You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1037 lines
36KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  26. #include "libavutil/attributes.h"
  27. #include "libavutil/internal.h"
  28. #include "libavutil/opt.h"
  29. #include "libavutil/timer.h"
  30. #include "avcodec.h"
  31. #include "dsputil.h"
  32. #include "internal.h"
  33. #include "mpegvideo.h"
  34. #include "dnxhdenc.h"
  35. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  36. #define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
  37. static const AVOption options[]={
  38. {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, VE},
  39. {NULL}
  40. };
  41. static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT };
  42. #define LAMBDA_FRAC_BITS 10
  43. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block, const uint8_t *pixels, int line_size)
  44. {
  45. int i;
  46. for (i = 0; i < 4; i++) {
  47. block[0] = pixels[0]; block[1] = pixels[1];
  48. block[2] = pixels[2]; block[3] = pixels[3];
  49. block[4] = pixels[4]; block[5] = pixels[5];
  50. block[6] = pixels[6]; block[7] = pixels[7];
  51. pixels += line_size;
  52. block += 8;
  53. }
  54. memcpy(block, block - 8, sizeof(*block) * 8);
  55. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  56. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  57. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  58. }
  59. static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block, const uint8_t *pixels, int line_size)
  60. {
  61. int i;
  62. block += 32;
  63. for (i = 0; i < 4; i++) {
  64. memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
  65. memcpy(block - (i+1) * 8, pixels + i * line_size, 8 * sizeof(*block));
  66. }
  67. }
  68. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  69. int n, int qscale, int *overflow)
  70. {
  71. const uint8_t *scantable= ctx->intra_scantable.scantable;
  72. const int *qmat = ctx->q_intra_matrix[qscale];
  73. int last_non_zero = 0;
  74. int i;
  75. ctx->dsp.fdct(block);
  76. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  77. block[0] = (block[0] + 2) >> 2;
  78. for (i = 1; i < 64; ++i) {
  79. int j = scantable[i];
  80. int sign = block[j] >> 31;
  81. int level = (block[j] ^ sign) - sign;
  82. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  83. block[j] = (level ^ sign) - sign;
  84. if (level)
  85. last_non_zero = i;
  86. }
  87. return last_non_zero;
  88. }
  89. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  90. {
  91. int i, j, level, run;
  92. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  93. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
  94. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail);
  95. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail);
  96. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail);
  97. ctx->vlc_codes += max_level*2;
  98. ctx->vlc_bits += max_level*2;
  99. for (level = -max_level; level < max_level; level++) {
  100. for (run = 0; run < 2; run++) {
  101. int index = (level<<1)|run;
  102. int sign, offset = 0, alevel = level;
  103. MASK_ABS(sign, alevel);
  104. if (alevel > 64) {
  105. offset = (alevel-1)>>6;
  106. alevel -= offset<<6;
  107. }
  108. for (j = 0; j < 257; j++) {
  109. if (ctx->cid_table->ac_level[j] == alevel &&
  110. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  111. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  112. assert(!ctx->vlc_codes[index]);
  113. if (alevel) {
  114. ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
  115. ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
  116. } else {
  117. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  118. ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
  119. }
  120. break;
  121. }
  122. }
  123. assert(!alevel || j < 257);
  124. if (offset) {
  125. ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
  126. ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
  127. }
  128. }
  129. }
  130. for (i = 0; i < 62; i++) {
  131. int run = ctx->cid_table->run[i];
  132. assert(run < 63);
  133. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  134. ctx->run_bits [run] = ctx->cid_table->run_bits[i];
  135. }
  136. return 0;
  137. fail:
  138. return -1;
  139. }
  140. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  141. {
  142. // init first elem to 1 to avoid div by 0 in convert_matrix
  143. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  144. int qscale, i;
  145. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  146. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  147. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  148. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  149. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  150. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  151. if (ctx->cid_table->bit_depth == 8) {
  152. for (i = 1; i < 64; i++) {
  153. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  154. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  155. }
  156. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  157. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  158. for (i = 1; i < 64; i++) {
  159. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  160. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  161. }
  162. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  163. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  164. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  165. for (i = 0; i < 64; i++) {
  166. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  167. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  168. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  169. }
  170. }
  171. } else {
  172. // 10-bit
  173. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  174. for (i = 1; i < 64; i++) {
  175. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  176. // The quantization formula from the VC-3 standard is:
  177. // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
  178. // Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  179. // The s factor compensates scaling of DCT coefficients done by the DCT routines,
  180. // and therefore is not present in standard. It's 8 for 8-bit samples and 4 for 10-bit ones.
