You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

675 lines
20KB

  1. /*
  2. * Copyright (c) 2012 Konstantin Shishkov
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * Common functions for Microsoft Screen 1 and 2
  23. */
  24. #include "libavutil/intfloat.h"
  25. #include "libavutil/intreadwrite.h"
  26. #include "avcodec.h"
  27. #include "mss12.h"
  28. enum SplitMode {
  29. SPLIT_VERT = 0,
  30. SPLIT_HOR,
  31. SPLIT_NONE
  32. };
  33. static const int sec_order_sizes[4] = { 1, 7, 6, 1 };
  34. enum ContextDirection {
  35. TOP_LEFT = 0,
  36. TOP,
  37. TOP_RIGHT,
  38. LEFT
  39. };
  40. static int model_calc_threshold(Model *m)
  41. {
  42. int thr;
  43. thr = 2 * m->weights[m->num_syms] - 1;
  44. thr = ((thr >> 1) + 4 * m->cum_prob[0]) / thr;
  45. return FFMIN(thr, 0x3FFF);
  46. }
  47. static void model_reset(Model *m)
  48. {
  49. int i;
  50. for (i = 0; i <= m->num_syms; i++) {
  51. m->weights[i] = 1;
  52. m->cum_prob[i] = m->num_syms - i;
  53. }
  54. m->weights[0] = 0;
  55. for (i = 0; i < m->num_syms; i++)
  56. m->idx2sym[i + 1] = i;
  57. }
  58. static av_cold void model_init(Model *m, int num_syms, int thr_weight)
  59. {
  60. m->num_syms = num_syms;
  61. m->thr_weight = thr_weight;
  62. m->threshold = num_syms * thr_weight;
  63. }
  64. static void model_rescale_weights(Model *m)
  65. {
  66. int i;
  67. int cum_prob;
  68. if (m->thr_weight == THRESH_ADAPTIVE)
  69. m->threshold = model_calc_threshold(m);
  70. while (m->cum_prob[0] > m->threshold) {
  71. cum_prob = 0;
  72. for (i = m->num_syms; i >= 0; i--) {
  73. m->cum_prob[i] = cum_prob;
  74. m->weights[i] = (m->weights[i] + 1) >> 1;
  75. cum_prob += m->weights[i];
  76. }
  77. }
  78. }
  79. void ff_mss12_model_update(Model *m, int val)
  80. {
  81. int i;
  82. if (m->weights[val] == m->weights[val - 1]) {
  83. for (i = val; m->weights[i - 1] == m->weights[val]; i--);
  84. if (i != val) {
  85. int sym1, sym2;
  86. sym1 = m->idx2sym[val];
  87. sym2 = m->idx2sym[i];
  88. m->idx2sym[val] = sym2;
  89. m->idx2sym[i] = sym1;
  90. val = i;
  91. }
  92. }
  93. m->weights[val]++;
  94. for (i = val - 1; i >= 0; i--)
  95. m->cum_prob[i]++;
  96. model_rescale_weights(m);
  97. }
  98. static void pixctx_reset(PixContext *ctx)
  99. {
  100. int i, j;
  101. if (!ctx->special_initial_cache)
  102. for (i = 0; i < ctx->cache_size; i++)
  103. ctx->cache[i] = i;
  104. else {
  105. ctx->cache[0] = 1;
  106. ctx->cache[1] = 2;
  107. ctx->cache[2] = 4;
  108. }
  109. model_reset(&ctx->cache_model);
  110. model_reset(&ctx->full_model);
  111. for (i = 0; i < 15; i++)
  112. for (j = 0; j < 4; j++)
  113. model_reset(&ctx->sec_models[i][j]);
  114. }
  115. static av_cold void pixctx_init(PixContext *ctx, int cache_size,
  116. int full_model_syms, int special_initial_cache)
  117. {
  118. int i, j, k, idx;
  119. ctx->cache_size = cache_size + 4;
  120. ctx->num_syms = cache_size;
  121. ctx->special_initial_cache = special_initial_cache;
  122. model_init(&ctx->cache_model, ctx->num_syms + 1, THRESH_LOW);
  123. model_init(&ctx->full_model, full_model_syms, THRESH_HIGH);
  124. for (i = 0, idx = 0; i < 4; i++)
