }
  511. return 0;
  512. }
  513. static inline int binkb_get_value(BinkContext *c, int bundle_num)
  514. {
  515. int16_t ret;
  516. const int bits = binkb_bundle_sizes[bundle_num];
  517. if (bits <= 8) {
  518. int val = *c->bundle[bundle_num].cur_ptr++;
  519. return binkb_bundle_signed[bundle_num] ? (int8_t)val : val;
  520. }
  521. ret = *(int16_t*)c->bundle[bundle_num].cur_ptr;
  522. c->bundle[bundle_num].cur_ptr += 2;
  523. return ret;
  524. }
  525. /**
  526. * Read 8x8 block of DCT coefficients.
  527. *
  528. * @param bc context for reading bits
  529. * @param block place for storing coefficients
  530. * @param scan scan order table
  531. * @param quant_matrices quantization matrices
  532. * @return 0 for success, negative value in other cases
  533. */
  534. static int read_dct_coeffs(BitstreamContext *bc, int32_t block[64],
  535. const uint8_t *scan, int *coef_count_,
  536. int coef_idx[64], int q)
  537. {
  538. int coef_list[128];
  539. int mode_list[128];
  540. int i, t, bits, ccoef, mode;
  541. int list_start = 64, list_end = 64, list_pos;
  542. int coef_count = 0;
  543. int quant_idx;
  544. coef_list[list_end] = 4; mode_list[list_end++] = 0;
  545. coef_list[list_end] = 24; mode_list[list_end++] = 0;
  546. coef_list[list_end] = 44; mode_list[list_end++] = 0;
  547. coef_list[list_end] = 1; mode_list[list_end++] = 3;
  548. coef_list[list_end] = 2; mode_list[list_end++] = 3;
  549. coef_list[list_end] = 3; mode_list[list_end++] = 3;
  550. for (bits = bitstream_read(bc, 4) - 1; bits >= 0; bits--) {
  551. list_pos = list_start;
  552. while (list_pos < list_end) {
  553. if (!(mode_list[list_pos] | coef_list[list_pos]) || !bitstream_read_bit(bc)) {
  554. list_pos++;
  555. continue;
  556. }
  557. ccoef = coef_list[list_pos];
  558. mode = mode_list[list_pos];
  559. switch (mode) {
  560. case 0:
  561. coef_list[list_pos] = ccoef + 4;
  562. mode_list[list_pos] = 1;
  563. case 2:
  564. if (mode == 2) {
  565. coef_list[list_pos] = 0;
  566. mode_list[list_pos++] = 0;
  567. }
  568. for (i = 0; i < 4; i++, ccoef++) {
  569. if (bitstream_read_bit(bc)) {
  570. coef_list[--list_start] = ccoef;
  571. mode_list[ list_start] = 3;
  572. } else {
  573. if (!bits) {
  574. t = 1 - (bitstream_read_bit(bc) << 1);
  575. } else {
  576. t = bitstream_read(bc, bits) | 1 << bits;
  577. t = bitstream_apply_sign(bc, t);
  578. }
  579. block[scan[ccoef]] = t;
  580. coef_idx[coef_count++] = ccoef;
  581. }
  582. }
  583. break;
  584. case 1:
  585. mode_list[list_pos] = 2;
  586. for (i = 0; i < 3; i++) {
  587. ccoef += 4;
  588. coef_list[list_end] = ccoef;
  589. mode_list[list_end++] = 2;
  590. }
  591. break;
  592. case 3:
  593. if (!bits) {
  594. t = 1 - (bitstream_read_bit(bc) << 1);
  595. } else {
  596. t = bitstream_read(bc, bits) | 1 << bits;
  597. t = bitstream_apply_sign(bc, t);
  598. }
  599. block[scan[ccoef]] = t;
  600. coef_idx[coef_count++] = ccoef;
  601. coef_list[list_pos] = 0;
  602. mode_list[list_pos++] = 0;
  603. break;
  604. }
  605. }
  606. }
  607. if (q == -1) {
  608. quant_idx = bitstream_read(bc, 4);
  609. } else {
  610. quant_idx = q;
  611. }
  612. if (quant_idx >= 16)
  613. return AVERROR_INVALIDDATA;
  614. *coef_count_ = coef_count;
  615. return quant_idx;
  616. }
  617. static void unquantize_dct_coeffs(int32_t block[64], const int32_t quant[64],
  618. int coef_count, int coef_idx[64],
  619. const uint8_t *scan)
  620. {
  621. int i;
  622. block[0] = (block[0] * quant[0]) >> 11;
  623. for (i = 0; i < coef_count; i++) {
  624. int idx = coef_idx[i];
  625. block[scan[idx]] = (block[scan[idx]] * quant[idx]) >> 11;
  626. }
  627. }
  628. /**
  629. * Read 8x8 block with residue after motion compensation.