  181. // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  182. // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
  183. // For 10-bit samples, p / s == 2
  184. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
  185. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
  186. }
  187. }
  188. }
  189. return 0;
  190. fail:
  191. return -1;
  192. }
  193. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  194. {
  195. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
  196. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  197. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
  198. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
  199. ctx->qscale = 1;
  200. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  201. return 0;
  202. fail:
  203. return -1;
  204. }
  205. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  206. {
  207. DNXHDEncContext *ctx = avctx->priv_data;
  208. int i, index, bit_depth;
  209. switch (avctx->pix_fmt) {
  210. case AV_PIX_FMT_YUV422P:
  211. bit_depth = 8;
  212. break;
  213. case AV_PIX_FMT_YUV422P10:
  214. bit_depth = 10;
  215. break;
  216. default:
  217. av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
  218. return -1;
  219. }
  220. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  221. if (!ctx->cid) {
  222. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
  223. return -1;
  224. }
  225. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  226. index = ff_dnxhd_get_cid_table(ctx->cid);
  227. ctx->cid_table = &ff_dnxhd_cid_table[index];
  228. ctx->m.avctx = avctx;
  229. ctx->m.mb_intra = 1;
  230. ctx->m.h263_aic = 1;
  231. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  232. ff_dsputil_init(&ctx->m.dsp, avctx);
  233. ff_dct_common_init(&ctx->m);
  234. if (!ctx->m.dct_quantize)
  235. ctx->m.dct_quantize = ff_dct_quantize_c;
  236. if (ctx->cid_table->bit_depth == 10) {
  237. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  238. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  239. ctx->block_width_l2 = 4;
  240. } else {
  241. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  242. ctx->block_width_l2 = 3;
  243. }
  244. if (ARCH_X86)
  245. ff_dnxhdenc_init_x86(ctx);
  246. ctx->m.mb_height = (avctx->height + 15) / 16;
  247. ctx->m.mb_width = (avctx->width + 15) / 16;
  248. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  249. ctx->interlaced = 1;
  250. ctx->m.mb_height /= 2;
  251. }
  252. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  253. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  254. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  255. if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
  256. return -1;
  257. // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
  258. if (ctx->nitris_compat)
  259. ctx->min_padding = 1600;
  260. if (dnxhd_init_vlc(ctx) < 0)
  261. return -1;
  262. if (dnxhd_init_rc(ctx) < 0)
  263. return -1;
  264. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
  265. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
  266. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
  267. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail);
  268. avctx->coded_frame = av_frame_alloc();
  269. if (!avctx->coded_frame)
  270. return AVERROR(ENOMEM);
  271. avctx->coded_frame->key_frame = 1;
  272. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  273. if (avctx->thread_count > MAX_THREADS) {
  274. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  275. return -1;
  276. }
  277. ctx->thread[0] = ctx;
  278. for (i = 1; i < avctx->thread_count; i++) {
  279. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  280. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  281. }
  282. return 0;
  283. fail: //for FF_ALLOCZ_OR_GOTO
  284. return -1;
  285. }
  286. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  287. {
  288. DNXHDEncContext *ctx = avctx->priv_data;
  289. const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  290. memset(buf, 0, 640);
  291. memcpy(buf, header_prefix, 5);
  292. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  293. buf[6] = 0x80; // crc flag off
  294. buf[7] = 0xa0; // reserved
  295. AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
  296. AV_WB16(buf + 0x1a, avctx->width); // SPL
  297. AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
  298. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  299. buf[0x22] = 0x88 + (ctx->interlaced<<2);
  300. AV_WB32(buf + 0x28, ctx->cid); // CID
  301. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  302. buf[0x5f] = 0x01; // UDL
  303. buf[0x167] = 0x02; // reserved
  304. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  305. buf[0x16d] = ctx->m.mb_height; // Ns
  306. buf[0x16f] = 0x10; // reserved
  307. ctx->msip = buf + 0x170;
  308. return 0;
  309. }