  125. for (j = 0; j < sec_order_sizes[i]; j++, idx++)
  126. for (k = 0; k < 4; k++)
  127. model_init(&ctx->sec_models[idx][k], 2 + i,
  128. i ? THRESH_LOW : THRESH_ADAPTIVE);
  129. }
  130. static av_always_inline int decode_pixel(ArithCoder *acoder, PixContext *pctx,
  131. uint8_t *ngb, int num_ngb, int any_ngb)
  132. {
  133. int i, val, pix;
  134. val = acoder->get_model_sym(acoder, &pctx->cache_model);
  135. if (val < pctx->num_syms) {
  136. if (any_ngb) {
  137. int idx, j;
  138. idx = 0;
  139. for (i = 0; i < pctx->cache_size; i++) {
  140. for (j = 0; j < num_ngb; j++)
  141. if (pctx->cache[i] == ngb[j])
  142. break;
  143. if (j == num_ngb) {
  144. if (idx == val)
  145. break;
  146. idx++;
  147. }
  148. }
  149. val = FFMIN(i, pctx->cache_size - 1);
  150. }
  151. pix = pctx->cache[val];
  152. } else {
  153. pix = acoder->get_model_sym(acoder, &pctx->full_model);
  154. for (i = 0; i < pctx->cache_size - 1; i++)
  155. if (pctx->cache[i] == pix)
  156. break;
  157. val = i;
  158. }
  159. if (val) {
  160. for (i = val; i > 0; i--)
  161. pctx->cache[i] = pctx->cache[i - 1];
  162. pctx->cache[0] = pix;
  163. }
  164. return pix;
  165. }
  166. static int decode_pixel_in_context(ArithCoder *acoder, PixContext *pctx,
  167. uint8_t *src, int stride, int x, int y,
  168. int has_right)
  169. {
  170. uint8_t neighbours[4];
  171. uint8_t ref_pix[4];
  172. int nlen;
  173. int layer = 0, sub;
  174. int pix;
  175. int i, j;
  176. if (!y) {
  177. memset(neighbours, src[-1], 4);
  178. } else {
  179. neighbours[TOP] = src[-stride];
  180. if (!x) {
  181. neighbours[TOP_LEFT] = neighbours[LEFT] = neighbours[TOP];
  182. } else {
  183. neighbours[TOP_LEFT] = src[-stride - 1];
  184. neighbours[ LEFT] = src[-1];
  185. }
  186. if (has_right)
  187. neighbours[TOP_RIGHT] = src[-stride + 1];
  188. else
  189. neighbours[TOP_RIGHT] = neighbours[TOP];
  190. }
  191. sub = 0;
  192. if (x >= 2 && src[-2] == neighbours[LEFT])
  193. sub = 1;
  194. if (y >= 2 && src[-2 * stride] == neighbours[TOP])
  195. sub |= 2;
  196. nlen = 1;
  197. ref_pix[0] = neighbours[0];
  198. for (i = 1; i < 4; i++) {
  199. for (j = 0; j < nlen; j++)
  200. if (ref_pix[j] == neighbours[i])
  201. break;
  202. if (j == nlen)
  203. ref_pix[nlen++] = neighbours[i];
  204. }
  205. switch (nlen) {
  206. case 1:
  207. layer = 0;
  208. break;
  209. case 2:
  210. if (neighbours[TOP] == neighbours[TOP_LEFT]) {
  211. if (neighbours[TOP_RIGHT] == neighbours[TOP_LEFT])
  212. layer = 1;
  213. else if (neighbours[LEFT] == neighbours[TOP_LEFT])
  214. layer = 2;
  215. else
  216. layer = 3;
  217. } else if (neighbours[TOP_RIGHT] == neighbours[TOP_LEFT]) {
  218. if (neighbours[LEFT] == neighbours[TOP_LEFT])
  219. layer = 4;
  220. else
  221. layer = 5;
  222. } else if (neighbours[LEFT] == neighbours[TOP_LEFT]) {
  223. layer = 6;
  224. } else {
  225. layer = 7;
  226. }
  227. break;
  228. case 3:
  229. if (neighbours[TOP] == neighbours[TOP_LEFT])
  230. layer = 8;
  231. else if (neighbours[TOP_RIGHT] == neighbours[TOP_LEFT])
  232. layer = 9;
  233. else if (neighbours[LEFT] == neighbours[TOP_LEFT])
