You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

935 lines
31KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "libavutil/intmath.h"
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "ratecontrol.h"
  30. #include "mpegvideo.h"
  31. #include "libavutil/eval.h"
  32. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  33. #include <assert.h>
  34. #ifndef M_E
  35. #define M_E 2.718281828
  36. #endif
  37. static int init_pass2(MpegEncContext *s);
  38. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  39. void ff_write_pass1_stats(MpegEncContext *s){
  40. snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  41. s->current_picture_ptr->f.display_picture_number, s->current_picture_ptr->f.coded_picture_number, s->pict_type,
  42. s->current_picture.f.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  43. s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
  44. }
  45. static inline double qp2bits(RateControlEntry *rce, double qp){
  46. if(qp<=0.0){
  47. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  48. }
  49. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  50. }
  51. static inline double bits2qp(RateControlEntry *rce, double bits){
  52. if(bits<0.9){
  53. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  54. }
  55. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  56. }
  57. int ff_rate_control_init(MpegEncContext *s)
  58. {
  59. RateControlContext *rcc= &s->rc_context;
  60. int i, res;
  61. static const char * const const_names[]={
  62. "PI",
  63. "E",
  64. "iTex",
  65. "pTex",
  66. "tex",
  67. "mv",
  68. "fCode",
  69. "iCount",
  70. "mcVar",
  71. "var",
  72. "isI",
  73. "isP",
  74. "isB",
  75. "avgQP",
  76. "qComp",
  77. /* "lastIQP",
  78. "lastPQP",
  79. "lastBQP",
  80. "nextNonBQP",*/
  81. "avgIITex",
  82. "avgPITex",
  83. "avgPPTex",
  84. "avgBPTex",
  85. "avgTex",
  86. NULL
  87. };
  88. static double (* const func1[])(void *, double)={
  89. (void *)bits2qp,
  90. (void *)qp2bits,
  91. NULL
  92. };
  93. static const char * const func1_names[]={
  94. "bits2qp",
  95. "qp2bits",
  96. NULL
  97. };
  98. emms_c();
  99. res = av_expr_parse(&rcc->rc_eq_eval, s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp", const_names, func1_names, func1, NULL, NULL, 0, s->avctx);
  100. if (res < 0) {
  101. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq);
  102. return res;
  103. }
  104. for(i=0; i<5; i++){
  105. rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
  106. rcc->pred[i].count= 1.0;
  107. rcc->pred[i].decay= 0.4;
  108. rcc->i_cplx_sum [i]=
  109. rcc->p_cplx_sum [i]=
  110. rcc->mv_bits_sum[i]=
  111. rcc->qscale_sum [i]=
  112. rcc->frame_count[i]= 1; // 1 is better because of 1/0 and such
  113. rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
  114. }
  115. rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
  116. if(s->flags&CODEC_FLAG_PASS2){
  117. int i;
  118. char *p;
  119. /* find number of pics */
  120. p= s->avctx->stats_in;
  121. for(i=-1; p; i++){
  122. p= strchr(p+1, ';');
  123. }
  124. i+= s->max_b_frames;
  125. if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
  126. return -1;
  127. rcc->entry = av_mallocz(i*sizeof(RateControlEntry));
  128. rcc->num_entries= i;
  129. /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  130. for(i=0; i<rcc->num_entries; i++){
  131. RateControlEntry *rce= &rcc->entry[i];
  132. rce->pict_type= rce->new_pict_type=AV_PICTURE_TYPE_P;
  133. rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
  134. rce->misc_bits= s->mb_num + 10;
  135. rce->mb_var_sum= s->mb_num*100;
  136. }
  137. /* read stats */
  138. p= s->avctx->stats_in;
  139. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  140. RateControlEntry *rce;
  141. int picture_number;
  142. int e;
  143. char *next;
  144. next= strchr(p, ';');
  145. if(next){
  146. (*next)=0; //sscanf in unbelievably slow on looong strings //FIXME copy / do not write
  147. next++;
  148. }
  149. e= sscanf(p, " in:%d ", &picture_number);
