You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

540 lines
19KB

  1. /*
  2. * Flash Screen Video decoder
  3. * Copyright (C) 2004 Alex Beregszaszi
  4. * Copyright (C) 2006 Benjamin Larsson
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Flash Screen Video decoder
  25. * @author Alex Beregszaszi
  26. * @author Benjamin Larsson
  27. * @author Daniel Verkamp
  28. * @author Konstantin Shishkov
  29. *
  30. * A description of the bitstream format for Flash Screen Video version 1/2
  31. * is part of the SWF File Format Specification (version 10), which can be
  32. * downloaded from http://www.adobe.com/devnet/swf.html.
  33. */
  34. #include <stdio.h>
  35. #include <stdlib.h>
  36. #include <zlib.h>
  37. #include "libavutil/intreadwrite.h"
  38. #include "avcodec.h"
  39. #include "bytestream.h"
  40. #include "get_bits.h"
  41. typedef struct BlockInfo {
  42. uint8_t *pos;
  43. int size;
  44. int unp_size;
  45. } BlockInfo;
  46. typedef struct FlashSVContext {
  47. AVCodecContext *avctx;
  48. AVFrame frame;
  49. int image_width, image_height;
  50. int block_width, block_height;
  51. uint8_t *tmpblock;
  52. int block_size;
  53. z_stream zstream;
  54. int ver;
  55. const uint32_t *pal;
  56. int is_keyframe;
  57. uint8_t *keyframedata;
  58. uint8_t *keyframe;
  59. BlockInfo *blocks;
  60. uint8_t *deflate_block;
  61. int deflate_block_size;
  62. int color_depth;
  63. int zlibprime_curr, zlibprime_prev;
  64. int diff_start, diff_height;
  65. } FlashSVContext;
  66. static int decode_hybrid(const uint8_t *sptr, uint8_t *dptr, int dx, int dy,
  67. int h, int w, int stride, const uint32_t *pal)
  68. {
  69. int x, y;
  70. const uint8_t *orig_src = sptr;
  71. for (y = dx+h; y > dx; y--) {
  72. uint8_t *dst = dptr + (y * stride) + dy * 3;
  73. for (x = 0; x < w; x++) {
  74. if (*sptr & 0x80) {
  75. /* 15-bit color */
  76. unsigned c = AV_RB16(sptr) & ~0x8000;
  77. unsigned b = c & 0x1F;
  78. unsigned g = (c >> 5) & 0x1F;
  79. unsigned r = c >> 10;
  80. /* 000aaabb -> aaabbaaa */
  81. *dst++ = (b << 3) | (b >> 2);
  82. *dst++ = (g << 3) | (g >> 2);
  83. *dst++ = (r << 3) | (r >> 2);
  84. sptr += 2;
  85. } else {
  86. /* palette index */
  87. uint32_t c = pal[*sptr++];
  88. bytestream_put_le24(&dst, c);
  89. }
  90. }
  91. }
  92. return sptr - orig_src;
  93. }
  94. static av_cold int flashsv_decode_init(AVCodecContext *avctx)
  95. {
  96. FlashSVContext *s = avctx->priv_data;
  97. int zret; // Zlib return code
  98. s->avctx = avctx;
  99. s->zstream.zalloc = Z_NULL;
  100. s->zstream.zfree = Z_NULL;
  101. s->zstream.opaque = Z_NULL;
  102. zret = inflateInit(&s->zstream);
  103. if (zret != Z_OK) {
  104. av_log(avctx, AV_LOG_ERROR, "Inflate init error: %d\n", zret);
  105. return 1;
  106. }
  107. avctx->pix_fmt = AV_PIX_FMT_BGR24;
  108. s->frame.data[0] = NULL;
  109. return 0;
  110. }