  630. *
  631. * @param bc context for reading bits
  632. * @param block place to store read data
  633. * @param masks_count number of masks to decode
  634. * @return 0 on success, negative value in other cases
  635. */
  636. static int read_residue(BitstreamContext *bc, int16_t block[64], int masks_count)
  637. {
  638. int coef_list[128];
  639. int mode_list[128];
  640. int i, mask, ccoef, mode;
  641. int list_start = 64, list_end = 64, list_pos;
  642. int nz_coeff[64];
  643. int nz_coeff_count = 0;
  644. coef_list[list_end] = 4; mode_list[list_end++] = 0;
  645. coef_list[list_end] = 24; mode_list[list_end++] = 0;
  646. coef_list[list_end] = 44; mode_list[list_end++] = 0;
  647. coef_list[list_end] = 0; mode_list[list_end++] = 2;
  648. for (mask = 1 << bitstream_read(bc, 3); mask; mask >>= 1) {
  649. for (i = 0; i < nz_coeff_count; i++) {
  650. if (!bitstream_read_bit(bc))
  651. continue;
  652. if (block[nz_coeff[i]] < 0)
  653. block[nz_coeff[i]] -= mask;
  654. else
  655. block[nz_coeff[i]] += mask;
  656. masks_count--;
  657. if (masks_count < 0)
  658. return 0;
  659. }
  660. list_pos = list_start;
  661. while (list_pos < list_end) {
  662. if (!(coef_list[list_pos] | mode_list[list_pos]) || !bitstream_read_bit(bc)) {
  663. list_pos++;
  664. continue;
  665. }
  666. ccoef = coef_list[list_pos];
  667. mode = mode_list[list_pos];
  668. switch (mode) {
  669. case 0:
  670. coef_list[list_pos] = ccoef + 4;
  671. mode_list[list_pos] = 1;
  672. case 2:
  673. if (mode == 2) {
  674. coef_list[list_pos] = 0;
  675. mode_list[list_pos++] = 0;
  676. }
  677. for (i = 0; i < 4; i++, ccoef++) {
  678. if (bitstream_read_bit(bc)) {
  679. coef_list[--list_start] = ccoef;
  680. mode_list[ list_start] = 3;
  681. } else {
  682. nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
  683. block[bink_scan[ccoef]] = bitstream_apply_sign(bc, mask);
  684. masks_count--;
  685. if (masks_count < 0)
  686. return 0;
  687. }
  688. }
  689. break;
  690. case 1:
  691. mode_list[list_pos] = 2;
  692. for (i = 0; i < 3; i++) {
  693. ccoef += 4;
  694. coef_list[list_end] = ccoef;
  695. mode_list[list_end++] = 2;
  696. }
  697. break;
  698. case 3:
  699. nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
  700. block[bink_scan[ccoef]] = bitstream_apply_sign(bc, mask);
  701. coef_list[list_pos] = 0;
  702. mode_list[list_pos++] = 0;
  703. masks_count--;
  704. if (masks_count < 0)
  705. return 0;
  706. break;
  707. }
  708. }
  709. }
  710. return 0;
  711. }
  712. /**
  713. * Copy 8x8 block from source to destination, where src and dst may be overlapped
  714. */
  715. static inline void put_pixels8x8_overlapped(uint8_t *dst, uint8_t *src, int stride)
  716. {
  717. uint8_t tmp[64];
  718. int i;
  719. for (i = 0; i < 8; i++)
  720. memcpy(tmp + i*8, src + i*stride, 8);
  721. for (i = 0; i < 8; i++)
  722. memcpy(dst + i*stride, tmp + i*8, 8);
  723. }
  724. static int binkb_decode_plane(BinkContext *c, AVFrame *frame, BitstreamContext *bc,
  725. int plane_idx, int is_key, int is_chroma)
  726. {
  727. int blk, ret;
  728. int i, j, bx, by;
  729. uint8_t *dst, *ref, *ref_start, *ref_end;
