You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1255 lines
46KB

  1. /*
  2. * AMR wideband decoder
  3. * Copyright (c) 2010 Marcelo Galvao Povoa
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AMR wideband decoder
  24. */
  25. #include "libavutil/common.h"
  26. #include "libavutil/lfg.h"
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "lsp.h"
  30. #include "celp_filters.h"
  31. #include "acelp_filters.h"
  32. #include "acelp_vectors.h"
  33. #include "acelp_pitch_delay.h"
  34. #define AMR_USE_16BIT_TABLES
  35. #include "amr.h"
  36. #include "amrwbdata.h"
  37. typedef struct {
  38. AVFrame avframe; ///< AVFrame for decoded samples
  39. AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
  40. enum Mode fr_cur_mode; ///< mode index of current frame
  41. uint8_t fr_quality; ///< frame quality index (FQI)
  42. float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
  43. float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
  44. float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
  45. double isp[4][LP_ORDER]; ///< ISP vectors from current frame
  46. double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
  47. float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
  48. uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
  49. uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
  50. float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
  51. float *excitation; ///< points to current excitation in excitation_buf[]
  52. float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
  53. float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
  54. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  55. float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
  56. float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
  57. float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
  58. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
  59. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  60. float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
  61. float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
  62. float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
  63. float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
  64. float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
  65. float demph_mem[1]; ///< previous value in the de-emphasis filter
  66. float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
  67. float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
  68. AVLFG prng; ///< random number generator for white noise excitation
  69. uint8_t first_frame; ///< flag active during decoding of the first frame
  70. } AMRWBContext;
  71. static av_cold int amrwb_decode_init(AVCodecContext *avctx)
  72. {
  73. AMRWBContext *ctx = avctx->priv_data;
  74. int i;
  75. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  76. av_lfg_init(&ctx->prng, 1);
  77. ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
  78. ctx->first_frame = 1;
  79. for (i = 0; i < LP_ORDER; i++)
  80. ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
  81. for (i = 0; i < 4; i++)
  82. ctx->prediction_error[i] = MIN_ENERGY;
  83. avcodec_get_frame_defaults(&ctx->avframe);
  84. avctx->coded_frame = &ctx->avframe;
  85. return 0;
  86. }
  87. /**
  88. * Decode the frame header in the "MIME/storage" format. This format
  89. * is simpler and does not carry the auxiliary frame information.
  90. *
  91. * @param[in] ctx The Context
  92. * @param[in] buf Pointer to the input buffer
  93. *
  94. * @return The decoded header length in bytes
  95. */
  96. static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
  97. {
  98. /* Decode frame header (1st octet) */
  99. ctx->fr_cur_mode = buf[0] >> 3 & 0x0F;
  100. ctx->fr_quality = (buf[0] & 0x4) == 0x4;
  101. return 1;
  102. }
  103. /**
  104. * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
  105. *
  106. * @param[in] ind Array of 5 indexes
  107. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  108. *
  109. */
  110. static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
  111. {
  112. int i;
  113. for (i = 0; i < 9; i++)
  114. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  115. for (i = 0; i < 7; i++)
  116. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  117. for (i = 0; i < 5; i++)
  118. isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
  119. for (i = 0; i < 4; i++)
  120. isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
  121. for (i = 0; i < 7; i++)
  122. isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
  123. }
  124. /**
  125. * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
  126. *
  127. * @param[in] ind Array of 7 indexes
  128. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  129. *
  130. */
  131. static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
  132. {
  133. int i;
  134. for (i = 0; i < 9; i++)
  135. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  136. for (i = 0; i < 7; i++)
  137. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  138. for (i = 0; i < 3; i++)
  139. isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
  140. for (i = 0; i < 3; i++)
  141. isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
  142. for (i = 0; i < 3; i++)
  143. isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
  144. for (i = 0; i < 3; i++)
  145. isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
  146. for (i = 0; i < 4; i++)
  147. isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
  148. }
  149. /**
  150. * Apply mean and past ISF values using the prediction factor.
  151. * Updates past ISF vector.
  152. *
  153. * @param[in,out] isf_q Current quantized ISF
  154. * @param[in,out] isf_past Past quantized ISF
  155. *
  156. */
  157. static void isf_add_mean_and_past(float *isf_q, float *isf_past)
  158. {
  159. int i;
  160. float tmp;
  161. for (i = 0; i < LP_ORDER; i++) {
  162. tmp = isf_q[i];
  163. isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
  164. isf_q[i] += PRED_FACTOR * isf_past[i];
  165. isf_past[i] = tmp;
  166. }
  167. }
  168. /**
  169. * Interpolate the fourth ISP vector from current and past frames
  170. * to obtain an ISP vector for each subframe.