  111. static int flashsv2_prime(FlashSVContext *s, uint8_t *src,
  112. int size, int unp_size)
  113. {
  114. z_stream zs;
  115. int zret; // Zlib return code
  116. zs.zalloc = NULL;
  117. zs.zfree = NULL;
  118. zs.opaque = NULL;
  119. s->zstream.next_in = src;
  120. s->zstream.avail_in = size;
  121. s->zstream.next_out = s->tmpblock;
  122. s->zstream.avail_out = s->block_size * 3;
  123. inflate(&s->zstream, Z_SYNC_FLUSH);
  124. deflateInit(&zs, 0);
  125. zs.next_in = s->tmpblock;
  126. zs.avail_in = s->block_size * 3 - s->zstream.avail_out;
  127. zs.next_out = s->deflate_block;
  128. zs.avail_out = s->deflate_block_size;
  129. deflate(&zs, Z_SYNC_FLUSH);
  130. deflateEnd(&zs);
  131. if ((zret = inflateReset(&s->zstream)) != Z_OK) {
  132. av_log(s->avctx, AV_LOG_ERROR, "Inflate reset error: %d\n", zret);
  133. return AVERROR_UNKNOWN;
  134. }
  135. s->zstream.next_in = s->deflate_block;
  136. s->zstream.avail_in = s->deflate_block_size - zs.avail_out;
  137. s->zstream.next_out = s->tmpblock;
  138. s->zstream.avail_out = s->block_size * 3;
  139. inflate(&s->zstream, Z_SYNC_FLUSH);
  140. return 0;
  141. }
  142. static int flashsv_decode_block(AVCodecContext *avctx, AVPacket *avpkt,
  143. GetBitContext *gb, int block_size,
  144. int width, int height, int x_pos, int y_pos,
  145. int blk_idx)
  146. {
  147. struct FlashSVContext *s = avctx->priv_data;
  148. uint8_t *line = s->tmpblock;
  149. int k;
  150. int ret = inflateReset(&s->zstream);
  151. if (ret != Z_OK) {
  152. av_log(avctx, AV_LOG_ERROR, "Inflate reset error: %d\n", ret);
  153. return AVERROR_UNKNOWN;
  154. }
  155. if (s->zlibprime_curr || s->zlibprime_prev) {
  156. ret = flashsv2_prime(s, s->blocks[blk_idx].pos, s->blocks[blk_idx].size,
  157. s->blocks[blk_idx].unp_size);
  158. if (ret < 0)
  159. return ret;
  160. }
  161. s->zstream.next_in = avpkt->data + get_bits_count(gb) / 8;
  162. s->zstream.avail_in = block_size;
  163. s->zstream.next_out = s->tmpblock;
  164. s->zstream.avail_out = s->block_size * 3;
  165. ret = inflate(&s->zstream, Z_FINISH);
  166. if (ret == Z_DATA_ERROR) {
  167. av_log(avctx, AV_LOG_ERROR, "Zlib resync occurred\n");
  168. inflateSync(&s->zstream);
  169. ret = inflate(&s->zstream, Z_FINISH);
  170. }
  171. if (ret != Z_OK && ret != Z_STREAM_END) {
  172. //return -1;
  173. }
  174. if (s->is_keyframe) {
  175. s->blocks[blk_idx].pos = s->keyframedata + (get_bits_count(gb) / 8);
  176. s->blocks[blk_idx].size = block_size;
  177. s->blocks[blk_idx].unp_size = s->block_size * 3 - s->zstream.avail_out;
  178. }
  179. if (!s->color_depth) {
  180. /* Flash Screen Video stores the image upside down, so copy
  181. * lines to destination in reverse order. */
  182. for (k = 1; k <= s->diff_height; k++) {
  183. memcpy(s->frame.data[0] + x_pos * 3 +
  184. (s->image_height - y_pos - s->diff_start - k) * s->frame.linesize[0],
  185. line, width * 3);
