You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

754 lines
27KB

  1. /*
  2. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
  3. * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder
  24. * @author Stefan Gehrer <stefan.gehrer@gmx.de>
  25. */
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "golomb.h"
  29. #include "mathops.h"
  30. #include "cavs.h"
  31. static const uint8_t alpha_tab[64] = {
  32. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3,
  33. 4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20,
  34. 22, 24, 26, 28, 30, 33, 33, 35, 35, 36, 37, 37, 39, 39, 42, 44,
  35. 46, 48, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
  36. };
  37. static const uint8_t beta_tab[64] = {
  38. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  39. 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6,
  40. 6, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14,
  41. 15, 16, 17, 18, 19, 20, 21, 22, 23, 23, 24, 24, 25, 25, 26, 27
  42. };
  43. static const uint8_t tc_tab[64] = {
  44. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  45. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
  46. 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4,
  47. 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9
  48. };
  49. /** mark block as unavailable, i.e. out of picture
  50. or not yet decoded */
  51. static const cavs_vector un_mv = { 0, 0, 1, NOT_AVAIL };
  52. static const int8_t left_modifier_l[8] = { 0, -1, 6, -1, -1, 7, 6, 7 };
  53. static const int8_t top_modifier_l[8] = { -1, 1, 5, -1, -1, 5, 7, 7 };
  54. static const int8_t left_modifier_c[7] = { 5, -1, 2, -1, 6, 5, 6 };
  55. static const int8_t top_modifier_c[7] = { 4, 1, -1, -1, 4, 6, 6 };
  56. /*****************************************************************************
  57. *
  58. * in-loop deblocking filter
  59. *
  60. ****************************************************************************/
  61. static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b) {
  62. if((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
  63. return 2;
  64. if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
  65. return 1;
  66. if(b){
  67. mvP += MV_BWD_OFFS;
  68. mvQ += MV_BWD_OFFS;
  69. if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
  70. return 1;
  71. }else{
  72. if(mvP->ref != mvQ->ref)
  73. return 1;
  74. }
  75. return 0;
  76. }
  77. #define SET_PARAMS \
  78. alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset,0,63)]; \
  79. beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0,63)]; \
  80. tc = tc_tab[av_clip(qp_avg + h->alpha_offset,0,63)];
  81. /**
  82. * in-loop deblocking filter for a single macroblock
  83. *
  84. * boundary strength (bs) mapping:
  85. *
  86. * --4---5--
  87. * 0 2 |
  88. * | 6 | 7 |
  89. * 1 3 |
  90. * ---------
  91. *
  92. */
  93. void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type) {
  94. uint8_t bs[8];
  95. int qp_avg, alpha, beta, tc;
  96. int i;
  97. /* save un-deblocked lines */
  98. h->topleft_border_y = h->top_border_y[h->mbx*16+15];
  99. h->topleft_border_u = h->top_border_u[h->mbx*10+8];
  100. h->topleft_border_v = h->top_border_v[h->mbx*10+8];
  101. memcpy(&h->top_border_y[h->mbx*16], h->cy + 15* h->l_stride,16);
  102. memcpy(&h->top_border_u[h->mbx*10+1], h->cu + 7* h->c_stride,8);
  103. memcpy(&h->top_border_v[h->mbx*10+1], h->cv + 7* h->c_stride,8);
  104. for(i=0;i<8;i++) {
  105. h->left_border_y[i*2+1] = *(h->cy + 15 + (i*2+0)*h->l_stride);
  106. h->left_border_y[i*2+2] = *(h->cy + 15 + (i*2+1)*h->l_stride);
  107. h->left_border_u[i+1] = *(h->cu + 7 + i*h->c_stride);
  108. h->left_border_v[i+1] = *(h->cv + 7 + i*h->c_stride);
  109. }
  110. if(!h->loop_filter_disable) {
  111. /* determine bs */
  112. if(mb_type == I_8X8)
  113. memset(bs,2,8);
  114. else{
  115. memset(bs,0,8);
  116. if(ff_cavs_partition_flags[mb_type] & SPLITV){