  171. *
  172. * @param[in,out] isp_q ISPs for each subframe
  173. * @param[in] isp4_past Past ISP for subframe 4
  174. */
  175. static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
  176. {
  177. int i, k;
  178. for (k = 0; k < 3; k++) {
  179. float c = isfp_inter[k];
  180. for (i = 0; i < LP_ORDER; i++)
  181. isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
  182. }
  183. }
  184. /**
  185. * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
  186. * Calculate integer lag and fractional lag always using 1/4 resolution.
  187. * In 1st and 3rd subframes the index is relative to last subframe integer lag.
  188. *
  189. * @param[out] lag_int Decoded integer pitch lag
  190. * @param[out] lag_frac Decoded fractional pitch lag
  191. * @param[in] pitch_index Adaptive codebook pitch index
  192. * @param[in,out] base_lag_int Base integer lag used in relative subframes
  193. * @param[in] subframe Current subframe index (0 to 3)
  194. */
  195. static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
  196. uint8_t *base_lag_int, int subframe)
  197. {
  198. if (subframe == 0 || subframe == 2) {
  199. if (pitch_index < 376) {
  200. *lag_int = (pitch_index + 137) >> 2;
  201. *lag_frac = pitch_index - (*lag_int << 2) + 136;
  202. } else if (pitch_index < 440) {
  203. *lag_int = (pitch_index + 257 - 376) >> 1;
  204. *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
  205. /* the actual resolution is 1/2 but expressed as 1/4 */
  206. } else {
  207. *lag_int = pitch_index - 280;
  208. *lag_frac = 0;
  209. }
  210. /* minimum lag for next subframe */
  211. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  212. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  213. // XXX: the spec states clearly that *base_lag_int should be
  214. // the nearest integer to *lag_int (minus 8), but the ref code
  215. // actually always uses its floor, I'm following the latter
  216. } else {
  217. *lag_int = (pitch_index + 1) >> 2;
  218. *lag_frac = pitch_index - (*lag_int << 2);
  219. *lag_int += *base_lag_int;
  220. }
  221. }
  222. /**
  223. * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
  224. * The description is analogous to decode_pitch_lag_high, but in 6k60 the
  225. * relative index is used for all subframes except the first.
  226. */
  227. static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
  228. uint8_t *base_lag_int, int subframe, enum Mode mode)
  229. {
  230. if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
  231. if (pitch_index < 116) {
  232. *lag_int = (pitch_index + 69) >> 1;
  233. *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
  234. } else {
  235. *lag_int = pitch_index - 24;
  236. *lag_frac = 0;
  237. }
  238. // XXX: same problem as before
  239. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  240. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  241. } else {
  242. *lag_int = (pitch_index + 1) >> 1;
  243. *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
  244. *lag_int += *base_lag_int;
  245. }
  246. }
  247. /**
  248. * Find the pitch vector by interpolating the past excitation at the
  249. * pitch delay, which is obtained in this function.
  250. *
  251. * @param[in,out] ctx The context
  252. * @param[in] amr_subframe Current subframe data
  253. * @param[in] subframe Current subframe index (0 to 3)
  254. */
  255. static void decode_pitch_vector(AMRWBContext *ctx,
  256. const AMRWBSubFrame *amr_subframe,
  257. const int subframe)
  258. {
  259. int pitch_lag_int, pitch_lag_frac;
  260. int i;
  261. float *exc = ctx->excitation;
  262. enum Mode mode = ctx->fr_cur_mode;
  263. if (mode <= MODE_8k85) {
  264. decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  265. &ctx->base_pitch_lag, subframe, mode);
  266. } else
  267. decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  268. &ctx->base_pitch_lag, subframe);
  269. ctx->pitch_lag_int = pitch_lag_int;
  270. pitch_lag_int += pitch_lag_frac > 0;
  271. /* Calculate the pitch vector by interpolating the past excitation at the
  272. pitch lag using a hamming windowed sinc function */
  273. ff_acelp_interpolatef(exc, exc + 1 - pitch_lag_int,
  274. ac_inter, 4,
  275. pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
  276. LP_ORDER, AMRWB_SFR_SIZE + 1);
  277. /* Check which pitch signal path should be used
  278. * 6k60 and 8k85 modes have the ltp flag set to 0 */
  279. if (amr_subframe->ltp) {
  280. memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
  281. } else {
  282. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  283. ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
  284. 0.18 * exc[i + 1];
  285. memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
  286. }
  287. }
  288. /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
  289. #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
  290. /** Get the bit at specified position */
  291. #define BIT_POS(x, p) (((x) >> (p)) & 1)
  292. /**
  293. * The next six functions decode_[i]p_track decode exactly i pulses
  294. * positions and amplitudes (-1 or 1) in a subframe track using
  295. * an encoded pulse indexing (TS 26.190 section 5.8.2).