  150. assert(picture_number >= 0);
  151. assert(picture_number < rcc->num_entries);
  152. rce= &rcc->entry[picture_number];
  153. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  154. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  155. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
  156. if(e!=14){
  157. av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
  158. return -1;
  159. }
  160. p= next;
  161. }
  162. if(init_pass2(s) < 0) return -1;
  163. //FIXME maybe move to end
  164. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  165. #if CONFIG_LIBXVID
  166. return ff_xvid_rate_control_init(s);
  167. #else
  168. av_log(s->avctx, AV_LOG_ERROR, "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  169. return -1;
  170. #endif
  171. }
  172. }
  173. if(!(s->flags&CODEC_FLAG_PASS2)){
  174. rcc->short_term_qsum=0.001;
  175. rcc->short_term_qcount=0.001;
  176. rcc->pass1_rc_eq_output_sum= 0.001;
  177. rcc->pass1_wanted_bits=0.001;
  178. if(s->avctx->qblur > 1.0){
  179. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  180. return -1;
  181. }
  182. /* init stuff with the user specified complexity */
  183. if(s->avctx->rc_initial_cplx){
  184. for(i=0; i<60*30; i++){
  185. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  186. RateControlEntry rce;
  187. if (i%((s->gop_size+3)/4)==0) rce.pict_type= AV_PICTURE_TYPE_I;
  188. else if(i%(s->max_b_frames+1)) rce.pict_type= AV_PICTURE_TYPE_B;
  189. else rce.pict_type= AV_PICTURE_TYPE_P;
  190. rce.new_pict_type= rce.pict_type;
  191. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  192. rce.mb_var_sum = s->mb_num;
  193. rce.qscale = FF_QP2LAMBDA * 2;
  194. rce.f_code = 2;
  195. rce.b_code = 1;
  196. rce.misc_bits= 1;
  197. if(s->pict_type== AV_PICTURE_TYPE_I){
  198. rce.i_count = s->mb_num;
  199. rce.i_tex_bits= bits;
  200. rce.p_tex_bits= 0;
  201. rce.mv_bits= 0;
  202. }else{
  203. rce.i_count = 0; //FIXME we do know this approx
  204. rce.i_tex_bits= 0;
  205. rce.p_tex_bits= bits*0.9;
  206. rce.mv_bits= bits*0.1;
  207. }
  208. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  209. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  210. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  211. rcc->frame_count[rce.pict_type] ++;
  212. get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  213. rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME misbehaves a little for variable fps
  214. }
  215. }
  216. }
  217. return 0;
  218. }
  219. void ff_rate_control_uninit(MpegEncContext *s)
  220. {
  221. RateControlContext *rcc= &s->rc_context;
  222. emms_c();
  223. av_expr_free(rcc->rc_eq_eval);
  224. av_freep(&rcc->entry);
  225. #if CONFIG_LIBXVID
  226. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  227. ff_xvid_rate_control_uninit(s);
  228. #endif
  229. }
  230. int ff_vbv_update(MpegEncContext *s, int frame_size){
  231. RateControlContext *rcc= &s->rc_context;
  232. const double fps= 1/av_q2d(s->avctx->time_base);
  233. const int buffer_size= s->avctx->rc_buffer_size;
  234. const double min_rate= s->avctx->rc_min_rate/fps;
  235. const double max_rate= s->avctx->rc_max_rate/fps;
  236. av_dlog(s, "%d %f %d %f %f\n",
  237. buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  238. if(buffer_size){
  239. int left;
  240. rcc->buffer_index-= frame_size;
  241. if(rcc->buffer_index < 0){
  242. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  243. rcc->buffer_index= 0;
  244. }
  245. left= buffer_size - rcc->buffer_index - 1;
  246. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  247. if(rcc->buffer_index > buffer_size){
  248. int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
  249. if(stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  250. stuffing=4;
  251. rcc->buffer_index -= 8*stuffing;
  252. if(s->avctx->debug & FF_DEBUG_RC)
  253. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  254. return stuffing;
  255. }
  256. }
  257. return 0;
  258. }
  259. /**
  260. * Modify the bitrate curve from pass1 for one frame.