  186. /* advance source pointer to next line */
  187. line += width * 3;
  188. }
  189. } else {
  190. /* hybrid 15-bit/palette mode */
  191. decode_hybrid(s->tmpblock, s->frame.data[0],
  192. s->image_height - (y_pos + 1 + s->diff_start + s->diff_height),
  193. x_pos, s->diff_height, width,
  194. s->frame.linesize[0], s->pal);
  195. }
  196. skip_bits_long(gb, 8 * block_size); /* skip the consumed bits */
  197. return 0;
  198. }
  199. static int calc_deflate_block_size(int tmpblock_size)
  200. {
  201. z_stream zstream;
  202. int size;
  203. zstream.zalloc = Z_NULL;
  204. zstream.zfree = Z_NULL;
  205. zstream.opaque = Z_NULL;
  206. if (deflateInit(&zstream, 0) != Z_OK)
  207. return -1;
  208. size = deflateBound(&zstream, tmpblock_size);
  209. deflateEnd(&zstream);
  210. return size;
  211. }
  212. static int flashsv_decode_frame(AVCodecContext *avctx, void *data,
  213. int *data_size, AVPacket *avpkt)
  214. {
  215. int buf_size = avpkt->size;
  216. FlashSVContext *s = avctx->priv_data;
  217. int h_blocks, v_blocks, h_part, v_part, i, j;
  218. GetBitContext gb;
  219. /* no supplementary picture */
  220. if (buf_size == 0)
  221. return 0;
  222. if (buf_size < 4)
  223. return -1;
  224. init_get_bits(&gb, avpkt->data, buf_size * 8);
  225. /* start to parse the bitstream */
  226. s->block_width = 16 * (get_bits(&gb, 4) + 1);
  227. s->image_width = get_bits(&gb, 12);
  228. s->block_height = 16 * (get_bits(&gb, 4) + 1);
  229. s->image_height = get_bits(&gb, 12);
  230. if (s->ver == 2) {
  231. skip_bits(&gb, 6);
  232. if (get_bits1(&gb)) {
  233. av_log_missing_feature(avctx, "iframe", 1);
  234. return AVERROR_PATCHWELCOME;
  235. }
  236. if (get_bits1(&gb)) {
  237. av_log_missing_feature(avctx, "custom palette", 1);
  238. return AVERROR_PATCHWELCOME;
  239. }
  240. }
  241. /* calculate number of blocks and size of border (partial) blocks */
  242. h_blocks = s->image_width / s->block_width;
  243. h_part = s->image_width % s->block_width;
  244. v_blocks = s->image_height / s->block_height;
  245. v_part = s->image_height % s->block_height;
  246. /* the block size could change between frames, make sure the buffer
  247. * is large enough, if not, get a larger one */
  248. if (s->block_size < s->block_width * s->block_height) {
  249. int tmpblock_size = 3 * s->block_width * s->block_height;
  250. s->tmpblock = av_realloc(s->tmpblock, tmpblock_size);
  251. if (!s->tmpblock) {
  252. av_log(avctx, AV_LOG_ERROR, "Can't allocate decompression buffer.\n");
  253. return AVERROR(ENOMEM);
  254. }
  255. if (s->ver == 2) {
  256. s->deflate_block_size = calc_deflate_block_size(tmpblock_size);
  257. if (s->deflate_block_size <= 0) {
  258. av_log(avctx, AV_LOG_ERROR, "Can't determine deflate buffer size.\n");
  259. return -1;
  260. }
  261. s->deflate_block = av_realloc(s->deflate_block, s->deflate_block_size);