  234. layer = 10;
  235. else if (neighbours[TOP_RIGHT] == neighbours[TOP])
  236. layer = 11;
  237. else if (neighbours[TOP] == neighbours[LEFT])
  238. layer = 12;
  239. else
  240. layer = 13;
  241. break;
  242. case 4:
  243. layer = 14;
  244. break;
  245. }
  246. pix = acoder->get_model_sym(acoder,
  247. &pctx->sec_models[layer][sub]);
  248. if (pix < nlen)
  249. return ref_pix[pix];
  250. else
  251. return decode_pixel(acoder, pctx, ref_pix, nlen, 1);
  252. }
  253. static int decode_region(ArithCoder *acoder, uint8_t *dst, uint8_t *rgb_pic,
  254. int x, int y, int width, int height, int stride,
  255. int rgb_stride, PixContext *pctx, const uint32_t *pal)
  256. {
  257. int i, j, p;
  258. uint8_t *rgb_dst = rgb_pic + x * 3 + y * rgb_stride;
  259. dst += x + y * stride;
  260. for (j = 0; j < height; j++) {
  261. for (i = 0; i < width; i++) {
  262. if (!i && !j)
  263. p = decode_pixel(acoder, pctx, NULL, 0, 0);
  264. else
  265. p = decode_pixel_in_context(acoder, pctx, dst + i, stride,
  266. i, j, width - i - 1);
  267. dst[i] = p;
  268. if (rgb_pic)
  269. AV_WB24(rgb_dst + i * 3, pal[p]);
  270. }
  271. dst += stride;
  272. rgb_dst += rgb_stride;
  273. }
  274. return 0;
  275. }
  276. static void copy_rectangles(MSS12Context const *c,
  277. int x, int y, int width, int height)
  278. {
  279. int j;
  280. if (c->last_rgb_pic)
  281. for (j = y; j < y + height; j++) {
  282. memcpy(c->rgb_pic + j * c->rgb_stride + x * 3,
  283. c->last_rgb_pic + j * c->rgb_stride + x * 3,
  284. width * 3);
  285. memcpy(c->pal_pic + j * c->pal_stride + x,
  286. c->last_pal_pic + j * c->pal_stride + x,
  287. width);
  288. }
  289. }
  290. static int motion_compensation(MSS12Context const *c,
  291. int x, int y, int width, int height)
  292. {
  293. if (x + c->mvX < 0 || x + c->mvX + width > c->avctx->width ||
  294. y + c->mvY < 0 || y + c->mvY + height > c->avctx->height ||
  295. !c->rgb_pic)
  296. return -1;
  297. else {
  298. uint8_t *dst = c->pal_pic + x + y * c->pal_stride;
  299. uint8_t *rgb_dst = c->rgb_pic + x * 3 + y * c->rgb_stride;
  300. uint8_t *src;
  301. uint8_t *rgb_src;
  302. int j;
  303. x += c->mvX;
  304. y += c->mvY;
  305. if (c->last_rgb_pic) {
  306. src = c->last_pal_pic + x + y * c->pal_stride;
  307. rgb_src = c->last_rgb_pic + x * 3 + y * c->rgb_stride;
  308. } else {
  309. src = c->pal_pic + x + y * c->pal_stride;
  310. rgb_src = c->rgb_pic + x * 3 + y * c->rgb_stride;
  311. }
  312. for (j = 0; j < height; j++) {
  313. memmove(dst, src, width);
  314. memmove(rgb_dst, rgb_src, width * 3);
  315. dst += c->pal_stride;
  316. src += c->pal_stride;
  317. rgb_dst += c->rgb_stride;
  318. rgb_src += c->rgb_stride;
  319. }
  320. }
  321. return 0;
  322. }
  323. static int decode_region_masked(MSS12Context const *c, ArithCoder *acoder,
  324. uint8_t *dst, int stride, uint8_t *mask,
  325. int mask_stride, int x, int y,
  326. int width, int height,
  327. PixContext *pctx)
  328. {
  329. int i, j, p;
  330. uint8_t *rgb_dst = c->rgb_pic + x * 3 + y * c->rgb_stride;
  331. dst += x + y * stride;
  332. mask += x + y * mask_stride;