  261. */
  262. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  263. RateControlContext *rcc= &s->rc_context;
  264. AVCodecContext *a= s->avctx;
  265. double q, bits;
  266. const int pict_type= rce->new_pict_type;
  267. const double mb_num= s->mb_num;
  268. int i;
  269. double const_values[]={
  270. M_PI,
  271. M_E,
  272. rce->i_tex_bits*rce->qscale,
  273. rce->p_tex_bits*rce->qscale,
  274. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  275. rce->mv_bits/mb_num,
  276. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  277. rce->i_count/mb_num,
  278. rce->mc_mb_var_sum/mb_num,
  279. rce->mb_var_sum/mb_num,
  280. rce->pict_type == AV_PICTURE_TYPE_I,
  281. rce->pict_type == AV_PICTURE_TYPE_P,
  282. rce->pict_type == AV_PICTURE_TYPE_B,
  283. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  284. a->qcompress,
  285. /* rcc->last_qscale_for[AV_PICTURE_TYPE_I],
  286. rcc->last_qscale_for[AV_PICTURE_TYPE_P],
  287. rcc->last_qscale_for[AV_PICTURE_TYPE_B],
  288. rcc->next_non_b_qscale,*/
  289. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  290. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  291. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  292. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  293. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  294. 0
  295. };
  296. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  297. if (isnan(bits)) {
  298. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq);
  299. return -1;
  300. }
  301. rcc->pass1_rc_eq_output_sum+= bits;
  302. bits*=rate_factor;
  303. if(bits<0.0) bits=0.0;
  304. bits+= 1.0; //avoid 1/0 issues
  305. /* user override */
  306. for(i=0; i<s->avctx->rc_override_count; i++){
  307. RcOverride *rco= s->avctx->rc_override;
  308. if(rco[i].start_frame > frame_num) continue;
  309. if(rco[i].end_frame < frame_num) continue;
  310. if(rco[i].qscale)
  311. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  312. else
  313. bits*= rco[i].quality_factor;
  314. }
  315. q= bits2qp(rce, bits);
  316. /* I/B difference */
  317. if (pict_type==AV_PICTURE_TYPE_I && s->avctx->i_quant_factor<0.0)
  318. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  319. else if(pict_type==AV_PICTURE_TYPE_B && s->avctx->b_quant_factor<0.0)
  320. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  321. if(q<1) q=1;
  322. return q;
  323. }
  324. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  325. RateControlContext *rcc= &s->rc_context;
  326. AVCodecContext *a= s->avctx;
  327. const int pict_type= rce->new_pict_type;
  328. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  329. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  330. if (pict_type==AV_PICTURE_TYPE_I && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==AV_PICTURE_TYPE_P))
  331. q= last_p_q *FFABS(a->i_quant_factor) + a->i_quant_offset;
  332. else if(pict_type==AV_PICTURE_TYPE_B && a->b_quant_factor>0.0)
  333. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  334. if(q<1) q=1;
  335. /* last qscale / qdiff stuff */
  336. if(rcc->last_non_b_pict_type==pict_type || pict_type!=AV_PICTURE_TYPE_I){
  337. double last_q= rcc->last_qscale_for[pict_type];
  338. const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
  339. if (q > last_q + maxdiff) q= last_q + maxdiff;
  340. else if(q < last_q - maxdiff) q= last_q - maxdiff;
  341. }
  342. rcc->last_qscale_for[pict_type]= q; //Note we cannot do that after blurring
  343. if(pict_type!=AV_PICTURE_TYPE_B)
  344. rcc->last_non_b_pict_type= pict_type;
  345. return q;
  346. }
  347. /**
  348. * Get the qmin & qmax for pict_type.