  296. *
  297. * The results are given in out[], in which a negative number means
  298. * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
  299. *
  300. * @param[out] out Output buffer (writes i elements)
  301. * @param[in] code Pulse index (no. of bits varies, see below)
  302. * @param[in] m (log2) Number of potential positions
  303. * @param[in] off Offset for decoded positions
  304. */
  305. static inline void decode_1p_track(int *out, int code, int m, int off)
  306. {
  307. int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
  308. out[0] = BIT_POS(code, m) ? -pos : pos;
  309. }
  310. static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
  311. {
  312. int pos0 = BIT_STR(code, m, m) + off;
  313. int pos1 = BIT_STR(code, 0, m) + off;
  314. out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
  315. out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
  316. out[1] = pos0 > pos1 ? -out[1] : out[1];
  317. }
  318. static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
  319. {
  320. int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
  321. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  322. m - 1, off + half_2p);
  323. decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
  324. }
  325. static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
  326. {
  327. int half_4p, subhalf_2p;
  328. int b_offset = 1 << (m - 1);
  329. switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
  330. case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
  331. half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
  332. subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
  333. decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
  334. m - 2, off + half_4p + subhalf_2p);
  335. decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
  336. m - 1, off + half_4p);
  337. break;
  338. case 1: /* 1 pulse in A, 3 pulses in B */
  339. decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
  340. m - 1, off);
  341. decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
  342. m - 1, off + b_offset);
  343. break;
  344. case 2: /* 2 pulses in each half */
  345. decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
  346. m - 1, off);
  347. decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
  348. m - 1, off + b_offset);
  349. break;
  350. case 3: /* 3 pulses in A, 1 pulse in B */
  351. decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
  352. m - 1, off);
  353. decode_1p_track(out + 3, BIT_STR(code, 0, m),
  354. m - 1, off + b_offset);
  355. break;
  356. }
  357. }
  358. static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
  359. {
  360. int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
  361. decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
  362. m - 1, off + half_3p);
  363. decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
  364. }
  365. static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
  366. {
  367. int b_offset = 1 << (m - 1);
  368. /* which half has more pulses in cases 0 to 2 */
  369. int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
  370. int half_other = b_offset - half_more;
  371. switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
  372. case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
  373. decode_1p_track(out, BIT_STR(code, 0, m),
  374. m - 1, off + half_more);
  375. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  376. m - 1, off + half_more);
  377. break;
  378. case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
  379. decode_1p_track(out, BIT_STR(code, 0, m),
  380. m - 1, off + half_other);
  381. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  382. m - 1, off + half_more);
  383. break;
  384. case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
  385. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  386. m - 1, off + half_other);
  387. decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
  388. m - 1, off + half_more);
  389. break;
  390. case 3: /* 3 pulses in A, 3 pulses in B */
  391. decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
  392. m - 1, off);
  393. decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
  394. m - 1, off + b_offset);
  395. break;
  396. }
  397. }
  398. /**
  399. * Decode the algebraic codebook index to pulse positions and signs,
  400. * then construct the algebraic codebook vector.
  401. *
  402. * @param[out] fixed_vector Buffer for the fixed codebook excitation
  403. * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
  404. * @param[in] pulse_lo LSBs part of the pulse index array
  405. * @param[in] mode Mode of the current frame
  406. */
  407. static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
  408. const uint16_t *pulse_lo, const enum Mode mode)
  409. {
  410. /* sig_pos stores for each track the decoded pulse position indexes
  411. * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
  412. int sig_pos[4][6];
  413. int spacing = (mode == MODE_6k60) ? 2 : 4;
  414. int i, j;
  415. switch (mode) {
  416. case MODE_6k60:
  417. for (i = 0; i < 2; i++)
  418. decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
  419. break;
  420. case MODE_8k85:
  421. for (i = 0; i < 4; i++)
  422. decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
  423. break;
  424. case MODE_12k65:
  425. for (i = 0; i < 4; i++)
  426. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  427. break;
  428. case MODE_14k25:
  429. for (i = 0; i < 2; i++)
  430. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  431. for (i = 2; i < 4; i++)
  432. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  433. break;
  434. case MODE_15k85:
  435. for (i = 0; i < 4; i++)
  436. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  437. break;
  438. case MODE_18k25:
  439. for (i = 0; i < 4; i++)
  440. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  441. ((int) pulse_hi[i] << 14), 4, 1);
  442. break;
  443. case MODE_19k85:
  444. for (i = 0; i < 2; i++)
  445. decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
  446. ((int) pulse_hi[i] << 10), 4, 1);
  447. for (i = 2; i < 4; i++)
  448. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  449. ((int) pulse_hi[i] << 14), 4, 1);
  450. break;
  451. case MODE_23k05:
  452. case MODE_23k85:
  453. for (i = 0; i < 4; i++)
  454. decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
  455. ((int) pulse_hi[i] << 11), 4, 1);
  456. break;
  457. }
  458. memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
  459. for (i = 0; i < 4; i++)
  460. for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
  461. int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
  462. fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
  463. }
  464. }
  465. /**
  466. * Decode pitch gain and fixed gain correction factor.