  730. int v, col[2];
  731. const uint8_t *scan;
  732. int xoff, yoff;
  733. LOCAL_ALIGNED_16(int16_t, block, [64]);
  734. LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
  735. int coordmap[64];
  736. int ybias = is_key ? -15 : 0;
  737. int qp, quant_idx, coef_count, coef_idx[64];
  738. const int stride = frame->linesize[plane_idx];
  739. int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
  740. int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
  741. binkb_init_bundles(c);
  742. ref_start = frame->data[plane_idx];
  743. ref_end = frame->data[plane_idx] + (bh * frame->linesize[plane_idx] + bw) * 8;
  744. for (i = 0; i < 64; i++)
  745. coordmap[i] = (i & 7) + (i >> 3) * stride;
  746. for (by = 0; by < bh; by++) {
  747. for (i = 0; i < BINKB_NB_SRC; i++) {
  748. if ((ret = binkb_read_bundle(c, bc, i)) < 0)
  749. return ret;
  750. }
  751. dst = frame->data[plane_idx] + 8*by*stride;
  752. for (bx = 0; bx < bw; bx++, dst += 8) {
  753. blk = binkb_get_value(c, BINKB_SRC_BLOCK_TYPES);
  754. switch (blk) {
  755. case 0:
  756. break;
  757. case 1:
  758. scan = bink_patterns[bitstream_read(bc, 4)];
  759. i = 0;
  760. do {
  761. int mode = bitstream_read_bit(bc);
  762. int run = bitstream_read(bc, binkb_runbits[i]) + 1;
  763. i += run;
  764. if (i > 64) {
  765. av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
  766. return AVERROR_INVALIDDATA;
  767. }
  768. if (mode) {
  769. v = binkb_get_value(c, BINKB_SRC_COLORS);
  770. for (j = 0; j < run; j++)
  771. dst[coordmap[*scan++]] = v;
  772. } else {
  773. for (j = 0; j < run; j++)
  774. dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
  775. }
  776. } while (i < 63);
  777. if (i == 63)
  778. dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
  779. break;
  780. case 2:
  781. memset(dctblock, 0, sizeof(*dctblock) * 64);
  782. dctblock[0] = binkb_get_value(c, BINKB_SRC_INTRA_DC);
  783. qp = binkb_get_value(c, BINKB_SRC_INTRA_Q);
  784. if ((quant_idx = read_dct_coeffs(bc, dctblock, bink_scan, &coef_count, coef_idx, qp)) < 0)
  785. return quant_idx;
  786. unquantize_dct_coeffs(dctblock, binkb_intra_quant[quant_idx], coef_count, coef_idx, bink_scan);
  787. c->binkdsp.idct_put(dst, stride, dctblock);
  788. break;
  789. case 3:
  790. xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
  791. yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
  792. ref = dst + xoff + yoff * stride;
  793. if (ref < ref_start || ref + 8*stride > ref_end) {
  794. av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
  795. } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
  796. c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  797. } else {
  798. put_pixels8x8_overlapped(dst, ref, stride);
  799. }
  800. c->bdsp.clear_block(block);
  801. v = binkb_get_value(c, BINKB_SRC_INTER_COEFS);
  802. read_residue(bc, block, v);
  803. c->binkdsp.add_pixels8(dst, block, stride);
  804. break;
  805. case 4:
  806. xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
  807. yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
  808. ref = dst + xoff + yoff * stride;
  809. if (ref < ref_start || ref + 8 * stride > ref_end) {