  310. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  311. {
  312. int nbits;
  313. if (diff < 0) {
  314. nbits = av_log2_16bit(-2*diff);
  315. diff--;
  316. } else {
  317. nbits = av_log2_16bit(2*diff);
  318. }
  319. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  320. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  321. }
  322. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block, int last_index, int n)
  323. {
  324. int last_non_zero = 0;
  325. int slevel, i, j;
  326. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  327. ctx->m.last_dc[n] = block[0];
  328. for (i = 1; i <= last_index; i++) {
  329. j = ctx->m.intra_scantable.permutated[i];
  330. slevel = block[j];
  331. if (slevel) {
  332. int run_level = i - last_non_zero - 1;
  333. int rlevel = (slevel<<1)|!!run_level;
  334. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  335. if (run_level)
  336. put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
  337. last_non_zero = i;
  338. }
  339. }
  340. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  341. }
  342. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n, int qscale, int last_index)
  343. {
  344. const uint8_t *weight_matrix;
  345. int level;
  346. int i;
  347. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  348. for (i = 1; i <= last_index; i++) {
  349. int j = ctx->m.intra_scantable.permutated[i];
  350. level = block[j];
  351. if (level) {
  352. if (level < 0) {
  353. level = (1-2*level) * qscale * weight_matrix[i];
  354. if (ctx->cid_table->bit_depth == 10) {
  355. if (weight_matrix[i] != 8)
  356. level += 8;
  357. level >>= 4;
  358. } else {
  359. if (weight_matrix[i] != 32)
  360. level += 32;
  361. level >>= 6;
  362. }
  363. level = -level;
  364. } else {
  365. level = (2*level+1) * qscale * weight_matrix[i];
  366. if (ctx->cid_table->bit_depth == 10) {
  367. if (weight_matrix[i] != 8)
  368. level += 8;
  369. level >>= 4;
  370. } else {
  371. if (weight_matrix[i] != 32)
  372. level += 32;
  373. level >>= 6;
  374. }
  375. }
  376. block[j] = level;
  377. }
  378. }
  379. }
  380. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  381. {
  382. int score = 0;
  383. int i;
  384. for (i = 0; i < 64; i++)
  385. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  386. return score;
  387. }
  388. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  389. {
  390. int last_non_zero = 0;
  391. int bits = 0;
  392. int i, j, level;
  393. for (i = 1; i <= last_index; i++) {
  394. j = ctx->m.intra_scantable.permutated[i];
  395. level = block[j];
  396. if (level) {
  397. int run_level = i - last_non_zero - 1;
  398. bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
  399. last_non_zero = i;
  400. }
  401. }
  402. return bits;
  403. }
  404. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  405. {
  406. const int bs = ctx->block_width_l2;
  407. const int bw = 1 << bs;
  408. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs+1);
  409. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  410. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  411. DSPContext *dsp = &ctx->m.dsp;
  412. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  413. dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  414. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  415. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  416. if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  417. if (ctx->interlaced) {
  418. ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  419. ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  420. ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  421. ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  422. } else {
  423. dsp->clear_block(ctx->blocks[4]);
  424. dsp->clear_block(ctx->blocks[5]);
  425. dsp->clear_block(ctx->blocks[6]);
  426. dsp->clear_block(ctx->blocks[7]);
  427. }
  428. } else {
  429. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  430. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  431. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  432. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  433. }
  434. }
  435. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  436. {
  437. if (i&2) {
  438. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  439. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  440. return 1 + (i&1);
  441. } else {
  442. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  443. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  444. return 0;
  445. }
  446. }
  447. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  448. {
  449. DNXHDEncContext *ctx = avctx->priv_data;
  450. int mb_y = jobnr, mb_x;
  451. int qscale = ctx->qscale;
  452. LOCAL_ALIGNED_16(int16_t, block, [64]);
  453. ctx = ctx->thread[threadnr];