  467. *
  468. * @param[in] vq_gain Vector-quantized index for gains
  469. * @param[in] mode Mode of the current frame
  470. * @param[out] fixed_gain_factor Decoded fixed gain correction factor
  471. * @param[out] pitch_gain Decoded pitch gain
  472. */
  473. static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
  474. float *fixed_gain_factor, float *pitch_gain)
  475. {
  476. const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
  477. qua_gain_7b[vq_gain]);
  478. *pitch_gain = gains[0] * (1.0f / (1 << 14));
  479. *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
  480. }
  481. /**
  482. * Apply pitch sharpening filters to the fixed codebook vector.
  483. *
  484. * @param[in] ctx The context
  485. * @param[in,out] fixed_vector Fixed codebook excitation
  486. */
  487. // XXX: Spec states this procedure should be applied when the pitch
  488. // lag is less than 64, but this checking seems absent in reference and AMR-NB
  489. static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
  490. {
  491. int i;
  492. /* Tilt part */
  493. for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
  494. fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
  495. /* Periodicity enhancement part */
  496. for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
  497. fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
  498. }
  499. /**
  500. * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
  501. *
  502. * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
  503. * @param[in] p_gain, f_gain Pitch and fixed gains
  504. */
  505. // XXX: There is something wrong with the precision here! The magnitudes
  506. // of the energies are not correct. Please check the reference code carefully
  507. static float voice_factor(float *p_vector, float p_gain,
  508. float *f_vector, float f_gain)
  509. {
  510. double p_ener = (double) ff_scalarproduct_float_c(p_vector, p_vector,
  511. AMRWB_SFR_SIZE) *
  512. p_gain * p_gain;
  513. double f_ener = (double) ff_scalarproduct_float_c(f_vector, f_vector,
  514. AMRWB_SFR_SIZE) *
  515. f_gain * f_gain;
  516. return (p_ener - f_ener) / (p_ener + f_ener);
  517. }
  518. /**
  519. * Reduce fixed vector sparseness by smoothing with one of three IR filters,
  520. * also known as "adaptive phase dispersion".
  521. *
  522. * @param[in] ctx The context
  523. * @param[in,out] fixed_vector Unfiltered fixed vector
  524. * @param[out] buf Space for modified vector if necessary
  525. *
  526. * @return The potentially overwritten filtered fixed vector address
  527. */
  528. static float *anti_sparseness(AMRWBContext *ctx,
  529. float *fixed_vector, float *buf)
  530. {
  531. int ir_filter_nr;
  532. if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
  533. return fixed_vector;
  534. if (ctx->pitch_gain[0] < 0.6) {
  535. ir_filter_nr = 0; // strong filtering
  536. } else if (ctx->pitch_gain[0] < 0.9) {
  537. ir_filter_nr = 1; // medium filtering
  538. } else
  539. ir_filter_nr = 2; // no filtering
  540. /* detect 'onset' */
  541. if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
  542. if (ir_filter_nr < 2)
  543. ir_filter_nr++;
  544. } else {
  545. int i, count = 0;
  546. for (i = 0; i < 6; i++)
  547. if (ctx->pitch_gain[i] < 0.6)
  548. count++;
  549. if (count > 2)
  550. ir_filter_nr = 0;
  551. if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
  552. ir_filter_nr--;
  553. }
  554. /* update ir filter strength history */
  555. ctx->prev_ir_filter_nr = ir_filter_nr;
  556. ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
  557. if (ir_filter_nr < 2) {
  558. int i;
  559. const float *coef = ir_filters_lookup[ir_filter_nr];
  560. /* Circular convolution code in the reference
  561. * decoder was modified to avoid using one
  562. * extra array. The filtered vector is given by:
  563. *
  564. * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
  565. */
  566. memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
  567. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  568. if (fixed_vector[i])
  569. ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
  570. AMRWB_SFR_SIZE);
  571. fixed_vector = buf;
  572. }
  573. return fixed_vector;
  574. }
  575. /**
  576. * Calculate a stability factor {teta} based on distance between
  577. * current and past isf. A value of 1 shows maximum signal stability.