  333. for (j = 0; j < height; j++) {
  334. for (i = 0; i < width; i++) {
  335. if (c->avctx->err_recognition & AV_EF_EXPLODE &&
  336. ( c->rgb_pic && mask[i] != 0x01 && mask[i] != 0x02 && mask[i] != 0x04 ||
  337. !c->rgb_pic && mask[i] != 0x80 && mask[i] != 0xFF))
  338. return -1;
  339. if (mask[i] == 0x02) {
  340. copy_rectangles(c, x + i, y + j, 1, 1);
  341. } else if (mask[i] == 0x04) {
  342. if (motion_compensation(c, x + i, y + j, 1, 1))
  343. return -1;
  344. } else if (mask[i] != 0x80) {
  345. if (!i && !j)
  346. p = decode_pixel(acoder, pctx, NULL, 0, 0);
  347. else
  348. p = decode_pixel_in_context(acoder, pctx, dst + i, stride,
  349. i, j, width - i - 1);
  350. dst[i] = p;
  351. if (c->rgb_pic)
  352. AV_WB24(rgb_dst + i * 3, c->pal[p]);
  353. }
  354. }
  355. dst += stride;
  356. mask += mask_stride;
  357. rgb_dst += c->rgb_stride;
  358. }
  359. return 0;
  360. }
  361. static av_cold void slicecontext_init(SliceContext *sc,
  362. int version, int full_model_syms)
  363. {
  364. model_init(&sc->intra_region, 2, THRESH_ADAPTIVE);
  365. model_init(&sc->inter_region, 2, THRESH_ADAPTIVE);
  366. model_init(&sc->split_mode, 3, THRESH_HIGH);
  367. model_init(&sc->edge_mode, 2, THRESH_HIGH);
  368. model_init(&sc->pivot, 3, THRESH_LOW);
  369. pixctx_init(&sc->intra_pix_ctx, 8, full_model_syms, 0);
  370. pixctx_init(&sc->inter_pix_ctx, version ? 3 : 2,
  371. full_model_syms, version ? 1 : 0);
  372. }
  373. void ff_mss12_slicecontext_reset(SliceContext *sc)
  374. {
  375. model_reset(&sc->intra_region);
  376. model_reset(&sc->inter_region);
  377. model_reset(&sc->split_mode);
  378. model_reset(&sc->edge_mode);
  379. model_reset(&sc->pivot);
  380. pixctx_reset(&sc->intra_pix_ctx);
  381. pixctx_reset(&sc->inter_pix_ctx);
  382. }
  383. static int decode_pivot(SliceContext *sc, ArithCoder *acoder, int base)
  384. {
  385. int val, inv;
  386. inv = acoder->get_model_sym(acoder, &sc->edge_mode);
  387. val = acoder->get_model_sym(acoder, &sc->pivot) + 1;
  388. if (val > 2) {
  389. if ((base + 1) / 2 - 2 <= 0)
  390. return -1;
  391. val = acoder->get_number(acoder, (base + 1) / 2 - 2) + 3;
  392. }
  393. if (val >= base)
  394. return -1;
  395. return inv ? base - val : val;
  396. }
  397. static int decode_region_intra(SliceContext *sc, ArithCoder *acoder,
  398. int x, int y, int width, int height)
  399. {
  400. MSS12Context const *c = sc->c;
  401. int mode;
  402. mode = acoder->get_model_sym(acoder, &sc->intra_region);
  403. if (!mode) {
  404. int i, j, pix, rgb_pix;
  405. int stride = c->pal_stride;
  406. int rgb_stride = c->rgb_stride;
  407. uint8_t *dst = c->pal_pic + x + y * stride;
  408. uint8_t *rgb_dst = c->rgb_pic + x * 3 + y * rgb_stride;
  409. pix = decode_pixel(acoder, &sc->intra_pix_ctx, NULL, 0, 0);
  410. rgb_pix = c->pal[pix];
  411. for (i = 0; i < height; i++, dst += stride, rgb_dst += rgb_stride) {
  412. memset(dst, pix, width);
  413. if (c->rgb_pic)
  414. for (j = 0; j < width * 3; j += 3)
  415. AV_WB24(rgb_dst + j, rgb_pix);
  416. }
  417. } else {
  418. return decode_region(acoder, c->pal_pic, c->rgb_pic,
  419. x, y, width, height, c->pal_stride, c->rgb_stride,