  810. av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
  811. } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
  812. c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  813. } else {
  814. put_pixels8x8_overlapped(dst, ref, stride);
  815. }
  816. memset(dctblock, 0, sizeof(*dctblock) * 64);
  817. dctblock[0] = binkb_get_value(c, BINKB_SRC_INTER_DC);
  818. qp = binkb_get_value(c, BINKB_SRC_INTER_Q);
  819. if ((quant_idx = read_dct_coeffs(bc, dctblock, bink_scan, &coef_count, coef_idx, qp)) < 0)
  820. return quant_idx;
  821. unquantize_dct_coeffs(dctblock, binkb_inter_quant[quant_idx], coef_count, coef_idx, bink_scan);
  822. c->binkdsp.idct_add(dst, stride, dctblock);
  823. break;
  824. case 5:
  825. v = binkb_get_value(c, BINKB_SRC_COLORS);
  826. c->bdsp.fill_block_tab[1](dst, v, stride, 8);
  827. break;
  828. case 6:
  829. for (i = 0; i < 2; i++)
  830. col[i] = binkb_get_value(c, BINKB_SRC_COLORS);
  831. for (i = 0; i < 8; i++) {
  832. v = binkb_get_value(c, BINKB_SRC_PATTERN);
  833. for (j = 0; j < 8; j++, v >>= 1)
  834. dst[i*stride + j] = col[v & 1];
  835. }
  836. break;
  837. case 7:
  838. xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
  839. yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
  840. ref = dst + xoff + yoff * stride;
  841. if (ref < ref_start || ref + 8 * stride > ref_end) {
  842. av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
  843. } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
  844. c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  845. } else {
  846. put_pixels8x8_overlapped(dst, ref, stride);
  847. }
  848. break;
  849. case 8:
  850. for (i = 0; i < 8; i++)
  851. memcpy(dst + i*stride, c->bundle[BINKB_SRC_COLORS].cur_ptr + i*8, 8);
  852. c->bundle[BINKB_SRC_COLORS].cur_ptr += 64;
  853. break;
  854. default:
  855. av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
  856. return AVERROR_INVALIDDATA;
  857. }
  858. }
  859. }
  860. if (bitstream_tell(bc) & 0x1F) // next plane data starts at 32-bit boundary
  861. bitstream_skip(bc, 32 - (bitstream_tell(bc) & 0x1F));
  862. return 0;
  863. }
  864. static int bink_put_pixels(BinkContext *c,
  865. uint8_t *dst, uint8_t *prev, int stride,
  866. uint8_t *ref_start,
  867. uint8_t *ref_end)
  868. {
  869. int xoff = get_value(c, BINK_SRC_X_OFF);
  870. int yoff = get_value(c, BINK_SRC_Y_OFF);
  871. uint8_t *ref = prev + xoff + yoff * stride;
  872. if (ref < ref_start || ref > ref_end) {
  873. av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
  874. xoff, yoff);
  875. return AVERROR_INVALIDDATA;
  876. }
  877. c->hdsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  878. return 0;
  879. }
  880. static int bink_decode_plane(BinkContext *c, AVFrame *frame, BitstreamContext *bc,
  881. int plane_idx, int is_chroma)
  882. {
  883. int blk, ret;
  884. int i, j, bx, by;
  885. uint8_t *dst, *prev, *ref_start, *ref_end;
  886. int v, col[2];
  887. const uint8_t *scan;
  888. LOCAL_ALIGNED_16(int16_t, block, [64]);
  889. LOCAL_ALIGNED_16(uint8_t, ublock, [64]);
  890. LOCAL_ALIGNED_16(int32_t, dctblock, [64]);