  349. */
  350. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  351. int qmin= s->avctx->lmin;
  352. int qmax= s->avctx->lmax;
  353. assert(qmin <= qmax);
  354. if(pict_type==AV_PICTURE_TYPE_B){
  355. qmin= (int)(qmin*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  356. qmax= (int)(qmax*FFABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  357. }else if(pict_type==AV_PICTURE_TYPE_I){
  358. qmin= (int)(qmin*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  359. qmax= (int)(qmax*FFABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  360. }
  361. qmin= av_clip(qmin, 1, FF_LAMBDA_MAX);
  362. qmax= av_clip(qmax, 1, FF_LAMBDA_MAX);
  363. if(qmax<qmin) qmax= qmin;
  364. *qmin_ret= qmin;
  365. *qmax_ret= qmax;
  366. }
  367. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  368. RateControlContext *rcc= &s->rc_context;
  369. int qmin, qmax;
  370. const int pict_type= rce->new_pict_type;
  371. const double buffer_size= s->avctx->rc_buffer_size;
  372. const double fps= 1/av_q2d(s->avctx->time_base);
  373. const double min_rate= s->avctx->rc_min_rate / fps;
  374. const double max_rate= s->avctx->rc_max_rate / fps;
  375. get_qminmax(&qmin, &qmax, s, pict_type);
  376. /* modulation */
  377. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==AV_PICTURE_TYPE_P)
  378. q*= s->avctx->rc_qmod_amp;
  379. /* buffer overflow/underflow protection */
  380. if(buffer_size){
  381. double expected_size= rcc->buffer_index;
  382. double q_limit;
  383. if(min_rate){
  384. double d= 2*(buffer_size - expected_size)/buffer_size;
  385. if(d>1.0) d=1.0;
  386. else if(d<0.0001) d=0.0001;
  387. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  388. q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index) * s->avctx->rc_min_vbv_overflow_use, 1));
  389. if(q > q_limit){
  390. if(s->avctx->debug&FF_DEBUG_RC){
  391. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  392. }
  393. q= q_limit;
  394. }
  395. }
  396. if(max_rate){
  397. double d= 2*expected_size/buffer_size;
  398. if(d>1.0) d=1.0;
  399. else if(d<0.0001) d=0.0001;
  400. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  401. q_limit= bits2qp(rce, FFMAX(rcc->buffer_index * s->avctx->rc_max_available_vbv_use, 1));
  402. if(q < q_limit){
  403. if(s->avctx->debug&FF_DEBUG_RC){
  404. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  405. }
  406. q= q_limit;
  407. }
  408. }
  409. }
  410. av_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
  411. q, max_rate, min_rate, buffer_size, rcc->buffer_index,
  412. s->avctx->rc_buffer_aggressivity);
  413. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  414. if (q<qmin) q=qmin;
  415. else if(q>qmax) q=qmax;
  416. }else{
  417. double min2= log(qmin);
  418. double max2= log(qmax);
  419. q= log(q);
  420. q= (q - min2)/(max2-min2) - 0.5;
  421. q*= -4.0;
  422. q= 1.0/(1.0 + exp(q));
  423. q= q*(max2-min2) + min2;
  424. q= exp(q);
  425. }
  426. return q;
  427. }
  428. //----------------------------------
  429. // 1 Pass Code
  430. static double predict_size(Predictor *p, double q, double var)
  431. {
  432. return p->coeff*var / (q*p->count);
  433. }
  434. static void update_predictor(Predictor *p, double q, double var, double size)
  435. {
  436. double new_coeff= size*q / (var + 1);
  437. if(var<10) return;
  438. p->count*= p->decay;
  439. p->coeff*= p->decay;
  440. p->count++;
  441. p->coeff+= new_coeff;
  442. }
  443. static void adaptive_quantization(MpegEncContext *s, double q){
  444. int i;
  445. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  446. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  447. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  448. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  449. const float p_masking = s->avctx->p_masking;
  450. const float border_masking = s->avctx->border_masking;
  451. float bits_sum= 0.0;
  452. float cplx_sum= 0.0;
  453. float *cplx_tab = s->cplx_tab;
  454. float *bits_tab = s->bits_tab;
  455. const int qmin= s->avctx->mb_lmin;
  456. const int qmax= s->avctx->mb_lmax;
  457. Picture * const pic= &s->current_picture;
  458. const int mb_width = s->mb_width;
  459. const int mb_height = s->mb_height;