  117. bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  118. bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  119. }
  120. if(ff_cavs_partition_flags[mb_type] & SPLITH){
  121. bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  122. bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
  123. }
  124. bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  125. bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
  126. bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
  127. bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
  128. }
  129. if(AV_RN64(bs)) {
  130. if(h->flags & A_AVAIL) {
  131. qp_avg = (h->qp + h->left_qp + 1) >> 1;
  132. SET_PARAMS;
  133. h->cdsp.cavs_filter_lv(h->cy,h->l_stride,alpha,beta,tc,bs[0],bs[1]);
  134. h->cdsp.cavs_filter_cv(h->cu,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
  135. h->cdsp.cavs_filter_cv(h->cv,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
  136. }
  137. qp_avg = h->qp;
  138. SET_PARAMS;
  139. h->cdsp.cavs_filter_lv(h->cy + 8,h->l_stride,alpha,beta,tc,bs[2],bs[3]);
  140. h->cdsp.cavs_filter_lh(h->cy + 8*h->l_stride,h->l_stride,alpha,beta,tc,
  141. bs[6],bs[7]);
  142. if(h->flags & B_AVAIL) {
  143. qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
  144. SET_PARAMS;
  145. h->cdsp.cavs_filter_lh(h->cy,h->l_stride,alpha,beta,tc,bs[4],bs[5]);
  146. h->cdsp.cavs_filter_ch(h->cu,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
  147. h->cdsp.cavs_filter_ch(h->cv,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
  148. }
  149. }
  150. }
  151. h->left_qp = h->qp;
  152. h->top_qp[h->mbx] = h->qp;
  153. }
  154. #undef SET_PARAMS
  155. /*****************************************************************************
  156. *
  157. * spatial intra prediction
  158. *
  159. ****************************************************************************/
  160. void ff_cavs_load_intra_pred_luma(AVSContext *h, uint8_t *top,
  161. uint8_t **left, int block) {
  162. int i;
  163. switch(block) {
  164. case 0:
  165. *left = h->left_border_y;
  166. h->left_border_y[0] = h->left_border_y[1];
  167. memset(&h->left_border_y[17],h->left_border_y[16],9);
  168. memcpy(&top[1],&h->top_border_y[h->mbx*16],16);
  169. top[17] = top[16];
  170. top[0] = top[1];
  171. if((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
  172. h->left_border_y[0] = top[0] = h->topleft_border_y;
  173. break;
  174. case 1:
  175. *left = h->intern_border_y;
  176. for(i=0;i<8;i++)
  177. h->intern_border_y[i+1] = *(h->cy + 7 + i*h->l_stride);
  178. memset(&h->intern_border_y[9],h->intern_border_y[8],9);
  179. h->intern_border_y[0] = h->intern_border_y[1];
  180. memcpy(&top[1],&h->top_border_y[h->mbx*16+8],8);
  181. if(h->flags & C_AVAIL)
  182. memcpy(&top[9],&h->top_border_y[(h->mbx + 1)*16],8);
  183. else
  184. memset(&top[9],top[8],9);
  185. top[17] = top[16];
  186. top[0] = top[1];
  187. if(h->flags & B_AVAIL)
  188. h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx*16+7];
  189. break;
  190. case 2:
  191. *left = &h->left_border_y[8];
  192. memcpy(&top[1],h->cy + 7*h->l_stride,16);
  193. top[17] = top[16];
  194. top[0] = top[1];
  195. if(h->flags & A_AVAIL)
  196. top[0] = h->left_border_y[8];
  197. break;
  198. case 3:
  199. *left = &h->intern_border_y[8];
  200. for(i=0;i<8;i++)
  201. h->intern_border_y[i+9] = *(h->cy + 7 + (i+8)*h->l_stride);
  202. memset(&h->intern_border_y[17],h->intern_border_y[16],9);
  203. memcpy(&top[0],h->cy + 7 + 7*h->l_stride,9);
  204. memset(&top[9],top[8],9);
  205. break;
  206. }
  207. }
  208. void ff_cavs_load_intra_pred_chroma(AVSContext *h) {
  209. /* extend borders by one pixel */
  210. h->left_border_u[9] = h->left_border_u[8];
  211. h->left_border_v[9] = h->left_border_v[8];
  212. h->top_border_u[h->mbx*10+9] = h->top_border_u[h->mbx*10+8];
  213. h->top_border_v[h->mbx*10+9] = h->top_border_v[h->mbx*10+8];
  214. if(h->mbx && h->mby) {
  215. h->top_border_u[h->mbx*10] = h->left_border_u[0] = h->topleft_border_u;