  578. */
  579. static float stability_factor(const float *isf, const float *isf_past)
  580. {
  581. int i;
  582. float acc = 0.0;
  583. for (i = 0; i < LP_ORDER - 1; i++)
  584. acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
  585. // XXX: This part is not so clear from the reference code
  586. // the result is more accurate changing the "/ 256" to "* 512"
  587. return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
  588. }
  589. /**
  590. * Apply a non-linear fixed gain smoothing in order to reduce
  591. * fluctuation in the energy of excitation.
  592. *
  593. * @param[in] fixed_gain Unsmoothed fixed gain
  594. * @param[in,out] prev_tr_gain Previous threshold gain (updated)
  595. * @param[in] voice_fac Frame voicing factor
  596. * @param[in] stab_fac Frame stability factor
  597. *
  598. * @return The smoothed gain
  599. */
  600. static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
  601. float voice_fac, float stab_fac)
  602. {
  603. float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
  604. float g0;
  605. // XXX: the following fixed-point constants used to in(de)crement
  606. // gain by 1.5dB were taken from the reference code, maybe it could
  607. // be simpler
  608. if (fixed_gain < *prev_tr_gain) {
  609. g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
  610. (6226 * (1.0f / (1 << 15)))); // +1.5 dB
  611. } else
  612. g0 = FFMAX(*prev_tr_gain, fixed_gain *
  613. (27536 * (1.0f / (1 << 15)))); // -1.5 dB
  614. *prev_tr_gain = g0; // update next frame threshold
  615. return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
  616. }
  617. /**
  618. * Filter the fixed_vector to emphasize the higher frequencies.
  619. *
  620. * @param[in,out] fixed_vector Fixed codebook vector
  621. * @param[in] voice_fac Frame voicing factor
  622. */
  623. static void pitch_enhancer(float *fixed_vector, float voice_fac)
  624. {
  625. int i;
  626. float cpe = 0.125 * (1 + voice_fac);
  627. float last = fixed_vector[0]; // holds c(i - 1)
  628. fixed_vector[0] -= cpe * fixed_vector[1];
  629. for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
  630. float cur = fixed_vector[i];
  631. fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
  632. last = cur;
  633. }
  634. fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
  635. }
  636. /**
  637. * Conduct 16th order linear predictive coding synthesis from excitation.
  638. *
  639. * @param[in] ctx Pointer to the AMRWBContext
  640. * @param[in] lpc Pointer to the LPC coefficients
  641. * @param[out] excitation Buffer for synthesis final excitation
  642. * @param[in] fixed_gain Fixed codebook gain for synthesis
  643. * @param[in] fixed_vector Algebraic codebook vector
  644. * @param[in,out] samples Pointer to the output samples and memory
  645. */
  646. static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
  647. float fixed_gain, const float *fixed_vector,
  648. float *samples)
  649. {
  650. ff_weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
  651. ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
  652. /* emphasize pitch vector contribution in low bitrate modes */
  653. if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
  654. int i;
  655. float energy = ff_scalarproduct_float_c(excitation, excitation,
  656. AMRWB_SFR_SIZE);
  657. // XXX: Weird part in both ref code and spec. A unknown parameter
  658. // {beta} seems to be identical to the current pitch gain
  659. float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
  660. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  661. excitation[i] += pitch_factor * ctx->pitch_vector[i];
  662. ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
  663. energy, AMRWB_SFR_SIZE);
  664. }
  665. ff_celp_lp_synthesis_filterf(samples, lpc, excitation,
  666. AMRWB_SFR_SIZE, LP_ORDER);
  667. }
  668. /**
  669. * Apply to synthesis a de-emphasis filter of the form:
  670. * H(z) = 1 / (1 - m * z^-1)
  671. *
  672. * @param[out] out Output buffer
  673. * @param[in] in Input samples array with in[-1]
  674. * @param[in] m Filter coefficient
  675. * @param[in,out] mem State from last filtering
  676. */
  677. static void de_emphasis(float *out, float *in, float m, float mem[1])
  678. {
  679. int i;
  680. out[0] = in[0] + m * mem[0];
  681. for (i = 1; i < AMRWB_SFR_SIZE; i++)
  682. out[i] = in[i] + out[i - 1] * m;
  683. mem[0] = out[AMRWB_SFR_SIZE - 1];
  684. }
  685. /**
  686. * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
  687. * a FIR interpolation filter. Uses past data from before *in address.
  688. *
  689. * @param[out] out Buffer for interpolated signal
  690. * @param[in] in Current signal data (length 0.8*o_size)
  691. * @param[in] o_size Output signal length
  692. */
  693. static void upsample_5_4(float *out, const float *in, int o_size)
  694. {
  695. const float *in0 = in - UPS_FIR_SIZE + 1;
  696. int i, j, k;
  697. int int_part = 0, frac_part;
  698. i = 0;
  699. for (j = 0; j < o_size / 5; j++) {
  700. out[i] = in[int_part];
  701. frac_part = 4;
  702. i++;
  703. for (k = 1; k < 5; k++) {
  704. out[i] = ff_scalarproduct_float_c(in0 + int_part,
  705. upsample_fir[4 - frac_part],
  706. UPS_MEM_SIZE);
  707. int_part++;
  708. frac_part--;
  709. i++;
  710. }
  711. }
  712. }
  713. /**
  714. * Calculate the high-band gain based on encoded index (23k85 mode) or
  715. * on the low-band speech signal and the Voice Activity Detection flag.
