You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1236 lines
44KB

  1. /*
  2. * Copyright (c) 2001-2003 The ffmpeg Project
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "avcodec.h"
  21. #include "get_bits.h"
  22. #include "put_bits.h"
  23. #include "bytestream.h"
  24. #include "adpcm.h"
  25. #include "adpcm_data.h"
  26. /**
  27. * @file
  28. * ADPCM decoders
  29. * First version by Francois Revol (revol@free.fr)
  30. * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
  31. * by Mike Melanson (melanson@pcisys.net)
  32. * CD-ROM XA ADPCM codec by BERO
  33. * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
  34. * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
  35. * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
  36. * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
  37. * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
  38. * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
  39. * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
  40. *
  41. * Features and limitations:
  42. *
  43. * Reference documents:
  44. * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
  45. * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
  46. * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
  47. * http://openquicktime.sourceforge.net/
  48. * XAnim sources (xa_codec.c) http://xanim.polter.net/
  49. * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
  50. * SoX source code http://sox.sourceforge.net/
  51. *
  52. * CD-ROM XA:
  53. * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
  54. * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
  55. * readstr http://www.geocities.co.jp/Playtown/2004/
  56. */
  57. /* These are for CD-ROM XA ADPCM */
  58. static const int xa_adpcm_table[5][2] = {
  59. { 0, 0 },
  60. { 60, 0 },
  61. { 115, -52 },
  62. { 98, -55 },
  63. { 122, -60 }
  64. };
  65. static const int ea_adpcm_table[] = {
  66. 0, 240, 460, 392,
  67. 0, 0, -208, -220,
  68. 0, 1, 3, 4,
  69. 7, 8, 10, 11,
  70. 0, -1, -3, -4
  71. };
  72. // padded to zero where table size is less then 16
  73. static const int swf_index_tables[4][16] = {
  74. /*2*/ { -1, 2 },
  75. /*3*/ { -1, -1, 2, 4 },
  76. /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
  77. /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
  78. };
  79. /* end of tables */
  80. typedef struct ADPCMDecodeContext {
  81. AVFrame frame;
  82. ADPCMChannelStatus status[6];
  83. } ADPCMDecodeContext;
  84. static av_cold int adpcm_decode_init(AVCodecContext * avctx)
  85. {
  86. ADPCMDecodeContext *c = avctx->priv_data;
  87. unsigned int max_channels = 2;
  88. switch(avctx->codec->id) {
  89. case CODEC_ID_ADPCM_EA_R1:
  90. case CODEC_ID_ADPCM_EA_R2:
  91. case CODEC_ID_ADPCM_EA_R3:
  92. case CODEC_ID_ADPCM_EA_XAS:
  93. max_channels = 6;
  94. break;
  95. }
  96. if (avctx->channels <= 0 || avctx->channels > max_channels) {
  97. av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
  98. return AVERROR(EINVAL);
  99. }
  100. switch(avctx->codec->id) {
  101. case CODEC_ID_ADPCM_CT:
  102. c->status[0].step = c->status[1].step = 511;
  103. break;
  104. case CODEC_ID_ADPCM_IMA_WAV:
  105. if (avctx->bits_per_coded_sample != 4) {
  106. av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
  107. return -1;
  108. }
  109. break;
  110. case CODEC_ID_ADPCM_IMA_WS:
  111. if (avctx->extradata && avctx->extradata_size == 2 * 4) {
  112. c->status[0].predictor = AV_RL32(avctx->extradata);
  113. c->status[1].predictor = AV_RL32(avctx->extradata + 4);
  114. }
  115. break;
  116. default:
  117. break;
  118. }
  119. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  120. avcodec_get_frame_defaults(&c->frame);
  121. avctx->coded_frame = &c->frame;
  122. return 0;
  123. }
  124. static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
  125. {
  126. int step_index;
  127. int predictor;
  128. int sign, delta, diff, step;
  129. step = ff_adpcm_step_table[c->step_index];
  130. step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
  131. if (step_index < 0) step_index = 0;
  132. else if (step_index > 88) step_index = 88;
  133. sign = nibble & 8;
  134. delta = nibble & 7;
  135. /* perform direct multiplication instead of series of jumps proposed by
  136. * the reference ADPCM implementation since modern CPUs can do the mults
  137. * quickly enough */
  138. diff = ((2 * delta + 1) * step) >> shift;
  139. predictor = c->predictor;
  140. if (sign) predictor -= diff;
  141. else predictor += diff;