  420. &sc->intra_pix_ctx, &c->pal[0]);
  421. }
  422. return 0;
  423. }
  424. static int decode_region_inter(SliceContext *sc, ArithCoder *acoder,
  425. int x, int y, int width, int height)
  426. {
  427. MSS12Context const *c = sc->c;
  428. int mode;
  429. mode = acoder->get_model_sym(acoder, &sc->inter_region);
  430. if (!mode) {
  431. mode = decode_pixel(acoder, &sc->inter_pix_ctx, NULL, 0, 0);
  432. if (c->avctx->err_recognition & AV_EF_EXPLODE &&
  433. ( c->rgb_pic && mode != 0x01 && mode != 0x02 && mode != 0x04 ||
  434. !c->rgb_pic && mode != 0x80 && mode != 0xFF))
  435. return -1;
  436. if (mode == 0x02)
  437. copy_rectangles(c, x, y, width, height);
  438. else if (mode == 0x04)
  439. return motion_compensation(c, x, y, width, height);
  440. else if (mode != 0x80)
  441. return decode_region_intra(sc, acoder, x, y, width, height);
  442. } else {
  443. if (decode_region(acoder, c->mask, NULL,
  444. x, y, width, height, c->mask_stride, 0,
  445. &sc->inter_pix_ctx, &c->pal[0]) < 0)
  446. return -1;
  447. return decode_region_masked(c, acoder, c->pal_pic,
  448. c->pal_stride, c->mask,
  449. c->mask_stride,
  450. x, y, width, height,
  451. &sc->intra_pix_ctx);
  452. }
  453. return 0;
  454. }
  455. int ff_mss12_decode_rect(SliceContext *sc, ArithCoder *acoder,
  456. int x, int y, int width, int height)
  457. {
  458. int mode, pivot;
  459. mode = acoder->get_model_sym(acoder, &sc->split_mode);
  460. switch (mode) {
  461. case SPLIT_VERT:
  462. if ((pivot = decode_pivot(sc, acoder, height)) < 1)
  463. return -1;
  464. if (ff_mss12_decode_rect(sc, acoder, x, y, width, pivot))
  465. return -1;
  466. if (ff_mss12_decode_rect(sc, acoder, x, y + pivot, width, height - pivot))
  467. return -1;
  468. break;
  469. case SPLIT_HOR:
  470. if ((pivot = decode_pivot(sc, acoder, width)) < 1)
  471. return -1;
  472. if (ff_mss12_decode_rect(sc, acoder, x, y, pivot, height))
  473. return -1;
  474. if (ff_mss12_decode_rect(sc, acoder, x + pivot, y, width - pivot, height))
  475. return -1;
  476. break;
  477. case SPLIT_NONE:
  478. if (sc->c->keyframe)
  479. return decode_region_intra(sc, acoder, x, y, width, height);
  480. else
  481. return decode_region_inter(sc, acoder, x, y, width, height);
  482. default:
  483. return -1;
  484. }
  485. return 0;
  486. }
  487. av_cold int ff_mss12_decode_init(MSS12Context *c, int version,
  488. SliceContext* sc1, SliceContext *sc2)
  489. {
  490. AVCodecContext *avctx = c->avctx;
  491. int i;
  492. if (avctx->extradata_size < 52 + 256 * 3) {
  493. av_log(avctx, AV_LOG_ERROR, "Insufficient extradata size %d\n",
  494. avctx->extradata_size);
  495. return AVERROR_INVALIDDATA;
  496. }
  497. if (AV_RB32(avctx->extradata) < avctx->extradata_size) {
  498. av_log(avctx, AV_LOG_ERROR,
  499. "Insufficient extradata size: expected %d got %d\n",
  500. AV_RB32(avctx->extradata),
  501. avctx->extradata_size);
  502. return AVERROR_INVALIDDATA;
  503. }
  504. avctx->coded_width = AV_RB32(avctx->extradata + 20);
  505. avctx->coded_height = AV_RB32(avctx->extradata + 24);
  506. if (avctx->coded_width > 4096 || avctx->coded_height > 4096) {