  262. if (!s->deflate_block) {
  263. av_log(avctx, AV_LOG_ERROR, "Can't allocate deflate buffer.\n");
  264. return AVERROR(ENOMEM);
  265. }
  266. }
  267. }
  268. s->block_size = s->block_width * s->block_height;
  269. /* initialize the image size once */
  270. if (avctx->width == 0 && avctx->height == 0) {
  271. avctx->width = s->image_width;
  272. avctx->height = s->image_height;
  273. }
  274. /* check for changes of image width and image height */
  275. if (avctx->width != s->image_width || avctx->height != s->image_height) {
  276. av_log(avctx, AV_LOG_ERROR,
  277. "Frame width or height differs from first frame!\n");
  278. av_log(avctx, AV_LOG_ERROR, "fh = %d, fv %d vs ch = %d, cv = %d\n",
  279. avctx->height, avctx->width, s->image_height, s->image_width);
  280. return AVERROR_INVALIDDATA;
  281. }
  282. /* we care for keyframes only in Screen Video v2 */
  283. s->is_keyframe = (avpkt->flags & AV_PKT_FLAG_KEY) && (s->ver == 2);
  284. if (s->is_keyframe) {
  285. s->keyframedata = av_realloc(s->keyframedata, avpkt->size);
  286. memcpy(s->keyframedata, avpkt->data, avpkt->size);
  287. s->blocks = av_realloc(s->blocks,
  288. (v_blocks + !!v_part) * (h_blocks + !!h_part)
  289. * sizeof(s->blocks[0]));
  290. }
  291. av_dlog(avctx, "image: %dx%d block: %dx%d num: %dx%d part: %dx%d\n",
  292. s->image_width, s->image_height, s->block_width, s->block_height,
  293. h_blocks, v_blocks, h_part, v_part);
  294. s->frame.reference = 3;
  295. s->frame.buffer_hints = FF_BUFFER_HINTS_VALID |
  296. FF_BUFFER_HINTS_PRESERVE |
  297. FF_BUFFER_HINTS_REUSABLE;
  298. if (avctx->reget_buffer(avctx, &s->frame) < 0) {
  299. av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
  300. return -1;
  301. }
  302. /* loop over all block columns */
  303. for (j = 0; j < v_blocks + (v_part ? 1 : 0); j++) {
  304. int y_pos = j * s->block_height; // vertical position in frame
  305. int cur_blk_height = (j < v_blocks) ? s->block_height : v_part;
  306. /* loop over all block rows */
  307. for (i = 0; i < h_blocks + (h_part ? 1 : 0); i++) {
  308. int x_pos = i * s->block_width; // horizontal position in frame
  309. int cur_blk_width = (i < h_blocks) ? s->block_width : h_part;
  310. int has_diff = 0;
  311. /* get the size of the compressed zlib chunk */
  312. int size = get_bits(&gb, 16);
  313. s->color_depth = 0;
  314. s->zlibprime_curr = 0;
  315. s->zlibprime_prev = 0;
  316. s->diff_start = 0;
  317. s->diff_height = cur_blk_height;
  318. if (8 * size > get_bits_left(&gb)) {
  319. avctx->release_buffer(avctx, &s->frame);
  320. s->frame.data[0] = NULL;
  321. return AVERROR_INVALIDDATA;
  322. }
  323. if (s->ver == 2 && size) {
  324. skip_bits(&gb, 3);
  325. s->color_depth = get_bits(&gb, 2);
  326. has_diff = get_bits1(&gb);
  327. s->zlibprime_curr = get_bits1(&gb);
  328. s->zlibprime_prev = get_bits1(&gb);
  329. if (s->color_depth != 0 && s->color_depth != 2) {