  891. int coordmap[64], quant_idx, coef_count, coef_idx[64];
  892. const int stride = frame->linesize[plane_idx];
  893. int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
  894. int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
  895. int width = c->avctx->width >> is_chroma;
  896. init_lengths(c, FFMAX(width, 8), bw);
  897. for (i = 0; i < BINK_NB_SRC; i++)
  898. read_bundle(bc, c, i);
  899. ref_start = c->last->data[plane_idx] ? c->last->data[plane_idx]
  900. : frame->data[plane_idx];
  901. ref_end = ref_start
  902. + (bw - 1 + c->last->linesize[plane_idx] * (bh - 1)) * 8;
  903. for (i = 0; i < 64; i++)
  904. coordmap[i] = (i & 7) + (i >> 3) * stride;
  905. for (by = 0; by < bh; by++) {
  906. if ((ret = read_block_types(c->avctx, bc, &c->bundle[BINK_SRC_BLOCK_TYPES])) < 0)
  907. return ret;
  908. if ((ret = read_block_types(c->avctx, bc, &c->bundle[BINK_SRC_SUB_BLOCK_TYPES])) < 0)
  909. return ret;
  910. if ((ret = read_colors(bc, &c->bundle[BINK_SRC_COLORS], c)) < 0)
  911. return ret;
  912. if ((ret = read_patterns(c->avctx, bc, &c->bundle[BINK_SRC_PATTERN])) < 0)
  913. return ret;
  914. if ((ret = read_motion_values(c->avctx, bc, &c->bundle[BINK_SRC_X_OFF])) < 0)
  915. return ret;
  916. if ((ret = read_motion_values(c->avctx, bc, &c->bundle[BINK_SRC_Y_OFF])) < 0)
  917. return ret;
  918. if ((ret = read_dcs(c->avctx, bc, &c->bundle[BINK_SRC_INTRA_DC], DC_START_BITS, 0)) < 0)
  919. return ret;
  920. if ((ret = read_dcs(c->avctx, bc, &c->bundle[BINK_SRC_INTER_DC], DC_START_BITS, 1)) < 0)
  921. return ret;
  922. if ((ret = read_runs(c->avctx, bc, &c->bundle[BINK_SRC_RUN])) < 0)
  923. return ret;
  924. if (by == bh)
  925. break;
  926. dst = frame->data[plane_idx] + 8*by*stride;
  927. prev = (c->last->data[plane_idx] ? c->last->data[plane_idx]
  928. : frame->data[plane_idx]) + 8*by*stride;
  929. for (bx = 0; bx < bw; bx++, dst += 8, prev += 8) {
  930. blk = get_value(c, BINK_SRC_BLOCK_TYPES);
  931. // 16x16 block type on odd line means part of the already decoded block, so skip it
  932. if ((by & 1) && blk == SCALED_BLOCK) {
  933. bx++;
  934. dst += 8;
  935. prev += 8;
  936. continue;
  937. }
  938. switch (blk) {
  939. case SKIP_BLOCK:
  940. c->hdsp.put_pixels_tab[1][0](dst, prev, stride, 8);
  941. break;
  942. case SCALED_BLOCK:
  943. blk = get_value(c, BINK_SRC_SUB_BLOCK_TYPES);
  944. switch (blk) {
  945. case RUN_BLOCK:
  946. scan = bink_patterns[bitstream_read(bc, 4)];
  947. i = 0;
  948. do {
  949. int run = get_value(c, BINK_SRC_RUN) + 1;
  950. i += run;
  951. if (i > 64) {
  952. av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
  953. return AVERROR_INVALIDDATA;
  954. }
  955. if (bitstream_read_bit(bc)) {
  956. v = get_value(c, BINK_SRC_COLORS);
  957. for (j = 0; j < run; j++)
  958. ublock[*scan++] = v;
  959. } else {
  960. for (j = 0; j < run; j++)
  961. ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
  962. }
  963. } while (i < 63);
  964. if (i == 63)
  965. ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
  966. break;
  967. case INTRA_BLOCK:
  968. memset(dctblock, 0, sizeof(*dctblock) * 64);
  969. dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