  460. for(i=0; i<s->mb_num; i++){
  461. const int mb_xy= s->mb_index2xy[i];
  462. float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
  463. float spat_cplx= sqrt(pic->mb_var[mb_xy]);
  464. const int lumi= pic->mb_mean[mb_xy];
  465. float bits, cplx, factor;
  466. int mb_x = mb_xy % s->mb_stride;
  467. int mb_y = mb_xy / s->mb_stride;
  468. int mb_distance;
  469. float mb_factor = 0.0;
  470. if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
  471. if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
  472. if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
  473. cplx= spat_cplx;
  474. factor= 1.0 + p_masking;
  475. }else{
  476. cplx= temp_cplx;
  477. factor= pow(temp_cplx, - temp_cplx_masking);
  478. }
  479. factor*=pow(spat_cplx, - spatial_cplx_masking);
  480. if(lumi>127)
  481. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  482. else
  483. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  484. if(mb_x < mb_width/5){
  485. mb_distance = mb_width/5 - mb_x;
  486. mb_factor = (float)mb_distance / (float)(mb_width/5);
  487. }else if(mb_x > 4*mb_width/5){
  488. mb_distance = mb_x - 4*mb_width/5;
  489. mb_factor = (float)mb_distance / (float)(mb_width/5);
  490. }
  491. if(mb_y < mb_height/5){
  492. mb_distance = mb_height/5 - mb_y;
  493. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  494. }else if(mb_y > 4*mb_height/5){
  495. mb_distance = mb_y - 4*mb_height/5;
  496. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  497. }
  498. factor*= 1.0 - border_masking*mb_factor;
  499. if(factor<0.00001) factor= 0.00001;
  500. bits= cplx*factor;
  501. cplx_sum+= cplx;
  502. bits_sum+= bits;
  503. cplx_tab[i]= cplx;
  504. bits_tab[i]= bits;
  505. }
  506. /* handle qmin/qmax clipping */
  507. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  508. float factor= bits_sum/cplx_sum;
  509. for(i=0; i<s->mb_num; i++){
  510. float newq= q*cplx_tab[i]/bits_tab[i];
  511. newq*= factor;
  512. if (newq > qmax){
  513. bits_sum -= bits_tab[i];
  514. cplx_sum -= cplx_tab[i]*q/qmax;
  515. }
  516. else if(newq < qmin){
  517. bits_sum -= bits_tab[i];
  518. cplx_sum -= cplx_tab[i]*q/qmin;
  519. }
  520. }
  521. if(bits_sum < 0.001) bits_sum= 0.001;
  522. if(cplx_sum < 0.001) cplx_sum= 0.001;
  523. }
  524. for(i=0; i<s->mb_num; i++){
  525. const int mb_xy= s->mb_index2xy[i];
  526. float newq= q*cplx_tab[i]/bits_tab[i];
  527. int intq;
  528. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  529. newq*= bits_sum/cplx_sum;
  530. }
  531. intq= (int)(newq + 0.5);
  532. if (intq > qmax) intq= qmax;
  533. else if(intq < qmin) intq= qmin;
  534. s->lambda_table[mb_xy]= intq;
  535. }
  536. }
  537. void ff_get_2pass_fcode(MpegEncContext *s){
  538. RateControlContext *rcc= &s->rc_context;
  539. int picture_number= s->picture_number;
  540. RateControlEntry *rce;
  541. rce= &rcc->entry[picture_number];
  542. s->f_code= rce->f_code;
  543. s->b_code= rce->b_code;
  544. }
  545. //FIXME rd or at least approx for dquant
  546. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  547. {
  548. float q;
  549. int qmin, qmax;
  550. float br_compensation;
  551. double diff;
  552. double short_term_q;
  553. double fps;
  554. int picture_number= s->picture_number;
  555. int64_t wanted_bits;
  556. RateControlContext *rcc= &s->rc_context;
  557. AVCodecContext *a= s->avctx;
  558. RateControlEntry local_rce, *rce;
  559. double bits;
  560. double rate_factor;
  561. int var;
  562. const int pict_type= s->pict_type;
  563. Picture * const pic= &s->current_picture;
  564. emms_c();
  565. #if CONFIG_LIBXVID
  566. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  567. return ff_xvid_rate_estimate_qscale(s, dry_run);
  568. #endif
  569. get_qminmax(&qmin, &qmax, s, pict_type);
  570. fps= 1/av_q2d(s->avctx->time_base);
  571. /* update predictors */
  572. if(picture_number>2 && !dry_run){
  573. const int last_var= s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  574. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  575. }
  576. if(s->flags&CODEC_FLAG_PASS2){
  577. assert(picture_number>=0);
  578. assert(picture_number<rcc->num_entries);