  142. c->predictor = av_clip_int16(predictor);
  143. c->step_index = step_index;
  144. return (short)c->predictor;
  145. }
  146. static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
  147. {
  148. int step_index;
  149. int predictor;
  150. int diff, step;
  151. step = ff_adpcm_step_table[c->step_index];
  152. step_index = c->step_index + ff_adpcm_index_table[nibble];
  153. step_index = av_clip(step_index, 0, 88);
  154. diff = step >> 3;
  155. if (nibble & 4) diff += step;
  156. if (nibble & 2) diff += step >> 1;
  157. if (nibble & 1) diff += step >> 2;
  158. if (nibble & 8)
  159. predictor = c->predictor - diff;
  160. else
  161. predictor = c->predictor + diff;
  162. c->predictor = av_clip_int16(predictor);
  163. c->step_index = step_index;
  164. return c->predictor;
  165. }
  166. static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
  167. {
  168. int predictor;
  169. predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
  170. predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
  171. c->sample2 = c->sample1;
  172. c->sample1 = av_clip_int16(predictor);
  173. c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
  174. if (c->idelta < 16) c->idelta = 16;
  175. return c->sample1;
  176. }
  177. static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
  178. {
  179. int sign, delta, diff;
  180. int new_step;
  181. sign = nibble & 8;
  182. delta = nibble & 7;
  183. /* perform direct multiplication instead of series of jumps proposed by
  184. * the reference ADPCM implementation since modern CPUs can do the mults
  185. * quickly enough */
  186. diff = ((2 * delta + 1) * c->step) >> 3;
  187. /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
  188. c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
  189. c->predictor = av_clip_int16(c->predictor);
  190. /* calculate new step and clamp it to range 511..32767 */
  191. new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
  192. c->step = av_clip(new_step, 511, 32767);
  193. return (short)c->predictor;
  194. }
  195. static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
  196. {
  197. int sign, delta, diff;
  198. sign = nibble & (1<<(size-1));
  199. delta = nibble & ((1<<(size-1))-1);
  200. diff = delta << (7 + c->step + shift);
  201. /* clamp result */
  202. c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
  203. /* calculate new step */
  204. if (delta >= (2*size - 3) && c->step < 3)
  205. c->step++;
  206. else if (delta == 0 && c->step > 0)
  207. c->step--;
  208. return (short) c->predictor;
  209. }
  210. static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
  211. {
  212. if(!c->step) {
  213. c->predictor = 0;
  214. c->step = 127;
  215. }
  216. c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
  217. c->predictor = av_clip_int16(c->predictor);
  218. c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
  219. c->step = av_clip(c->step, 127, 24567);
  220. return c->predictor;
  221. }
  222. static void xa_decode(short *out, const unsigned char *in,
  223. ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
  224. {
  225. int i, j;
  226. int shift,filter,f0,f1;
  227. int s_1,s_2;
  228. int d,s,t;
  229. for(i=0;i<4;i++) {
  230. shift = 12 - (in[4+i*2] & 15);
  231. filter = in[4+i*2] >> 4;
  232. f0 = xa_adpcm_table[filter][0];
  233. f1 = xa_adpcm_table[filter][1];
  234. s_1 = left->sample1;
  235. s_2 = left->sample2;
  236. for(j=0;j<28;j++) {
  237. d = in[16+i+j*4];
  238. t = (signed char)(d<<4)>>4;
  239. s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
  240. s_2 = s_1;
  241. s_1 = av_clip_int16(s);
  242. *out = s_1;
  243. out += inc;
  244. }
  245. if (inc==2) { /* stereo */
  246. left->sample1 = s_1;
  247. left->sample2 = s_2;
  248. s_1 = right->sample1;
  249. s_2 = right->sample2;
  250. out = out + 1 - 28*2;
  251. }
  252. shift = 12 - (in[5+i*2] & 15);
  253. filter = in[5+i*2] >> 4;
  254. f0 = xa_adpcm_table[filter][0];
  255. f1 = xa_adpcm_table[filter][1];
  256. for(j=0;j<28;j++) {
  257. d = in[16+i+j*4];
  258. t = (signed char)d >> 4;
  259. s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
  260. s_2 = s_1;
  261. s_1 = av_clip_int16(s);
  262. *out = s_1;
  263. out += inc;
  264. }
  265. if (inc==2) { /* stereo */
  266. right->sample1 = s_1;
  267. right->sample2 = s_2;
  268. out -= 1;
  269. } else {
  270. left->sample1 = s_1;
  271. left->sample2 = s_2;
  272. }
  273. }
  274. }
  275. /**
  276. * Get the number of samples that will be decoded from the packet.