  970. if ((quant_idx = read_dct_coeffs(bc, dctblock, bink_scan, &coef_count, coef_idx, -1)) < 0)
  971. return quant_idx;
  972. unquantize_dct_coeffs(dctblock, bink_intra_quant[quant_idx], coef_count, coef_idx, bink_scan);
  973. c->binkdsp.idct_put(ublock, 8, dctblock);
  974. break;
  975. case FILL_BLOCK:
  976. v = get_value(c, BINK_SRC_COLORS);
  977. c->bdsp.fill_block_tab[0](dst, v, stride, 16);
  978. break;
  979. case PATTERN_BLOCK:
  980. for (i = 0; i < 2; i++)
  981. col[i] = get_value(c, BINK_SRC_COLORS);
  982. for (j = 0; j < 8; j++) {
  983. v = get_value(c, BINK_SRC_PATTERN);
  984. for (i = 0; i < 8; i++, v >>= 1)
  985. ublock[i + j*8] = col[v & 1];
  986. }
  987. break;
  988. case RAW_BLOCK:
  989. for (j = 0; j < 8; j++)
  990. for (i = 0; i < 8; i++)
  991. ublock[i + j*8] = get_value(c, BINK_SRC_COLORS);
  992. break;
  993. default:
  994. av_log(c->avctx, AV_LOG_ERROR, "Incorrect 16x16 block type %d\n", blk);
  995. return AVERROR_INVALIDDATA;
  996. }
  997. if (blk != FILL_BLOCK)
  998. c->binkdsp.scale_block(ublock, dst, stride);
  999. bx++;
  1000. dst += 8;
  1001. prev += 8;
  1002. break;
  1003. case MOTION_BLOCK:
  1004. ret = bink_put_pixels(c, dst, prev, stride,
  1005. ref_start, ref_end);
  1006. if (ret < 0)
  1007. return ret;
  1008. break;
  1009. case RUN_BLOCK:
  1010. scan = bink_patterns[bitstream_read(bc, 4)];
  1011. i = 0;
  1012. do {
  1013. int run = get_value(c, BINK_SRC_RUN) + 1;
  1014. i += run;
  1015. if (i > 64) {
  1016. av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
  1017. return AVERROR_INVALIDDATA;
  1018. }
  1019. if (bitstream_read_bit(bc)) {
  1020. v = get_value(c, BINK_SRC_COLORS);
  1021. for (j = 0; j < run; j++)
  1022. dst[coordmap[*scan++]] = v;
  1023. } else {
  1024. for (j = 0; j < run; j++)
  1025. dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
  1026. }
  1027. } while (i < 63);
  1028. if (i == 63)
  1029. dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
  1030. break;
  1031. case RESIDUE_BLOCK:
  1032. ret = bink_put_pixels(c, dst, prev, stride,
  1033. ref_start, ref_end);
  1034. if (ret < 0)
  1035. return ret;
  1036. c->bdsp.clear_block(block);
  1037. v = bitstream_read(bc, 7);
  1038. read_residue(bc, block, v);
  1039. c->binkdsp.add_pixels8(dst, block, stride);
  1040. break;
  1041. case INTRA_BLOCK:
  1042. memset(dctblock, 0, sizeof(*dctblock) * 64);
  1043. dctblock[0] = get_value(c, BINK_SRC_INTRA_DC);
  1044. if ((quant_idx = read_dct_coeffs(bc, dctblock, bink_scan, &coef_count, coef_idx, -1)) < 0)
  1045. return quant_idx;
  1046. unquantize_dct_coeffs(dctblock, bink_intra_quant[quant_idx], coef_count, coef_idx, bink_scan);
  1047. c->binkdsp.idct_put(dst, stride, dctblock);
  1048. break;
  1049. case FILL_BLOCK:
  1050. v = get_value(c, BINK_SRC_COLORS);
  1051. c->bdsp.fill_block_tab[1](dst, v, stride, 8);
  1052. break;
  1053. case INTER_BLOCK:
  1054. ret = bink_put_pixels(c, dst, prev, stride,
  1055. ref_start, ref_end);
  1056. if (ret < 0)
  1057. return ret;
  1058. memset(dctblock, 0, sizeof(*dctblock) * 64);
  1059. dctblock[0] = get_value(c, BINK_SRC_INTER_DC);