  216. h->top_border_v[h->mbx*10] = h->left_border_v[0] = h->topleft_border_v;
  217. } else {
  218. h->left_border_u[0] = h->left_border_u[1];
  219. h->left_border_v[0] = h->left_border_v[1];
  220. h->top_border_u[h->mbx*10] = h->top_border_u[h->mbx*10+1];
  221. h->top_border_v[h->mbx*10] = h->top_border_v[h->mbx*10+1];
  222. }
  223. }
  224. static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  225. int y;
  226. uint64_t a = AV_RN64(&top[1]);
  227. for(y=0;y<8;y++) {
  228. *((uint64_t *)(d+y*stride)) = a;
  229. }
  230. }
  231. static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  232. int y;
  233. uint64_t a;
  234. for(y=0;y<8;y++) {
  235. a = left[y+1] * 0x0101010101010101ULL;
  236. *((uint64_t *)(d+y*stride)) = a;
  237. }
  238. }
  239. static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  240. int y;
  241. uint64_t a = 0x8080808080808080ULL;
  242. for(y=0;y<8;y++)
  243. *((uint64_t *)(d+y*stride)) = a;
  244. }
  245. static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  246. int x,y,ia;
  247. int ih = 0;
  248. int iv = 0;
  249. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  250. for(x=0; x<4; x++) {
  251. ih += (x+1)*(top[5+x]-top[3-x]);
  252. iv += (x+1)*(left[5+x]-left[3-x]);
  253. }
  254. ia = (top[8]+left[8])<<4;
  255. ih = (17*ih+16)>>5;
  256. iv = (17*iv+16)>>5;
  257. for(y=0; y<8; y++)
  258. for(x=0; x<8; x++)
  259. d[y*stride+x] = cm[(ia+(x-3)*ih+(y-3)*iv+16)>>5];
  260. }
  261. #define LOWPASS(ARRAY,INDEX) \
  262. (( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2)
  263. static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  264. int x,y;
  265. for(y=0; y<8; y++)
  266. for(x=0; x<8; x++)
  267. d[y*stride+x] = (LOWPASS(top,x+1) + LOWPASS(left,y+1)) >> 1;
  268. }
  269. static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  270. int x,y;
  271. for(y=0; y<8; y++)
  272. for(x=0; x<8; x++)
  273. d[y*stride+x] = (LOWPASS(top,x+y+2) + LOWPASS(left,x+y+2)) >> 1;
  274. }
  275. static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  276. int x,y;
  277. for(y=0; y<8; y++)
  278. for(x=0; x<8; x++)
  279. if(x==y)
  280. d[y*stride+x] = (left[1]+2*top[0]+top[1]+2)>>2;
  281. else if(x>y)
  282. d[y*stride+x] = LOWPASS(top,x-y);
  283. else
  284. d[y*stride+x] = LOWPASS(left,y-x);
  285. }
  286. static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  287. int x,y;
  288. for(y=0; y<8; y++)
  289. for(x=0; x<8; x++)
  290. d[y*stride+x] = LOWPASS(left,y+1);
  291. }
  292. static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  293. int x,y;
  294. for(y=0; y<8; y++)
  295. for(x=0; x<8; x++)
  296. d[y*stride+x] = LOWPASS(top,x+1);
  297. }
  298. #undef LOWPASS
  299. static inline void modify_pred(const int8_t *mod_table, int *mode)
  300. {
  301. *mode = mod_table[*mode];
  302. if(*mode < 0) {
  303. av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
  304. *mode = 0;
  305. }
  306. }
  307. void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv) {
  308. /* save pred modes before they get modified */
  309. h->pred_mode_Y[3] = h->pred_mode_Y[5];
  310. h->pred_mode_Y[6] = h->pred_mode_Y[8];
  311. h->top_pred_Y[h->mbx*2+0] = h->pred_mode_Y[7];
  312. h->top_pred_Y[h->mbx*2+1] = h->pred_mode_Y[8];
  313. /* modify pred modes according to availability of neighbour samples */
  314. if(!(h->flags & A_AVAIL)) {
  315. modify_pred(left_modifier_l, &h->pred_mode_Y[4]);
  316. modify_pred(left_modifier_l, &h->pred_mode_Y[7]);
  317. modify_pred(left_modifier_c, pred_mode_uv);
  318. }
  319. if(!(h->flags & B_AVAIL)) {
  320. modify_pred(top_modifier_l, &h->pred_mode_Y[4]);
  321. modify_pred(top_modifier_l, &h->pred_mode_Y[5]);
  322. modify_pred(top_modifier_c, pred_mode_uv);
  323. }
  324. }
  325. /*****************************************************************************
  326. *
  327. * motion compensation
  328. *
  329. ****************************************************************************/