  277. * In one case, this is actually the maximum number of samples possible to
  278. * decode with the given buf_size.
  279. *
  280. * @param[out] coded_samples set to the number of samples as coded in the
  281. * packet, or 0 if the codec does not encode the
  282. * number of samples in each frame.
  283. */
  284. static int get_nb_samples(AVCodecContext *avctx, const uint8_t *buf,
  285. int buf_size, int *coded_samples)
  286. {
  287. ADPCMDecodeContext *s = avctx->priv_data;
  288. int nb_samples = 0;
  289. int ch = avctx->channels;
  290. int has_coded_samples = 0;
  291. int header_size;
  292. *coded_samples = 0;
  293. switch (avctx->codec->id) {
  294. /* constant, only check buf_size */
  295. case CODEC_ID_ADPCM_EA_XAS:
  296. if (buf_size < 76 * ch)
  297. return 0;
  298. nb_samples = 128;
  299. break;
  300. case CODEC_ID_ADPCM_IMA_QT:
  301. if (buf_size < 34 * ch)
  302. return 0;
  303. nb_samples = 64;
  304. break;
  305. /* simple 4-bit adpcm */
  306. case CODEC_ID_ADPCM_CT:
  307. case CODEC_ID_ADPCM_IMA_EA_SEAD:
  308. case CODEC_ID_ADPCM_IMA_WS:
  309. case CODEC_ID_ADPCM_YAMAHA:
  310. nb_samples = buf_size * 2 / ch;
  311. break;
  312. }
  313. if (nb_samples)
  314. return nb_samples;
  315. /* simple 4-bit adpcm, with header */
  316. header_size = 0;
  317. switch (avctx->codec->id) {
  318. case CODEC_ID_ADPCM_4XM:
  319. case CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
  320. case CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
  321. case CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4; break;
  322. }
  323. if (header_size > 0)
  324. return (buf_size - header_size) * 2 / ch;
  325. /* more complex formats */
  326. switch (avctx->codec->id) {
  327. case CODEC_ID_ADPCM_EA:
  328. has_coded_samples = 1;
  329. if (buf_size < 4)
  330. return 0;
  331. *coded_samples = AV_RL32(buf);
  332. *coded_samples -= *coded_samples % 28;
  333. nb_samples = (buf_size - 12) / 30 * 28;
  334. break;
  335. case CODEC_ID_ADPCM_IMA_EA_EACS:
  336. has_coded_samples = 1;
  337. if (buf_size < 4)
  338. return 0;
  339. *coded_samples = AV_RL32(buf);
  340. nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
  341. break;
  342. case CODEC_ID_ADPCM_EA_MAXIS_XA:
  343. nb_samples = ((buf_size - ch) / (2 * ch)) * 2 * ch;
  344. break;
  345. case CODEC_ID_ADPCM_EA_R1:
  346. case CODEC_ID_ADPCM_EA_R2:
  347. case CODEC_ID_ADPCM_EA_R3:
  348. /* maximum number of samples */
  349. /* has internal offsets and a per-frame switch to signal raw 16-bit */
  350. has_coded_samples = 1;
  351. if (buf_size < 4)
  352. return 0;
  353. switch (avctx->codec->id) {
  354. case CODEC_ID_ADPCM_EA_R1:
  355. header_size = 4 + 9 * ch;
  356. *coded_samples = AV_RL32(buf);
  357. break;
  358. case CODEC_ID_ADPCM_EA_R2:
  359. header_size = 4 + 5 * ch;
  360. *coded_samples = AV_RL32(buf);
  361. break;
  362. case CODEC_ID_ADPCM_EA_R3:
  363. header_size = 4 + 5 * ch;
  364. *coded_samples = AV_RB32(buf);
  365. break;
  366. }
  367. *coded_samples -= *coded_samples % 28;
  368. nb_samples = (buf_size - header_size) * 2 / ch;
  369. nb_samples -= nb_samples % 28;
  370. break;
  371. case CODEC_ID_ADPCM_IMA_DK3:
  372. if (avctx->block_align > 0)
  373. buf_size = FFMIN(buf_size, avctx->block_align);
  374. nb_samples = ((buf_size - 16) * 8 / 3) / ch;
  375. break;
  376. case CODEC_ID_ADPCM_IMA_DK4:
  377. nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
  378. break;
  379. case CODEC_ID_ADPCM_IMA_WAV:
  380. if (avctx->block_align > 0)
  381. buf_size = FFMIN(buf_size, avctx->block_align);
  382. nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
  383. break;
  384. case CODEC_ID_ADPCM_MS:
  385. if (avctx->block_align > 0)
  386. buf_size = FFMIN(buf_size, avctx->block_align);
  387. nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
  388. break;
  389. case CODEC_ID_ADPCM_SBPRO_2:
  390. case CODEC_ID_ADPCM_SBPRO_3:
  391. case CODEC_ID_ADPCM_SBPRO_4:
  392. {
  393. int samples_per_byte;
  394. switch (avctx->codec->id) {
  395. case CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
  396. case CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
  397. case CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
  398. }
  399. if (!s->status[0].step_index) {
  400. nb_samples++;
  401. buf_size -= ch;
  402. }
  403. nb_samples += buf_size * samples_per_byte / ch;
  404. break;
  405. }
  406. case CODEC_ID_ADPCM_SWF:
  407. {
  408. int buf_bits = buf_size * 8 - 2;
  409. int nbits = (buf[0] >> 6) + 2;
  410. int block_hdr_size = 22 * ch;
  411. int block_size = block_hdr_size + nbits * ch * 4095;
  412. int nblocks = buf_bits / block_size;
  413. int bits_left = buf_bits - nblocks * block_size;
  414. nb_samples = nblocks * 4096;
  415. if (bits_left >= block_hdr_size)
  416. nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
  417. break;
  418. }
  419. case CODEC_ID_ADPCM_THP:
  420. has_coded_samples = 1;
  421. if (buf_size < 8)
  422. return 0;
  423. *coded_samples = AV_RB32(&buf[4]);
  424. *coded_samples -= *coded_samples % 14;
  425. nb_samples = (buf_size - 80) / (8 * ch) * 14;
  426. break;
  427. case CODEC_ID_ADPCM_XA:
  428. nb_samples = (buf_size / 128) * 224 / ch;
  429. break;
  430. }
  431. /* validate coded sample count */
  432. if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
  433. return AVERROR_INVALIDDATA;
  434. return nb_samples;
  435. }
  436. /* DK3 ADPCM support macro */
  437. #define DK3_GET_NEXT_NIBBLE() \
  438. if (decode_top_nibble_next) \
  439. { \
  440. nibble = last_byte >> 4; \
  441. decode_top_nibble_next = 0; \
  442. } \
  443. else \
  444. { \
  445. if (end_of_packet) \
  446. break; \
  447. last_byte = *src++; \
  448. if (src >= buf + buf_size) \
  449. end_of_packet = 1; \
  450. nibble = last_byte & 0x0F; \
  451. decode_top_nibble_next = 1; \
  452. }
  453. static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
  454. int *got_frame_ptr, AVPacket *avpkt)
  455. {
  456. const uint8_t *buf = avpkt->data;
  457. int buf_size = avpkt->size;
  458. ADPCMDecodeContext *c = avctx->priv_data;
  459. ADPCMChannelStatus *cs;
  460. int n, m, channel, i;
  461. short *samples;
  462. const uint8_t *src;
  463. int st; /* stereo */
  464. int count1, count2;
  465. int nb_samples, coded_samples, ret;
  466. nb_samples = get_nb_samples(avctx, buf, buf_size, &coded_samples);
  467. if (nb_samples <= 0) {
  468. av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
  469. return AVERROR_INVALIDDATA;
  470. }
  471. /* get output buffer */
  472. c->frame.nb_samples = nb_samples;
  473. if ((ret = avctx->get_buffer(avctx, &c->frame)) < 0) {
  474. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  475. return ret;
  476. }
  477. samples = (short *)c->frame.data[0];
  478. /* use coded_samples when applicable */
  479. /* it is always <= nb_samples, so the output buffer will be large enough */
  480. if (coded_samples) {
  481. if (coded_samples != nb_samples)
  482. av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
  483. c->frame.nb_samples = nb_samples = coded_samples;
  484. }
  485. src = buf;
  486. st = avctx->channels == 2 ? 1 : 0;
  487. switch(avctx->codec->id) {
  488. case CODEC_ID_ADPCM_IMA_QT:
  489. /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
  490. Channel data is interleaved per-chunk. */
  491. for (channel = 0; channel < avctx->channels; channel++) {
  492. int16_t predictor;
  493. int step_index;
  494. cs = &(c->status[channel]);
  495. /* (pppppp) (piiiiiii) */
  496. /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
  497. predictor = AV_RB16(src);
  498. step_index = predictor & 0x7F;
  499. predictor &= 0xFF80;
  500. src += 2;
  501. if (cs->step_index == step_index) {
  502. int diff = (int)predictor - cs->predictor;
  503. if (diff < 0)
  504. diff = - diff;