  1060. if ((quant_idx = read_dct_coeffs(bc, dctblock, bink_scan, &coef_count, coef_idx, -1)) < 0)
  1061. return quant_idx;
  1062. unquantize_dct_coeffs(dctblock, bink_inter_quant[quant_idx], coef_count, coef_idx, bink_scan);
  1063. c->binkdsp.idct_add(dst, stride, dctblock);
  1064. break;
  1065. case PATTERN_BLOCK:
  1066. for (i = 0; i < 2; i++)
  1067. col[i] = get_value(c, BINK_SRC_COLORS);
  1068. for (i = 0; i < 8; i++) {
  1069. v = get_value(c, BINK_SRC_PATTERN);
  1070. for (j = 0; j < 8; j++, v >>= 1)
  1071. dst[i*stride + j] = col[v & 1];
  1072. }
  1073. break;
  1074. case RAW_BLOCK:
  1075. for (i = 0; i < 8; i++)
  1076. memcpy(dst + i*stride, c->bundle[BINK_SRC_COLORS].cur_ptr + i*8, 8);
  1077. c->bundle[BINK_SRC_COLORS].cur_ptr += 64;
  1078. break;
  1079. default:
  1080. av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
  1081. return AVERROR_INVALIDDATA;
  1082. }
  1083. }
  1084. }
  1085. if (bitstream_tell(bc) & 0x1F) // next plane data starts at 32-bit boundary
  1086. bitstream_skip(bc, 32 - (bitstream_tell(bc) & 0x1F));
  1087. return 0;
  1088. }
  1089. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
  1090. {
  1091. BinkContext * const c = avctx->priv_data;
  1092. AVFrame *frame = data;
  1093. BitstreamContext bc;
  1094. int plane, plane_idx, ret;
  1095. int bits_count = pkt->size << 3;
  1096. if (c->version > 'b') {
  1097. if ((ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0) {
  1098. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1099. return ret;
  1100. }
  1101. } else {
  1102. if ((ret = ff_reget_buffer(avctx, c->last)) < 0) {
  1103. av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
  1104. return ret;
  1105. }
  1106. if ((ret = av_frame_ref(frame, c->last)) < 0)
  1107. return ret;
  1108. }
  1109. bitstream_init(&bc, pkt->data, bits_count);
  1110. if (c->has_alpha) {
  1111. if (c->version >= 'i')
  1112. bitstream_skip(&bc, 32);
  1113. if ((ret = bink_decode_plane(c, frame, &bc, 3, 0)) < 0)
  1114. return ret;
  1115. }
  1116. if (c->version >= 'i')
  1117. bitstream_skip(&bc, 32);
  1118. for (plane = 0; plane < 3; plane++) {
  1119. plane_idx = (!plane || !c->swap_planes) ? plane : (plane ^ 3);
  1120. if (c->version > 'b') {
  1121. if ((ret = bink_decode_plane(c, frame, &bc, plane_idx, !!plane)) < 0)
  1122. return ret;
  1123. } else {
  1124. if ((ret = binkb_decode_plane(c, frame, &bc, plane_idx,
  1125. !avctx->frame_number, !!plane)) < 0)
  1126. return ret;
  1127. }
  1128. if (bitstream_tell(&bc) >= bits_count)
  1129. break;
  1130. }
  1131. emms_c();
  1132. if (c->version > 'b') {
  1133. av_frame_unref(c->last);
  1134. if ((ret = av_frame_ref(c->last, frame)) < 0)
  1135. return ret;
  1136. }
  1137. *got_frame = 1;
  1138. /* always report that the buffer was completely consumed */
  1139. return pkt->size;
  1140. }
  1141. /**
  1142. * Calculate quantization tables for version b
  1143. */
  1144. static av_cold void binkb_calc_quant(void)
  1145. {
  1146. uint8_t inv_bink_scan[64];
  1147. double s[64];
  1148. int i, j;
  1149. for (j = 0; j < 8; j++) {
  1150. for (i = 0; i < 8; i++) {
  1151. if (j && j != 4)
  1152. if (i && i != 4)