  330. static inline void mc_dir_part(AVSContext *h,Picture *pic,
  331. int chroma_height,int delta,int list,uint8_t *dest_y,
  332. uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset,
  333. int src_y_offset,qpel_mc_func *qpix_op,
  334. h264_chroma_mc_func chroma_op,cavs_vector *mv)
  335. {
  336. MpegEncContext * const s = &h->s;
  337. const int mx= mv->x + src_x_offset*8;
  338. const int my= mv->y + src_y_offset*8;
  339. const int luma_xy= (mx&3) + ((my&3)<<2);
  340. uint8_t * src_y = pic->f.data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
  341. uint8_t * src_cb = pic->f.data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
  342. uint8_t * src_cr = pic->f.data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
  343. int extra_width= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  344. int extra_height= extra_width;
  345. int emu=0;
  346. const int full_mx= mx>>2;
  347. const int full_my= my>>2;
  348. const int pic_width = 16*h->mb_width;
  349. const int pic_height = 16*h->mb_height;
  350. if(!pic->f.data[0])
  351. return;
  352. if(mx&7) extra_width -= 3;
  353. if(my&7) extra_height -= 3;
  354. if( full_mx < 0-extra_width
  355. || full_my < 0-extra_height
  356. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  357. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  358. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride,
  359. 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  360. src_y= s->edge_emu_buffer + 2 + 2*h->l_stride;
  361. emu=1;
  362. }
  363. qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps?
  364. if(emu){
  365. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cb, h->c_stride,
  366. 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  367. src_cb= s->edge_emu_buffer;
  368. }
  369. chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7);
  370. if(emu){
  371. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cr, h->c_stride,
  372. 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  373. src_cr= s->edge_emu_buffer;
  374. }
  375. chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7);
  376. }
  377. static inline void mc_part_std(AVSContext *h,int chroma_height,int delta,
  378. uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr,
  379. int x_offset, int y_offset,qpel_mc_func *qpix_put,
  380. h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg,
  381. h264_chroma_mc_func chroma_avg, cavs_vector *mv)
  382. {
  383. qpel_mc_func *qpix_op= qpix_put;
  384. h264_chroma_mc_func chroma_op= chroma_put;
  385. dest_y += 2*x_offset + 2*y_offset*h->l_stride;
  386. dest_cb += x_offset + y_offset*h->c_stride;
  387. dest_cr += x_offset + y_offset*h->c_stride;
  388. x_offset += 8*h->mbx;
  389. y_offset += 8*h->mby;
  390. if(mv->ref >= 0){
  391. Picture *ref= &h->DPB[mv->ref];
  392. mc_dir_part(h, ref, chroma_height, delta, 0,
  393. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  394. qpix_op, chroma_op, mv);
  395. qpix_op= qpix_avg;
  396. chroma_op= chroma_avg;
  397. }
  398. if((mv+MV_BWD_OFFS)->ref >= 0){
  399. Picture *ref= &h->DPB[0];
  400. mc_dir_part(h, ref, chroma_height, delta, 1,
  401. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  402. qpix_op, chroma_op, mv+MV_BWD_OFFS);
  403. }
  404. }
  405. void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type) {
  406. if(ff_cavs_partition_flags[mb_type] == 0){ // 16x16
  407. mc_part_std(h, 8, 0, h->cy, h->cu, h->cv, 0, 0,
  408. h->cdsp.put_cavs_qpel_pixels_tab[0],
  409. h->s.dsp.put_h264_chroma_pixels_tab[0],
  410. h->cdsp.avg_cavs_qpel_pixels_tab[0],
  411. h->s.dsp.avg_h264_chroma_pixels_tab[0],&h->mv[MV_FWD_X0]);
  412. }else{
  413. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 0,
  414. h->cdsp.put_cavs_qpel_pixels_tab[1],
  415. h->s.dsp.put_h264_chroma_pixels_tab[1],
  416. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  417. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X0]);
  418. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 0,