  716. *
  717. * @param[in] ctx The context
  718. * @param[in] synth LB speech synthesis at 12.8k
  719. * @param[in] hb_idx Gain index for mode 23k85 only
  720. * @param[in] vad VAD flag for the frame
  721. */
  722. static float find_hb_gain(AMRWBContext *ctx, const float *synth,
  723. uint16_t hb_idx, uint8_t vad)
  724. {
  725. int wsp = (vad > 0);
  726. float tilt;
  727. if (ctx->fr_cur_mode == MODE_23k85)
  728. return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
  729. tilt = ff_scalarproduct_float_c(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
  730. ff_scalarproduct_float_c(synth, synth, AMRWB_SFR_SIZE);
  731. /* return gain bounded by [0.1, 1.0] */
  732. return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
  733. }
  734. /**
  735. * Generate the high-band excitation with the same energy from the lower
  736. * one and scaled by the given gain.
  737. *
  738. * @param[in] ctx The context
  739. * @param[out] hb_exc Buffer for the excitation
  740. * @param[in] synth_exc Low-band excitation used for synthesis
  741. * @param[in] hb_gain Wanted excitation gain
  742. */
  743. static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
  744. const float *synth_exc, float hb_gain)
  745. {
  746. int i;
  747. float energy = ff_scalarproduct_float_c(synth_exc, synth_exc, AMRWB_SFR_SIZE);
  748. /* Generate a white-noise excitation */
  749. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  750. hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
  751. ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
  752. energy * hb_gain * hb_gain,
  753. AMRWB_SFR_SIZE_16k);
  754. }
  755. /**
  756. * Calculate the auto-correlation for the ISF difference vector.
  757. */
  758. static float auto_correlation(float *diff_isf, float mean, int lag)
  759. {
  760. int i;
  761. float sum = 0.0;
  762. for (i = 7; i < LP_ORDER - 2; i++) {
  763. float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
  764. sum += prod * prod;
  765. }
  766. return sum;
  767. }
  768. /**
  769. * Extrapolate a ISF vector to the 16kHz range (20th order LP)
  770. * used at mode 6k60 LP filter for the high frequency band.
  771. *
  772. * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
  773. * values on input
  774. */
  775. static void extrapolate_isf(float isf[LP_ORDER_16k])
  776. {
  777. float diff_isf[LP_ORDER - 2], diff_mean;
  778. float *diff_hi = diff_isf - LP_ORDER + 1; // diff array for extrapolated indexes
  779. float corr_lag[3];
  780. float est, scale;
  781. int i, i_max_corr;
  782. isf[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
  783. /* Calculate the difference vector */
  784. for (i = 0; i < LP_ORDER - 2; i++)
  785. diff_isf[i] = isf[i + 1] - isf[i];
  786. diff_mean = 0.0;
  787. for (i = 2; i < LP_ORDER - 2; i++)
  788. diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
  789. /* Find which is the maximum autocorrelation */
  790. i_max_corr = 0;
  791. for (i = 0; i < 3; i++) {
  792. corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
  793. if (corr_lag[i] > corr_lag[i_max_corr])
  794. i_max_corr = i;
  795. }
  796. i_max_corr++;
  797. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  798. isf[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
  799. - isf[i - 2 - i_max_corr];
  800. /* Calculate an estimate for ISF(18) and scale ISF based on the error */
  801. est = 7965 + (isf[2] - isf[3] - isf[4]) / 6.0;
  802. scale = 0.5 * (FFMIN(est, 7600) - isf[LP_ORDER - 2]) /
  803. (isf[LP_ORDER_16k - 2] - isf[LP_ORDER - 2]);
  804. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  805. diff_hi[i] = scale * (isf[i] - isf[i - 1]);
  806. /* Stability insurance */
  807. for (i = LP_ORDER; i < LP_ORDER_16k - 1; i++)
  808. if (diff_hi[i] + diff_hi[i - 1] < 5.0) {
  809. if (diff_hi[i] > diff_hi[i - 1]) {
  810. diff_hi[i - 1] = 5.0 - diff_hi[i];
  811. } else
  812. diff_hi[i] = 5.0 - diff_hi[i - 1];
  813. }
  814. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  815. isf[i] = isf[i - 1] + diff_hi[i] * (1.0f / (1 << 15));
  816. /* Scale the ISF vector for 16000 Hz */
  817. for (i = 0; i < LP_ORDER_16k - 1; i++)
  818. isf[i] *= 0.8;
  819. }
  820. /**
  821. * Spectral expand the LP coefficients using the equation:
  822. * y[i] = x[i] * (gamma ** i)
  823. *
  824. * @param[out] out Output buffer (may use input array)
  825. * @param[in] lpc LP coefficients array
  826. * @param[in] gamma Weighting factor
  827. * @param[in] size LP array size
  828. */
  829. static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
  830. {
  831. int i;
  832. float fac = gamma;
  833. for (i = 0; i < size; i++) {
  834. out[i] = lpc[i] * fac;
  835. fac *= gamma;
  836. }
  837. }
  838. /**
  839. * Conduct 20th order linear predictive coding synthesis for the high
  840. * frequency band excitation at 16kHz.