  330. av_log(avctx, AV_LOG_ERROR,
  331. "%dx%d invalid color depth %d\n", i, j, s->color_depth);
  332. return AVERROR_INVALIDDATA;
  333. }
  334. if (has_diff) {
  335. s->diff_start = get_bits(&gb, 8);
  336. s->diff_height = get_bits(&gb, 8);
  337. av_log(avctx, AV_LOG_DEBUG,
  338. "%dx%d diff start %d height %d\n",
  339. i, j, s->diff_start, s->diff_height);
  340. size -= 2;
  341. }
  342. if (s->zlibprime_prev)
  343. av_log(avctx, AV_LOG_DEBUG, "%dx%d zlibprime_prev\n", i, j);
  344. if (s->zlibprime_curr) {
  345. int col = get_bits(&gb, 8);
  346. int row = get_bits(&gb, 8);
  347. av_log(avctx, AV_LOG_DEBUG, "%dx%d zlibprime_curr %dx%d\n", i, j, col, row);
  348. size -= 2;
  349. av_log_missing_feature(avctx, "zlibprime_curr", 1);
  350. return AVERROR_PATCHWELCOME;
  351. }
  352. size--; // account for flags byte
  353. }
  354. if (has_diff) {
  355. int k;
  356. int off = (s->image_height - y_pos - 1) * s->frame.linesize[0];
  357. for (k = 0; k < cur_blk_height; k++)
  358. memcpy(s->frame.data[0] + off - k*s->frame.linesize[0] + x_pos*3,
  359. s->keyframe + off - k*s->frame.linesize[0] + x_pos*3,
  360. cur_blk_width * 3);
  361. }
  362. /* skip unchanged blocks, which have size 0 */
  363. if (size) {
  364. if (flashsv_decode_block(avctx, avpkt, &gb, size,
  365. cur_blk_width, cur_blk_height,
  366. x_pos, y_pos,
  367. i + j * (h_blocks + !!h_part)))
  368. av_log(avctx, AV_LOG_ERROR,
  369. "error in decompression of block %dx%d\n", i, j);
  370. }
  371. }
  372. }
  373. if (s->is_keyframe && s->ver == 2) {
  374. if (!s->keyframe) {
  375. s->keyframe = av_malloc(s->frame.linesize[0] * avctx->height);
  376. if (!s->keyframe) {
  377. av_log(avctx, AV_LOG_ERROR, "Cannot allocate image data\n");
  378. return AVERROR(ENOMEM);
  379. }
  380. }
  381. memcpy(s->keyframe, s->frame.data[0], s->frame.linesize[0] * avctx->height);
  382. }
  383. *data_size = sizeof(AVFrame);
  384. *(AVFrame*)data = s->frame;
  385. if ((get_bits_count(&gb) / 8) != buf_size)
  386. av_log(avctx, AV_LOG_ERROR, "buffer not fully consumed (%d != %d)\n",
  387. buf_size, (get_bits_count(&gb) / 8));
  388. /* report that the buffer was completely consumed */
  389. return buf_size;
  390. }
  391. static av_cold int flashsv_decode_end(AVCodecContext *avctx)
  392. {
  393. FlashSVContext *s = avctx->priv_data;
  394. inflateEnd(&s->zstream);
  395. /* release the frame if needed */
  396. if (s->frame.data[0])
  397. avctx->release_buffer(avctx, &s->frame);
  398. /* free the tmpblock */
  399. av_free(s->tmpblock);
  400. return 0;
  401. }
  402. #if CONFIG_FLASHSV_DECODER
  403. AVCodec ff_flashsv_decoder = {
  404. .name = "flashsv",
  405. .type = AVMEDIA_TYPE_VIDEO,
  406. .id = AV_CODEC_ID_FLASHSV,
  407. .priv_data_size = sizeof(FlashSVContext),
  408. .init = flashsv_decode_init,
  409. .close = flashsv_decode_end,