  454. ctx->m.last_dc[0] =
  455. ctx->m.last_dc[1] =
  456. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  457. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  458. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  459. int ssd = 0;
  460. int ac_bits = 0;
  461. int dc_bits = 0;
  462. int i;
  463. dnxhd_get_blocks(ctx, mb_x, mb_y);
  464. for (i = 0; i < 8; i++) {
  465. int16_t *src_block = ctx->blocks[i];
  466. int overflow, nbits, diff, last_index;
  467. int n = dnxhd_switch_matrix(ctx, i);
  468. memcpy(block, src_block, 64*sizeof(*block));
  469. last_index = ctx->m.dct_quantize(&ctx->m, block, i, qscale, &overflow);
  470. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  471. diff = block[0] - ctx->m.last_dc[n];
  472. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  473. else nbits = av_log2_16bit( 2*diff);
  474. assert(nbits < ctx->cid_table->bit_depth + 4);
  475. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  476. ctx->m.last_dc[n] = block[0];
  477. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  478. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  479. ctx->m.dsp.idct(block);
  480. ssd += dnxhd_ssd_block(block, src_block);
  481. }
  482. }
  483. ctx->mb_rc[qscale][mb].ssd = ssd;
  484. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
  485. }
  486. return 0;
  487. }
  488. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  489. {
  490. DNXHDEncContext *ctx = avctx->priv_data;
  491. int mb_y = jobnr, mb_x;
  492. ctx = ctx->thread[threadnr];
  493. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
  494. ctx->m.last_dc[0] =
  495. ctx->m.last_dc[1] =
  496. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  497. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  498. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  499. int qscale = ctx->mb_qscale[mb];
  500. int i;
  501. put_bits(&ctx->m.pb, 12, qscale<<1);
  502. dnxhd_get_blocks(ctx, mb_x, mb_y);
  503. for (i = 0; i < 8; i++) {
  504. int16_t *block = ctx->blocks[i];
  505. int overflow, n = dnxhd_switch_matrix(ctx, i);
  506. int last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  507. qscale, &overflow);
  508. //START_TIMER;
  509. dnxhd_encode_block(ctx, block, last_index, n);
  510. //STOP_TIMER("encode_block");
  511. }
  512. }
  513. if (put_bits_count(&ctx->m.pb)&31)
  514. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  515. flush_put_bits(&ctx->m.pb);
  516. return 0;
  517. }
  518. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  519. {
  520. int mb_y, mb_x;
  521. int offset = 0;
  522. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  523. int thread_size;
  524. ctx->slice_offs[mb_y] = offset;
  525. ctx->slice_size[mb_y] = 0;
  526. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  527. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  528. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  529. }
  530. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  531. ctx->slice_size[mb_y] >>= 3;
  532. thread_size = ctx->slice_size[mb_y];
  533. offset += thread_size;
  534. }
  535. }
  536. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  537. {
  538. DNXHDEncContext *ctx = avctx->priv_data;
  539. int mb_y = jobnr, mb_x, x, y;
  540. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  541. ((avctx->height >> ctx->interlaced) & 0xF);
  542. ctx = ctx->thread[threadnr];
  543. if (ctx->cid_table->bit_depth == 8) {
  544. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
  545. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  546. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  547. int sum;
  548. int varc;
  549. if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
  550. sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  551. varc = ctx->m.dsp.pix_norm1(pix, ctx->m.linesize);
  552. } else {
  553. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  554. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  555. sum = varc = 0;
  556. for (y = 0; y < bh; y++) {
  557. for (x = 0; x < bw; x++) {
  558. uint8_t val = pix[x + y * ctx->m.linesize];
  559. sum += val;
  560. varc += val * val;
  561. }
  562. }
  563. }
  564. varc = (varc - (((unsigned)sum * sum) >> 8) + 128) >> 8;
  565. ctx->mb_cmp[mb].value = varc;
  566. ctx->mb_cmp[mb].mb = mb;
  567. }
  568. } else { // 10-bit
  569. int const linesize = ctx->m.linesize >> 1;
  570. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  571. uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
  572. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  573. int sum = 0;
  574. int sqsum = 0;
  575. int mean, sqmean;
  576. int i, j;
  577. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  578. for (i = 0; i < 16; ++i) {
  579. for (j = 0; j < 16; ++j) {
  580. // Turn 16-bit pixels into 10-bit ones.