  841. *
  842. * @param[in] ctx The context
  843. * @param[in] subframe Current subframe index (0 to 3)
  844. * @param[in,out] samples Pointer to the output speech samples
  845. * @param[in] exc Generated white-noise scaled excitation
  846. * @param[in] isf Current frame isf vector
  847. * @param[in] isf_past Past frame final isf vector
  848. */
  849. static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
  850. const float *exc, const float *isf, const float *isf_past)
  851. {
  852. float hb_lpc[LP_ORDER_16k];
  853. enum Mode mode = ctx->fr_cur_mode;
  854. if (mode == MODE_6k60) {
  855. float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
  856. double e_isp[LP_ORDER_16k];
  857. ff_weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
  858. 1.0 - isfp_inter[subframe], LP_ORDER);
  859. extrapolate_isf(e_isf);
  860. e_isf[LP_ORDER_16k - 1] *= 2.0;
  861. ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
  862. ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
  863. lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
  864. } else {
  865. lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
  866. }
  867. ff_celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
  868. (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
  869. }
  870. /**
  871. * Apply a 15th order filter to high-band samples.
  872. * The filter characteristic depends on the given coefficients.
  873. *
  874. * @param[out] out Buffer for filtered output
  875. * @param[in] fir_coef Filter coefficients
  876. * @param[in,out] mem State from last filtering (updated)
  877. * @param[in] in Input speech data (high-band)
  878. *
  879. * @remark It is safe to pass the same array in in and out parameters
  880. */
  881. static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
  882. float mem[HB_FIR_SIZE], const float *in)
  883. {
  884. int i, j;
  885. float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
  886. memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
  887. memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
  888. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
  889. out[i] = 0.0;
  890. for (j = 0; j <= HB_FIR_SIZE; j++)
  891. out[i] += data[i + j] * fir_coef[j];
  892. }
  893. memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
  894. }
  895. /**
  896. * Update context state before the next subframe.
  897. */
  898. static void update_sub_state(AMRWBContext *ctx)
  899. {
  900. memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
  901. (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
  902. memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
  903. memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
  904. memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
  905. LP_ORDER * sizeof(float));
  906. memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
  907. UPS_MEM_SIZE * sizeof(float));
  908. memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
  909. LP_ORDER_16k * sizeof(float));
  910. }
  911. static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
  912. int *got_frame_ptr, AVPacket *avpkt)
  913. {
  914. AMRWBContext *ctx = avctx->priv_data;
  915. AMRWBFrame *cf = &ctx->frame;
  916. const uint8_t *buf = avpkt->data;
  917. int buf_size = avpkt->size;
  918. int expected_fr_size, header_size;
  919. float *buf_out;
  920. float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
  921. float fixed_gain_factor; // fixed gain correction factor (gamma)
  922. float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  923. float synth_fixed_gain; // the fixed gain that synthesis should use
  924. float voice_fac, stab_fac; // parameters used for gain smoothing
  925. float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
  926. float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
  927. float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
  928. float hb_gain;
  929. int sub, i, ret;
  930. /* get output buffer */
  931. ctx->avframe.nb_samples = 4 * AMRWB_SFR_SIZE_16k;
  932. if ((ret = avctx->get_buffer(avctx, &ctx->avframe)) < 0) {
  933. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  934. return ret;
  935. }
  936. buf_out = (float *)ctx->avframe.data[0];
  937. header_size = decode_mime_header(ctx, buf);
  938. if (ctx->fr_cur_mode > MODE_SID) {
  939. av_log(avctx, AV_LOG_ERROR,
  940. "Invalid mode %d\n", ctx->fr_cur_mode);
  941. return AVERROR_INVALIDDATA;
  942. }
  943. expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
  944. if (buf_size < expected_fr_size) {
  945. av_log(avctx, AV_LOG_ERROR,
  946. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  947. *got_frame_ptr = 0;
  948. return AVERROR_INVALIDDATA;
  949. }
  950. if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
  951. av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
  952. if (ctx->fr_cur_mode == MODE_SID) { /* Comfort noise frame */
  953. av_log_missing_feature(avctx, "SID mode", 1);
  954. return AVERROR_PATCHWELCOME;
  955. }