  419. h->cdsp.put_cavs_qpel_pixels_tab[1],
  420. h->s.dsp.put_h264_chroma_pixels_tab[1],
  421. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  422. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X1]);
  423. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 0, 4,
  424. h->cdsp.put_cavs_qpel_pixels_tab[1],
  425. h->s.dsp.put_h264_chroma_pixels_tab[1],
  426. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  427. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X2]);
  428. mc_part_std(h, 4, 0, h->cy, h->cu, h->cv, 4, 4,
  429. h->cdsp.put_cavs_qpel_pixels_tab[1],
  430. h->s.dsp.put_h264_chroma_pixels_tab[1],
  431. h->cdsp.avg_cavs_qpel_pixels_tab[1],
  432. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X3]);
  433. }
  434. }
  435. /*****************************************************************************
  436. *
  437. * motion vector prediction
  438. *
  439. ****************************************************************************/
  440. static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp) {
  441. int den = h->scale_den[src->ref];
  442. *d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9;
  443. *d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9;
  444. }
  445. static inline void mv_pred_median(AVSContext *h, cavs_vector *mvP,
  446. cavs_vector *mvA, cavs_vector *mvB, cavs_vector *mvC) {
  447. int ax, ay, bx, by, cx, cy;
  448. int len_ab, len_bc, len_ca, len_mid;
  449. /* scale candidates according to their temporal span */
  450. scale_mv(h, &ax, &ay, mvA, mvP->dist);
  451. scale_mv(h, &bx, &by, mvB, mvP->dist);
  452. scale_mv(h, &cx, &cy, mvC, mvP->dist);
  453. /* find the geometrical median of the three candidates */
  454. len_ab = abs(ax - bx) + abs(ay - by);
  455. len_bc = abs(bx - cx) + abs(by - cy);
  456. len_ca = abs(cx - ax) + abs(cy - ay);
  457. len_mid = mid_pred(len_ab, len_bc, len_ca);
  458. if(len_mid == len_ab) {
  459. mvP->x = cx;
  460. mvP->y = cy;
  461. } else if(len_mid == len_bc) {
  462. mvP->x = ax;
  463. mvP->y = ay;
  464. } else {
  465. mvP->x = bx;
  466. mvP->y = by;
  467. }
  468. }
  469. void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC,
  470. enum cavs_mv_pred mode, enum cavs_block size, int ref) {
  471. cavs_vector *mvP = &h->mv[nP];
  472. cavs_vector *mvA = &h->mv[nP-1];
  473. cavs_vector *mvB = &h->mv[nP-4];
  474. cavs_vector *mvC = &h->mv[nC];
  475. const cavs_vector *mvP2 = NULL;
  476. mvP->ref = ref;
  477. mvP->dist = h->dist[mvP->ref];
  478. if(mvC->ref == NOT_AVAIL)
  479. mvC = &h->mv[nP-5]; // set to top-left (mvD)
  480. if((mode == MV_PRED_PSKIP) &&
  481. ((mvA->ref == NOT_AVAIL) || (mvB->ref == NOT_AVAIL) ||
  482. ((mvA->x | mvA->y | mvA->ref) == 0) ||
  483. ((mvB->x | mvB->y | mvB->ref) == 0) )) {
  484. mvP2 = &un_mv;
  485. /* if there is only one suitable candidate, take it */
  486. } else if((mvA->ref >= 0) && (mvB->ref < 0) && (mvC->ref < 0)) {
  487. mvP2= mvA;
  488. } else if((mvA->ref < 0) && (mvB->ref >= 0) && (mvC->ref < 0)) {
  489. mvP2= mvB;
  490. } else if((mvA->ref < 0) && (mvB->ref < 0) && (mvC->ref >= 0)) {
  491. mvP2= mvC;
  492. } else if(mode == MV_PRED_LEFT && mvA->ref == ref){
  493. mvP2= mvA;
  494. } else if(mode == MV_PRED_TOP && mvB->ref == ref){
  495. mvP2= mvB;
  496. } else if(mode == MV_PRED_TOPRIGHT && mvC->ref == ref){
  497. mvP2= mvC;
  498. }
  499. if(mvP2){
  500. mvP->x = mvP2->x;
  501. mvP->y = mvP2->y;
  502. }else
  503. mv_pred_median(h, mvP, mvA, mvB, mvC);
  504. if(mode < MV_PRED_PSKIP) {
  505. mvP->x += get_se_golomb(&h->s.gb);
  506. mvP->y += get_se_golomb(&h->s.gb);
  507. }
  508. set_mvs(mvP,size);
  509. }
  510. /*****************************************************************************
  511. *
  512. * macroblock level
  513. *
  514. ****************************************************************************/
  515. /**
  516. * initialise predictors for motion vectors and intra prediction