  581. int const sample = (unsigned)pix[j] >> 6;
  582. sum += sample;
  583. sqsum += sample * sample;
  584. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  585. }
  586. pix += linesize;
  587. }
  588. mean = sum >> 8; // 16*16 == 2^8
  589. sqmean = sqsum >> 8;
  590. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  591. ctx->mb_cmp[mb].mb = mb;
  592. }
  593. }
  594. return 0;
  595. }
  596. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  597. {
  598. int lambda, up_step, down_step;
  599. int last_lower = INT_MAX, last_higher = 0;
  600. int x, y, q;
  601. for (q = 1; q < avctx->qmax; q++) {
  602. ctx->qscale = q;
  603. avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  604. }
  605. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  606. lambda = ctx->lambda;
  607. for (;;) {
  608. int bits = 0;
  609. int end = 0;
  610. if (lambda == last_higher) {
  611. lambda++;
  612. end = 1; // need to set final qscales/bits
  613. }
  614. for (y = 0; y < ctx->m.mb_height; y++) {
  615. for (x = 0; x < ctx->m.mb_width; x++) {
  616. unsigned min = UINT_MAX;
  617. int qscale = 1;
  618. int mb = y*ctx->m.mb_width+x;
  619. for (q = 1; q < avctx->qmax; q++) {
  620. unsigned score = ctx->mb_rc[q][mb].bits*lambda+
  621. ((unsigned)ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  622. if (score < min) {
  623. min = score;
  624. qscale = q;
  625. }
  626. }
  627. bits += ctx->mb_rc[qscale][mb].bits;
  628. ctx->mb_qscale[mb] = qscale;
  629. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  630. }
  631. bits = (bits+31)&~31; // padding
  632. if (bits > ctx->frame_bits)
  633. break;
  634. }
  635. //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  636. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  637. if (end) {
  638. if (bits > ctx->frame_bits)
  639. return -1;
  640. break;
  641. }
  642. if (bits < ctx->frame_bits) {
  643. last_lower = FFMIN(lambda, last_lower);
  644. if (last_higher != 0)
  645. lambda = (lambda+last_higher)>>1;
  646. else
  647. lambda -= down_step;
  648. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  649. up_step = 1<<LAMBDA_FRAC_BITS;
  650. lambda = FFMAX(1, lambda);
  651. if (lambda == last_lower)
  652. break;
  653. } else {
  654. last_higher = FFMAX(lambda, last_higher);
  655. if (last_lower != INT_MAX)
  656. lambda = (lambda+last_lower)>>1;
  657. else if ((int64_t)lambda + up_step > INT_MAX)
  658. return -1;
  659. else
  660. lambda += up_step;
  661. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  662. down_step = 1<<LAMBDA_FRAC_BITS;
  663. }
  664. }
  665. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  666. ctx->lambda = lambda;
  667. return 0;
  668. }
  669. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  670. {
  671. int bits = 0;
  672. int up_step = 1;
  673. int down_step = 1;
  674. int last_higher = 0;
  675. int last_lower = INT_MAX;
  676. int qscale;
  677. int x, y;
  678. qscale = ctx->qscale;
  679. for (;;) {
  680. bits = 0;
  681. ctx->qscale = qscale;
  682. // XXX avoid recalculating bits
  683. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  684. for (y = 0; y < ctx->m.mb_height; y++) {
  685. for (x = 0; x < ctx->m.mb_width; x++)
  686. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  687. bits = (bits+31)&~31; // padding