  579. rce= &rcc->entry[picture_number];
  580. wanted_bits= rce->expected_bits;
  581. }else{
  582. Picture *dts_pic;
  583. rce= &local_rce;
  584. //FIXME add a dts field to AVFrame and ensure its set and use it here instead of reordering
  585. //but the reordering is simpler for now until h.264 b pyramid must be handeld
  586. if(s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  587. dts_pic= s->current_picture_ptr;
  588. else
  589. dts_pic= s->last_picture_ptr;
  590. if (!dts_pic || dts_pic->f.pts == AV_NOPTS_VALUE)
  591. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  592. else
  593. wanted_bits = (uint64_t)(s->bit_rate*(double)dts_pic->f.pts / fps);
  594. }
  595. diff= s->total_bits - wanted_bits;
  596. br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
  597. if(br_compensation<=0.0) br_compensation=0.001;
  598. var= pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  599. short_term_q = 0; /* avoid warning */
  600. if(s->flags&CODEC_FLAG_PASS2){
  601. if(pict_type!=AV_PICTURE_TYPE_I)
  602. assert(pict_type == rce->new_pict_type);
  603. q= rce->new_qscale / br_compensation;
  604. av_dlog(s, "%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale,
  605. br_compensation, s->frame_bits, var, pict_type);
  606. }else{
  607. rce->pict_type=
  608. rce->new_pict_type= pict_type;
  609. rce->mc_mb_var_sum= pic->mc_mb_var_sum;
  610. rce->mb_var_sum = pic-> mb_var_sum;
  611. rce->qscale = FF_QP2LAMBDA * 2;
  612. rce->f_code = s->f_code;
  613. rce->b_code = s->b_code;
  614. rce->misc_bits= 1;
  615. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  616. if(pict_type== AV_PICTURE_TYPE_I){
  617. rce->i_count = s->mb_num;
  618. rce->i_tex_bits= bits;
  619. rce->p_tex_bits= 0;
  620. rce->mv_bits= 0;
  621. }else{
  622. rce->i_count = 0; //FIXME we do know this approx
  623. rce->i_tex_bits= 0;
  624. rce->p_tex_bits= bits*0.9;
  625. rce->mv_bits= bits*0.1;
  626. }
  627. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  628. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  629. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  630. rcc->frame_count[pict_type] ++;
  631. bits= rce->i_tex_bits + rce->p_tex_bits;
  632. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  633. q= get_qscale(s, rce, rate_factor, picture_number);
  634. if (q < 0)
  635. return -1;
  636. assert(q>0.0);
  637. q= get_diff_limited_q(s, rce, q);
  638. assert(q>0.0);
  639. if(pict_type==AV_PICTURE_TYPE_P || s->intra_only){ //FIXME type dependent blur like in 2-pass
  640. rcc->short_term_qsum*=a->qblur;
  641. rcc->short_term_qcount*=a->qblur;
  642. rcc->short_term_qsum+= q;
  643. rcc->short_term_qcount++;
  644. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  645. }
  646. assert(q>0.0);
  647. q= modify_qscale(s, rce, q, picture_number);
  648. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  649. assert(q>0.0);
  650. }
  651. if(s->avctx->debug&FF_DEBUG_RC){
  652. av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
  653. av_get_picture_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
  654. br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
  655. );
  656. }
  657. if (q<qmin) q=qmin;
  658. else if(q>qmax) q=qmax;
  659. if(s->adaptive_quant)
  660. adaptive_quantization(s, q);
  661. else
  662. q= (int)(q + 0.5);
  663. if(!dry_run){
  664. rcc->last_qscale= q;
  665. rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
  666. rcc->last_mb_var_sum= pic->mb_var_sum;
  667. }
  668. return q;
  669. }
  670. //----------------------------------------------
  671. // 2-Pass code
  672. static int init_pass2(MpegEncContext *s)
  673. {
  674. RateControlContext *rcc= &s->rc_context;
  675. AVCodecContext *a= s->avctx;
  676. int i, toobig;
  677. double fps= 1/av_q2d(s->avctx->time_base);
  678. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  679. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer independent bits
  680. uint64_t all_const_bits;
  681. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  682. double rate_factor=0;
  683. double step;
  684. //int last_i_frame=-10000000;
  685. const int filter_size= (int)(a->qblur*4) | 1;
  686. double expected_bits;