  517. */
  518. void ff_cavs_init_mb(AVSContext *h) {
  519. int i;
  520. /* copy predictors from top line (MB B and C) into cache */
  521. for(i=0;i<3;i++) {
  522. h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i];
  523. h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i];
  524. }
  525. h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0];
  526. h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1];
  527. /* clear top predictors if MB B is not available */
  528. if(!(h->flags & B_AVAIL)) {
  529. h->mv[MV_FWD_B2] = un_mv;
  530. h->mv[MV_FWD_B3] = un_mv;
  531. h->mv[MV_BWD_B2] = un_mv;
  532. h->mv[MV_BWD_B3] = un_mv;
  533. h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
  534. h->flags &= ~(C_AVAIL|D_AVAIL);
  535. } else if(h->mbx) {
  536. h->flags |= D_AVAIL;
  537. }
  538. if(h->mbx == h->mb_width-1) //MB C not available
  539. h->flags &= ~C_AVAIL;
  540. /* clear top-right predictors if MB C is not available */
  541. if(!(h->flags & C_AVAIL)) {
  542. h->mv[MV_FWD_C2] = un_mv;
  543. h->mv[MV_BWD_C2] = un_mv;
  544. }
  545. /* clear top-left predictors if MB D is not available */
  546. if(!(h->flags & D_AVAIL)) {
  547. h->mv[MV_FWD_D3] = un_mv;
  548. h->mv[MV_BWD_D3] = un_mv;
  549. }
  550. }
  551. /**
  552. * save predictors for later macroblocks and increase
  553. * macroblock address
  554. * @return 0 if end of frame is reached, 1 otherwise
  555. */
  556. int ff_cavs_next_mb(AVSContext *h) {
  557. int i;
  558. h->flags |= A_AVAIL;
  559. h->cy += 16;
  560. h->cu += 8;
  561. h->cv += 8;
  562. /* copy mvs as predictors to the left */
  563. for(i=0;i<=20;i+=4)
  564. h->mv[i] = h->mv[i+2];
  565. /* copy bottom mvs from cache to top line */
  566. h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2];
  567. h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3];
  568. h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2];
  569. h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3];
  570. /* next MB address */
  571. h->mbidx++;
  572. h->mbx++;
  573. if(h->mbx == h->mb_width) { //new mb line
  574. h->flags = B_AVAIL|C_AVAIL;
  575. /* clear left pred_modes */
  576. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  577. /* clear left mv predictors */
  578. for(i=0;i<=20;i+=4)
  579. h->mv[i] = un_mv;
  580. h->mbx = 0;
  581. h->mby++;
  582. /* re-calculate sample pointers */
  583. h->cy = h->picture.f.data[0] + h->mby * 16 * h->l_stride;
  584. h->cu = h->picture.f.data[1] + h->mby * 8 * h->c_stride;
  585. h->cv = h->picture.f.data[2] + h->mby * 8 * h->c_stride;
  586. if(h->mby == h->mb_height) { //frame end
  587. return 0;
  588. }
  589. }
  590. return 1;
  591. }
  592. /*****************************************************************************
  593. *
  594. * frame level
  595. *
  596. ****************************************************************************/
  597. void ff_cavs_init_pic(AVSContext *h) {
  598. int i;
  599. /* clear some predictors */
  600. for(i=0;i<=20;i+=4)
  601. h->mv[i] = un_mv;
  602. h->mv[MV_BWD_X0] = ff_cavs_dir_mv;
  603. set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
  604. h->mv[MV_FWD_X0] = ff_cavs_dir_mv;
  605. set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
  606. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  607. h->cy = h->picture.f.data[0];
  608. h->cu = h->picture.f.data[1];
  609. h->cv = h->picture.f.data[2];
  610. h->l_stride = h->picture.f.linesize[0];
  611. h->c_stride = h->picture.f.linesize[1];
  612. h->luma_scan[2] = 8*h->l_stride;
  613. h->luma_scan[3] = 8*h->l_stride+8;
  614. h->mbx = h->mby = h->mbidx = 0;
  615. h->flags = 0;
  616. }
  617. /*****************************************************************************
  618. *
  619. * headers and interface
  620. *
  621. ****************************************************************************/
  622. /**
  623. * some predictions require data from the top-neighbouring macroblock.