  688. if (bits > ctx->frame_bits)
  689. break;
  690. }
  691. //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  692. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  693. if (bits < ctx->frame_bits) {
  694. if (qscale == 1)
  695. return 1;
  696. if (last_higher == qscale - 1) {
  697. qscale = last_higher;
  698. break;
  699. }
  700. last_lower = FFMIN(qscale, last_lower);
  701. if (last_higher != 0)
  702. qscale = (qscale+last_higher)>>1;
  703. else
  704. qscale -= down_step++;
  705. if (qscale < 1)
  706. qscale = 1;
  707. up_step = 1;
  708. } else {
  709. if (last_lower == qscale + 1)
  710. break;
  711. last_higher = FFMAX(qscale, last_higher);
  712. if (last_lower != INT_MAX)
  713. qscale = (qscale+last_lower)>>1;
  714. else
  715. qscale += up_step++;
  716. down_step = 1;
  717. if (qscale >= ctx->m.avctx->qmax)
  718. return -1;
  719. }
  720. }
  721. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  722. ctx->qscale = qscale;
  723. return 0;
  724. }
  725. #define BUCKET_BITS 8
  726. #define RADIX_PASSES 4
  727. #define NBUCKETS (1 << BUCKET_BITS)
  728. static inline int get_bucket(int value, int shift)
  729. {
  730. value >>= shift;
  731. value &= NBUCKETS - 1;
  732. return NBUCKETS - 1 - value;
  733. }
  734. static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
  735. {
  736. int i, j;
  737. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  738. for (i = 0; i < size; i++) {
  739. int v = data[i].value;
  740. for (j = 0; j < RADIX_PASSES; j++) {
  741. buckets[j][get_bucket(v, 0)]++;
  742. v >>= BUCKET_BITS;
  743. }
  744. assert(!v);
  745. }
  746. for (j = 0; j < RADIX_PASSES; j++) {
  747. int offset = size;
  748. for (i = NBUCKETS - 1; i >= 0; i--)
  749. buckets[j][i] = offset -= buckets[j][i];
  750. assert(!buckets[j][0]);
  751. }
  752. }
  753. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
  754. {
  755. int shift = pass * BUCKET_BITS;
  756. int i;
  757. for (i = 0; i < size; i++) {
  758. int v = get_bucket(data[i].value, shift);
  759. int pos = buckets[v]++;
  760. dst[pos] = data[i];
  761. }
  762. }
  763. static void radix_sort(RCCMPEntry *data, int size)
  764. {
  765. int buckets[RADIX_PASSES][NBUCKETS];
  766. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  767. radix_count(data, size, buckets);
  768. radix_sort_pass(tmp, data, size, buckets[0], 0);
  769. radix_sort_pass(data, tmp, size, buckets[1], 1);
  770. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  771. radix_sort_pass(tmp, data, size, buckets[2], 2);
  772. radix_sort_pass(data, tmp, size, buckets[3], 3);
  773. }
  774. av_free(tmp);
  775. }
  776. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  777. {
  778. int max_bits = 0;
  779. int ret, x, y;
  780. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  781. return -1;
  782. for (y = 0; y < ctx->m.mb_height; y++) {
  783. for (x = 0; x < ctx->m.mb_width; x++) {
  784. int mb = y*ctx->m.mb_width+x;
  785. int delta_bits;
  786. ctx->mb_qscale[mb] = ctx->qscale;
  787. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  788. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  789. if (!RC_VARIANCE) {
  790. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  791. ctx->mb_cmp[mb].mb = mb;
  792. ctx->mb_cmp[mb].value = delta_bits ?