  687. double *qscale, *blurred_qscale, qscale_sum;
  688. /* find complexity & const_bits & decide the pict_types */
  689. for(i=0; i<rcc->num_entries; i++){
  690. RateControlEntry *rce= &rcc->entry[i];
  691. rce->new_pict_type= rce->pict_type;
  692. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  693. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  694. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  695. rcc->frame_count[rce->pict_type] ++;
  696. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  697. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  698. }
  699. all_const_bits= const_bits[AV_PICTURE_TYPE_I] + const_bits[AV_PICTURE_TYPE_P] + const_bits[AV_PICTURE_TYPE_B];
  700. if(all_available_bits < all_const_bits){
  701. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  702. return -1;
  703. }
  704. qscale= av_malloc(sizeof(double)*rcc->num_entries);
  705. blurred_qscale= av_malloc(sizeof(double)*rcc->num_entries);
  706. toobig = 0;
  707. for(step=256*256; step>0.0000001; step*=0.5){
  708. expected_bits=0;
  709. rate_factor+= step;
  710. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  711. /* find qscale */
  712. for(i=0; i<rcc->num_entries; i++){
  713. RateControlEntry *rce= &rcc->entry[i];
  714. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  715. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  716. }
  717. assert(filter_size%2==1);
  718. /* fixed I/B QP relative to P mode */
  719. for(i=rcc->num_entries-1; i>=0; i--){
  720. RateControlEntry *rce= &rcc->entry[i];
  721. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  722. }
  723. /* smooth curve */
  724. for(i=0; i<rcc->num_entries; i++){
  725. RateControlEntry *rce= &rcc->entry[i];
  726. const int pict_type= rce->new_pict_type;
  727. int j;
  728. double q=0.0, sum=0.0;
  729. for(j=0; j<filter_size; j++){
  730. int index= i+j-filter_size/2;
  731. double d= index-i;
  732. double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
  733. if(index < 0 || index >= rcc->num_entries) continue;
  734. if(pict_type != rcc->entry[index].new_pict_type) continue;
  735. q+= qscale[index] * coeff;
  736. sum+= coeff;
  737. }
  738. blurred_qscale[i]= q/sum;
  739. }
  740. /* find expected bits */
  741. for(i=0; i<rcc->num_entries; i++){
  742. RateControlEntry *rce= &rcc->entry[i];
  743. double bits;
  744. rce->new_qscale= modify_qscale(s, rce, blurred_qscale[i], i);
  745. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  746. bits += 8*ff_vbv_update(s, bits);
  747. rce->expected_bits= expected_bits;
  748. expected_bits += bits;
  749. }
  750. av_dlog(s->avctx,
  751. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  752. expected_bits, (int)all_available_bits, rate_factor);
  753. if(expected_bits > all_available_bits) {
  754. rate_factor-= step;
  755. ++toobig;
  756. }
  757. }
  758. av_free(qscale);
  759. av_free(blurred_qscale);
  760. /* check bitrate calculations and print info */
  761. qscale_sum = 0.0;
  762. for(i=0; i<rcc->num_entries; i++){
  763. av_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  764. i,
  765. rcc->entry[i].new_qscale,
  766. rcc->entry[i].new_qscale / FF_QP2LAMBDA);
  767. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax);
  768. }
  769. assert(toobig <= 40);
  770. av_log(s->avctx, AV_LOG_DEBUG,
  771. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  772. s->bit_rate,
  773. (int)(expected_bits / ((double)all_available_bits/s->bit_rate)));
  774. av_log(s->avctx, AV_LOG_DEBUG,
  775. "[lavc rc] estimated target average qp: %.3f\n",
  776. (float)qscale_sum / rcc->num_entries);
  777. if (toobig == 0) {
  778. av_log(s->avctx, AV_LOG_INFO,
  779. "[lavc rc] Using all of requested bitrate is not "
  780. "necessary for this video with these parameters.\n");
  781. } else if (toobig == 40) {
  782. av_log(s->avctx, AV_LOG_ERROR,
  783. "[lavc rc] Error: bitrate too low for this video "
  784. "with these parameters.\n");
  785. return -1;
  786. } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) {
  787. av_log(s->avctx, AV_LOG_ERROR,
  788. "[lavc rc] Error: 2pass curve failed to converge\n");
  789. return -1;
  790. }
  791. return 0;
  792. }