  1153. s[j*8 + i] = cos(j * M_PI/16.0) * cos(i * M_PI/16.0) * 2.0;
  1154. else
  1155. s[j*8 + i] = cos(j * M_PI/16.0) * sqrt(2.0);
  1156. else
  1157. if (i && i != 4)
  1158. s[j*8 + i] = cos(i * M_PI/16.0) * sqrt(2.0);
  1159. else
  1160. s[j*8 + i] = 1.0;
  1161. }
  1162. }
  1163. for (i = 0; i < 64; i++)
  1164. inv_bink_scan[bink_scan[i]] = i;
  1165. for (j = 0; j < 16; j++) {
  1166. for (i = 0; i < 64; i++) {
  1167. int k = inv_bink_scan[i];
  1168. if (s[i] == 1.0) {
  1169. binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] *
  1170. binkb_num[j]/binkb_den[j];
  1171. binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] *
  1172. binkb_num[j]/binkb_den[j];
  1173. } else {
  1174. binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] * s[i] *
  1175. binkb_num[j]/(double)binkb_den[j];
  1176. binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] * s[i] *
  1177. binkb_num[j]/(double)binkb_den[j];
  1178. }
  1179. }
  1180. }
  1181. }
  1182. static av_cold int decode_init(AVCodecContext *avctx)
  1183. {
  1184. BinkContext * const c = avctx->priv_data;
  1185. static VLC_TYPE table[16 * 128][2];
  1186. static int binkb_initialised = 0;
  1187. int i, ret;
  1188. int flags;
  1189. c->version = avctx->codec_tag >> 24;
  1190. if (avctx->extradata_size < 4) {
  1191. av_log(avctx, AV_LOG_ERROR, "Extradata missing or too short\n");
  1192. return AVERROR_INVALIDDATA;
  1193. }
  1194. flags = AV_RL32(avctx->extradata);
  1195. c->has_alpha = flags & BINK_FLAG_ALPHA;
  1196. c->swap_planes = c->version >= 'h';
  1197. if (!bink_trees[15].table) {
  1198. for (i = 0; i < 16; i++) {
  1199. const int maxbits = bink_tree_lens[i][15];
  1200. bink_trees[i].table = table + i*128;
  1201. bink_trees[i].table_allocated = 1 << maxbits;
  1202. init_vlc(&bink_trees[i], maxbits, 16,
  1203. bink_tree_lens[i], 1, 1,
  1204. bink_tree_bits[i], 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  1205. }
  1206. }
  1207. c->avctx = avctx;
  1208. c->last = av_frame_alloc();
  1209. if (!c->last)
  1210. return AVERROR(ENOMEM);
  1211. if ((ret = av_image_check_size(avctx->width, avctx->height, 0, avctx)) < 0)
  1212. return ret;
  1213. avctx->pix_fmt = c->has_alpha ? AV_PIX_FMT_YUVA420P : AV_PIX_FMT_YUV420P;
  1214. ff_blockdsp_init(&c->bdsp);
  1215. ff_hpeldsp_init(&c->hdsp, avctx->flags);
  1216. ff_binkdsp_init(&c->binkdsp);
  1217. init_bundles(c);
  1218. if (c->version == 'b') {
  1219. if (!binkb_initialised) {
  1220. binkb_calc_quant();
  1221. binkb_initialised = 1;
  1222. }
  1223. }
  1224. return 0;
  1225. }
  1226. static av_cold int decode_end(AVCodecContext *avctx)
  1227. {
  1228. BinkContext * const c = avctx->priv_data;
  1229. av_frame_free(&c->last);
  1230. free_bundles(c);
  1231. return 0;
  1232. }
  1233. AVCodec ff_bink_decoder = {
  1234. .name = "binkvideo",
  1235. .long_name = NULL_IF_CONFIG_SMALL("Bink video"),
  1236. .type = AVMEDIA_TYPE_VIDEO,
  1237. .id = AV_CODEC_ID_BINKVIDEO,
  1238. .priv_data_size = sizeof(BinkContext),
  1239. .init = decode_init,
  1240. .close = decode_end,
  1241. .decode = decode_frame,
  1242. .capabilities = AV_CODEC_CAP_DR1,
  1243. };