  793. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  794. : INT_MIN; //avoid increasing qscale
  795. }
  796. }
  797. max_bits += 31; //worst padding
  798. }
  799. if (!ret) {
  800. if (RC_VARIANCE)
  801. avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
  802. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  803. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  804. int mb = ctx->mb_cmp[x].mb;
  805. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  806. ctx->mb_qscale[mb] = ctx->qscale+1;
  807. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  808. }
  809. }
  810. return 0;
  811. }
  812. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  813. {
  814. int i;
  815. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  816. ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
  817. ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
  818. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  819. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  820. }
  821. ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
  822. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  823. }
  824. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  825. const AVFrame *frame, int *got_packet)
  826. {
  827. DNXHDEncContext *ctx = avctx->priv_data;
  828. int first_field = 1;
  829. int offset, i, ret;
  830. uint8_t *buf;
  831. if ((ret = ff_alloc_packet(pkt, ctx->cid_table->frame_size)) < 0) {
  832. av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
  833. return ret;
  834. }
  835. buf = pkt->data;
  836. dnxhd_load_picture(ctx, frame);
  837. encode_coding_unit:
  838. for (i = 0; i < 3; i++) {
  839. ctx->src[i] = frame->data[i];
  840. if (ctx->interlaced && ctx->cur_field)
  841. ctx->src[i] += frame->linesize[i];
  842. }
  843. dnxhd_write_header(avctx, buf);
  844. if (avctx->mb_decision == FF_MB_DECISION_RD)
  845. ret = dnxhd_encode_rdo(avctx, ctx);
  846. else
  847. ret = dnxhd_encode_fast(avctx, ctx);
  848. if (ret < 0) {
  849. av_log(avctx, AV_LOG_ERROR,
  850. "picture could not fit ratecontrol constraints, increase qmax\n");
  851. return -1;
  852. }
  853. dnxhd_setup_threads_slices(ctx);
  854. offset = 0;
  855. for (i = 0; i < ctx->m.mb_height; i++) {
  856. AV_WB32(ctx->msip + i * 4, offset);
  857. offset += ctx->slice_size[i];
  858. assert(!(ctx->slice_size[i] & 3));
  859. }
  860. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  861. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  862. memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
  863. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  864. if (ctx->interlaced && first_field) {
  865. first_field = 0;
  866. ctx->cur_field ^= 1;
  867. buf += ctx->cid_table->coding_unit_size;
  868. goto encode_coding_unit;
  869. }
  870. avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
  871. pkt->flags |= AV_PKT_FLAG_KEY;
  872. *got_packet = 1;
  873. return 0;
  874. }
  875. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  876. {
  877. DNXHDEncContext *ctx = avctx->priv_data;
  878. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  879. int i;
  880. av_free(ctx->vlc_codes-max_level*2);
  881. av_free(ctx->vlc_bits -max_level*2);
  882. av_freep(&ctx->run_codes);
  883. av_freep(&ctx->run_bits);
  884. av_freep(&ctx->mb_bits);
  885. av_freep(&ctx->mb_qscale);
  886. av_freep(&ctx->mb_rc);
  887. av_freep(&ctx->mb_cmp);
  888. av_freep(&ctx->slice_size);
  889. av_freep(&ctx->slice_offs);
  890. av_freep(&ctx->qmatrix_c);
  891. av_freep(&ctx->qmatrix_l);
  892. av_freep(&ctx->qmatrix_c16);
  893. av_freep(&ctx->qmatrix_l16);
  894. for (i = 1; i < avctx->thread_count; i++)
  895. av_freep(&ctx->thread[i]);
  896. av_frame_free(&avctx->coded_frame);
  897. return 0;
  898. }
  899. AVCodec ff_dnxhd_encoder = {
  900. .name = "dnxhd",
  901. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  902. .type = AVMEDIA_TYPE_VIDEO,
  903. .id = AV_CODEC_ID_DNXHD,
  904. .priv_data_size = sizeof(DNXHDEncContext),
  905. .init = dnxhd_encode_init,
  906. .encode2 = dnxhd_encode_picture,
  907. .close = dnxhd_encode_end,
  908. .capabilities = CODEC_CAP_SLICE_THREADS,
  909. .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_YUV422P,
  910. AV_PIX_FMT_YUV422P10,
  911. AV_PIX_FMT_NONE },
  912. .priv_class = &class,
  913. };