  410. .decode = flashsv_decode_frame,
  411. .capabilities = CODEC_CAP_DR1,
  412. .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_BGR24, AV_PIX_FMT_NONE },
  413. .long_name = NULL_IF_CONFIG_SMALL("Flash Screen Video v1"),
  414. };
  415. #endif /* CONFIG_FLASHSV_DECODER */
  416. #if CONFIG_FLASHSV2_DECODER
  417. static const uint32_t ff_flashsv2_default_palette[128] = {
  418. 0x000000, 0x333333, 0x666666, 0x999999, 0xCCCCCC, 0xFFFFFF,
  419. 0x330000, 0x660000, 0x990000, 0xCC0000, 0xFF0000, 0x003300,
  420. 0x006600, 0x009900, 0x00CC00, 0x00FF00, 0x000033, 0x000066,
  421. 0x000099, 0x0000CC, 0x0000FF, 0x333300, 0x666600, 0x999900,
  422. 0xCCCC00, 0xFFFF00, 0x003333, 0x006666, 0x009999, 0x00CCCC,
  423. 0x00FFFF, 0x330033, 0x660066, 0x990099, 0xCC00CC, 0xFF00FF,
  424. 0xFFFF33, 0xFFFF66, 0xFFFF99, 0xFFFFCC, 0xFF33FF, 0xFF66FF,
  425. 0xFF99FF, 0xFFCCFF, 0x33FFFF, 0x66FFFF, 0x99FFFF, 0xCCFFFF,
  426. 0xCCCC33, 0xCCCC66, 0xCCCC99, 0xCCCCFF, 0xCC33CC, 0xCC66CC,
  427. 0xCC99CC, 0xCCFFCC, 0x33CCCC, 0x66CCCC, 0x99CCCC, 0xFFCCCC,
  428. 0x999933, 0x999966, 0x9999CC, 0x9999FF, 0x993399, 0x996699,
  429. 0x99CC99, 0x99FF99, 0x339999, 0x669999, 0xCC9999, 0xFF9999,
  430. 0x666633, 0x666699, 0x6666CC, 0x6666FF, 0x663366, 0x669966,
  431. 0x66CC66, 0x66FF66, 0x336666, 0x996666, 0xCC6666, 0xFF6666,
  432. 0x333366, 0x333399, 0x3333CC, 0x3333FF, 0x336633, 0x339933,
  433. 0x33CC33, 0x33FF33, 0x663333, 0x993333, 0xCC3333, 0xFF3333,
  434. 0x003366, 0x336600, 0x660033, 0x006633, 0x330066, 0x663300,
  435. 0x336699, 0x669933, 0x993366, 0x339966, 0x663399, 0x996633,
  436. 0x6699CC, 0x99CC66, 0xCC6699, 0x66CC99, 0x9966CC, 0xCC9966,
  437. 0x99CCFF, 0xCCFF99, 0xFF99CC, 0x99FFCC, 0xCC99FF, 0xFFCC99,
  438. 0x111111, 0x222222, 0x444444, 0x555555, 0xAAAAAA, 0xBBBBBB,
  439. 0xDDDDDD, 0xEEEEEE
  440. };
  441. static av_cold int flashsv2_decode_init(AVCodecContext *avctx)
  442. {
  443. FlashSVContext *s = avctx->priv_data;
  444. flashsv_decode_init(avctx);
  445. s->pal = ff_flashsv2_default_palette;
  446. s->ver = 2;
  447. return 0;
  448. }
  449. static av_cold int flashsv2_decode_end(AVCodecContext *avctx)
  450. {
  451. FlashSVContext *s = avctx->priv_data;
  452. av_freep(&s->keyframedata);
  453. av_freep(&s->blocks);
  454. av_freep(&s->keyframe);
  455. av_freep(&s->deflate_block);
  456. flashsv_decode_end(avctx);
  457. return 0;
  458. }
  459. AVCodec ff_flashsv2_decoder = {
  460. .name = "flashsv2",
  461. .type = AVMEDIA_TYPE_VIDEO,
  462. .id = AV_CODEC_ID_FLASHSV2,
  463. .priv_data_size = sizeof(FlashSVContext),
  464. .init = flashsv2_decode_init,
  465. .close = flashsv2_decode_end,
  466. .decode = flashsv_decode_frame,
  467. .capabilities = CODEC_CAP_DR1,
  468. .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_BGR24, AV_PIX_FMT_NONE },
  469. .long_name = NULL_IF_CONFIG_SMALL("Flash Screen Video v2"),
  470. };
  471. #endif /* CONFIG_FLASHSV2_DECODER */