  507. av_log(avctx, AV_LOG_ERROR, "Frame dimensions %dx%d too large",
  508. avctx->coded_width, avctx->coded_height);
  509. return AVERROR_INVALIDDATA;
  510. }
  511. av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d\n",
  512. AV_RB32(avctx->extradata + 4), AV_RB32(avctx->extradata + 8));
  513. if (version != AV_RB32(avctx->extradata + 4) > 1) {
  514. av_log(avctx, AV_LOG_ERROR,
  515. "Header version doesn't match codec tag\n");
  516. return -1;
  517. }
  518. c->free_colours = AV_RB32(avctx->extradata + 48);
  519. if ((unsigned)c->free_colours > 256) {
  520. av_log(avctx, AV_LOG_ERROR,
  521. "Incorrect number of changeable palette entries: %d\n",
  522. c->free_colours);
  523. return AVERROR_INVALIDDATA;
  524. }
  525. av_log(avctx, AV_LOG_DEBUG, "%d free colour(s)\n", c->free_colours);
  526. av_log(avctx, AV_LOG_DEBUG, "Display dimensions %dx%d\n",
  527. AV_RB32(avctx->extradata + 12), AV_RB32(avctx->extradata + 16));
  528. av_log(avctx, AV_LOG_DEBUG, "Coded dimensions %dx%d\n",
  529. avctx->coded_width, avctx->coded_height);
  530. av_log(avctx, AV_LOG_DEBUG, "%g frames per second\n",
  531. av_int2float(AV_RB32(avctx->extradata + 28)));
  532. av_log(avctx, AV_LOG_DEBUG, "Bitrate %d bps\n",
  533. AV_RB32(avctx->extradata + 32));
  534. av_log(avctx, AV_LOG_DEBUG, "Max. lead time %g ms\n",
  535. av_int2float(AV_RB32(avctx->extradata + 36)));
  536. av_log(avctx, AV_LOG_DEBUG, "Max. lag time %g ms\n",
  537. av_int2float(AV_RB32(avctx->extradata + 40)));
  538. av_log(avctx, AV_LOG_DEBUG, "Max. seek time %g ms\n",
  539. av_int2float(AV_RB32(avctx->extradata + 44)));
  540. if (version) {
  541. if (avctx->extradata_size < 60 + 256 * 3) {
  542. av_log(avctx, AV_LOG_ERROR,
  543. "Insufficient extradata size %d for v2\n",
  544. avctx->extradata_size);
  545. return AVERROR_INVALIDDATA;
  546. }
  547. c->slice_split = AV_RB32(avctx->extradata + 52);
  548. av_log(avctx, AV_LOG_DEBUG, "Slice split %d\n", c->slice_split);
  549. c->full_model_syms = AV_RB32(avctx->extradata + 56);
  550. if (c->full_model_syms < 2 || c->full_model_syms > 256) {
  551. av_log(avctx, AV_LOG_ERROR,
  552. "Incorrect number of used colours %d\n",
  553. c->full_model_syms);
  554. return AVERROR_INVALIDDATA;
  555. }
  556. av_log(avctx, AV_LOG_DEBUG, "Used colours %d\n",
  557. c->full_model_syms);
  558. } else {
  559. c->slice_split = 0;
  560. c->full_model_syms = 256;
  561. }
  562. for (i = 0; i < 256; i++)
  563. c->pal[i] = AV_RB24(avctx->extradata + 52 +
  564. (version ? 8 : 0) + i * 3);
  565. c->mask_stride = FFALIGN(avctx->width, 16);
  566. c->mask = av_malloc(c->mask_stride * avctx->height);
  567. if (!c->mask) {
  568. av_log(avctx, AV_LOG_ERROR, "Cannot allocate mask plane\n");
  569. return AVERROR(ENOMEM);
  570. }
  571. sc1->c = c;
  572. slicecontext_init(sc1, version, c->full_model_syms);
  573. if (c->slice_split) {
  574. sc2->c = c;
  575. slicecontext_init(sc2, version, c->full_model_syms);
  576. }
  577. c->corrupted = 1;
  578. return 0;
  579. }
  580. av_cold int ff_mss12_decode_end(MSS12Context *c)
  581. {
  582. av_freep(&c->mask);
  583. return 0;
  584. }