  624. * this data has to be stored for one complete row of macroblocks
  625. * and this storage space is allocated here
  626. */
  627. void ff_cavs_init_top_lines(AVSContext *h) {
  628. /* alloc top line of predictors */
  629. h->top_qp = av_malloc( h->mb_width);
  630. h->top_mv[0] = av_malloc((h->mb_width*2+1)*sizeof(cavs_vector));
  631. h->top_mv[1] = av_malloc((h->mb_width*2+1)*sizeof(cavs_vector));
  632. h->top_pred_Y = av_malloc( h->mb_width*2*sizeof(*h->top_pred_Y));
  633. h->top_border_y = av_malloc((h->mb_width+1)*16);
  634. h->top_border_u = av_malloc( h->mb_width * 10);
  635. h->top_border_v = av_malloc( h->mb_width * 10);
  636. /* alloc space for co-located MVs and types */
  637. h->col_mv = av_malloc( h->mb_width*h->mb_height*4*sizeof(cavs_vector));
  638. h->col_type_base = av_malloc(h->mb_width*h->mb_height);
  639. h->block = av_mallocz(64*sizeof(DCTELEM));
  640. }
  641. av_cold int ff_cavs_init(AVCodecContext *avctx) {
  642. AVSContext *h = avctx->priv_data;
  643. MpegEncContext * const s = &h->s;
  644. ff_MPV_decode_defaults(s);
  645. ff_cavsdsp_init(&h->cdsp, avctx);
  646. s->avctx = avctx;
  647. avctx->pix_fmt= AV_PIX_FMT_YUV420P;
  648. h->luma_scan[0] = 0;
  649. h->luma_scan[1] = 8;
  650. h->intra_pred_l[ INTRA_L_VERT] = intra_pred_vert;
  651. h->intra_pred_l[ INTRA_L_HORIZ] = intra_pred_horiz;
  652. h->intra_pred_l[ INTRA_L_LP] = intra_pred_lp;
  653. h->intra_pred_l[ INTRA_L_DOWN_LEFT] = intra_pred_down_left;
  654. h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
  655. h->intra_pred_l[ INTRA_L_LP_LEFT] = intra_pred_lp_left;
  656. h->intra_pred_l[ INTRA_L_LP_TOP] = intra_pred_lp_top;
  657. h->intra_pred_l[ INTRA_L_DC_128] = intra_pred_dc_128;
  658. h->intra_pred_c[ INTRA_C_LP] = intra_pred_lp;
  659. h->intra_pred_c[ INTRA_C_HORIZ] = intra_pred_horiz;
  660. h->intra_pred_c[ INTRA_C_VERT] = intra_pred_vert;
  661. h->intra_pred_c[ INTRA_C_PLANE] = intra_pred_plane;
  662. h->intra_pred_c[ INTRA_C_LP_LEFT] = intra_pred_lp_left;
  663. h->intra_pred_c[ INTRA_C_LP_TOP] = intra_pred_lp_top;
  664. h->intra_pred_c[ INTRA_C_DC_128] = intra_pred_dc_128;
  665. h->mv[ 7] = un_mv;
  666. h->mv[19] = un_mv;
  667. return 0;
  668. }
  669. av_cold int ff_cavs_end(AVCodecContext *avctx) {
  670. AVSContext *h = avctx->priv_data;
  671. av_free(h->top_qp);
  672. av_free(h->top_mv[0]);
  673. av_free(h->top_mv[1]);
  674. av_free(h->top_pred_Y);
  675. av_free(h->top_border_y);
  676. av_free(h->top_border_u);
  677. av_free(h->top_border_v);
  678. av_free(h->col_mv);
  679. av_free(h->col_type_base);
  680. av_free(h->block);
  681. return 0;
  682. }