  956. ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
  957. buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
  958. /* Decode the quantized ISF vector */
  959. if (ctx->fr_cur_mode == MODE_6k60) {
  960. decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
  961. } else {
  962. decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
  963. }
  964. isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
  965. ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
  966. stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
  967. ctx->isf_cur[LP_ORDER - 1] *= 2.0;
  968. ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
  969. /* Generate a ISP vector for each subframe */
  970. if (ctx->first_frame) {
  971. ctx->first_frame = 0;
  972. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
  973. }
  974. interpolate_isp(ctx->isp, ctx->isp_sub4_past);
  975. for (sub = 0; sub < 4; sub++)
  976. ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
  977. for (sub = 0; sub < 4; sub++) {
  978. const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
  979. float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
  980. /* Decode adaptive codebook (pitch vector) */
  981. decode_pitch_vector(ctx, cur_subframe, sub);
  982. /* Decode innovative codebook (fixed vector) */
  983. decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
  984. cur_subframe->pul_il, ctx->fr_cur_mode);
  985. pitch_sharpening(ctx, ctx->fixed_vector);
  986. decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
  987. &fixed_gain_factor, &ctx->pitch_gain[0]);
  988. ctx->fixed_gain[0] =
  989. ff_amr_set_fixed_gain(fixed_gain_factor,
  990. ff_scalarproduct_float_c(ctx->fixed_vector,
  991. ctx->fixed_vector,
  992. AMRWB_SFR_SIZE) /
  993. AMRWB_SFR_SIZE,
  994. ctx->prediction_error,
  995. ENERGY_MEAN, energy_pred_fac);
  996. /* Calculate voice factor and store tilt for next subframe */
  997. voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
  998. ctx->fixed_vector, ctx->fixed_gain[0]);
  999. ctx->tilt_coef = voice_fac * 0.25 + 0.25;
  1000. /* Construct current excitation */
  1001. for (i = 0; i < AMRWB_SFR_SIZE; i++) {
  1002. ctx->excitation[i] *= ctx->pitch_gain[0];
  1003. ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
  1004. ctx->excitation[i] = truncf(ctx->excitation[i]);
  1005. }
  1006. /* Post-processing of excitation elements */
  1007. synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
  1008. voice_fac, stab_fac);
  1009. synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
  1010. spare_vector);
  1011. pitch_enhancer(synth_fixed_vector, voice_fac);
  1012. synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
  1013. synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
  1014. /* Synthesis speech post-processing */
  1015. de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
  1016. &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
  1017. ff_acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
  1018. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
  1019. hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
  1020. upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
  1021. AMRWB_SFR_SIZE_16k);
  1022. /* High frequency band (6.4 - 7.0 kHz) generation part */
  1023. ff_acelp_apply_order_2_transfer_function(hb_samples,
  1024. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
  1025. hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
  1026. hb_gain = find_hb_gain(ctx, hb_samples,
  1027. cur_subframe->hb_gain, cf->vad);
  1028. scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
  1029. hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
  1030. hb_exc, ctx->isf_cur, ctx->isf_past_final);
  1031. /* High-band post-processing filters */
  1032. hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
  1033. &ctx->samples_hb[LP_ORDER_16k]);
  1034. if (ctx->fr_cur_mode == MODE_23k85)
  1035. hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
  1036. hb_samples);
  1037. /* Add the low and high frequency bands */
  1038. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  1039. sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
  1040. /* Update buffers and history */
  1041. update_sub_state(ctx);
  1042. }
  1043. /* update state for next frame */
  1044. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
  1045. memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
  1046. *got_frame_ptr = 1;
  1047. *(AVFrame *)data = ctx->avframe;
  1048. return expected_fr_size;
  1049. }
  1050. AVCodec ff_amrwb_decoder = {
  1051. .name = "amrwb",
  1052. .type = AVMEDIA_TYPE_AUDIO,
  1053. .id = AV_CODEC_ID_AMR_WB,
  1054. .priv_data_size = sizeof(AMRWBContext),
  1055. .init = amrwb_decode_init,
  1056. .decode = amrwb_decode_frame,
  1057. .capabilities = CODEC_CAP_DR1,
  1058. .long_name = NULL_IF_CONFIG_SMALL("AMR-WB (Adaptive Multi-Rate WideBand)"),
  1059. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  1060. AV_SAMPLE_FMT_NONE },
  1061. };