  505. if (diff > 0x7f)
  506. goto update;
  507. } else {
  508. update:
  509. cs->step_index = step_index;
  510. cs->predictor = predictor;
  511. }
  512. if (cs->step_index > 88){
  513. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
  514. cs->step_index = 88;
  515. }
  516. samples = (short *)c->frame.data[0] + channel;
  517. for (m = 0; m < 32; m++) {
  518. *samples = adpcm_ima_qt_expand_nibble(cs, src[0] & 0x0F, 3);
  519. samples += avctx->channels;
  520. *samples = adpcm_ima_qt_expand_nibble(cs, src[0] >> 4 , 3);
  521. samples += avctx->channels;
  522. src ++;
  523. }
  524. }
  525. break;
  526. case CODEC_ID_ADPCM_IMA_WAV:
  527. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  528. buf_size = avctx->block_align;
  529. for(i=0; i<avctx->channels; i++){
  530. cs = &(c->status[i]);
  531. cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
  532. cs->step_index = *src++;
  533. if (cs->step_index > 88){
  534. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
  535. cs->step_index = 88;
  536. }
  537. if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
  538. }
  539. for (n = (nb_samples - 1) / 8; n > 0; n--) {
  540. for (i = 0; i < avctx->channels; i++) {
  541. cs = &c->status[i];
  542. for (m = 0; m < 4; m++) {
  543. uint8_t v = *src++;
  544. *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
  545. samples += avctx->channels;
  546. *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
  547. samples += avctx->channels;
  548. }
  549. samples -= 8 * avctx->channels - 1;
  550. }
  551. samples += 7 * avctx->channels;
  552. }
  553. break;
  554. case CODEC_ID_ADPCM_4XM:
  555. for (i = 0; i < avctx->channels; i++)
  556. c->status[i].predictor= (int16_t)bytestream_get_le16(&src);
  557. for (i = 0; i < avctx->channels; i++) {
  558. c->status[i].step_index= (int16_t)bytestream_get_le16(&src);
  559. c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
  560. }
  561. for (i = 0; i < avctx->channels; i++) {
  562. samples = (short *)c->frame.data[0] + i;
  563. cs = &c->status[i];
  564. for (n = nb_samples >> 1; n > 0; n--, src++) {
  565. uint8_t v = *src;
  566. *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
  567. samples += avctx->channels;
  568. *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
  569. samples += avctx->channels;
  570. }
  571. }
  572. break;
  573. case CODEC_ID_ADPCM_MS:
  574. {
  575. int block_predictor;
  576. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  577. buf_size = avctx->block_align;
  578. block_predictor = av_clip(*src++, 0, 6);
  579. c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
  580. c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
  581. if (st) {
  582. block_predictor = av_clip(*src++, 0, 6);
  583. c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
  584. c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
  585. }
  586. c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
  587. if (st){
  588. c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
  589. }
  590. c->status[0].sample1 = bytestream_get_le16(&src);
  591. if (st) c->status[1].sample1 = bytestream_get_le16(&src);
  592. c->status[0].sample2 = bytestream_get_le16(&src);
  593. if (st) c->status[1].sample2 = bytestream_get_le16(&src);
  594. *samples++ = c->status[0].sample2;
  595. if (st) *samples++ = c->status[1].sample2;
  596. *samples++ = c->status[0].sample1;
  597. if (st) *samples++ = c->status[1].sample1;
  598. for(n = (nb_samples - 2) >> (1 - st); n > 0; n--, src++) {
  599. *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
  600. *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
  601. }
  602. break;
  603. }
  604. case CODEC_ID_ADPCM_IMA_DK4:
  605. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  606. buf_size = avctx->block_align;
  607. for (channel = 0; channel < avctx->channels; channel++) {
  608. cs = &c->status[channel];
  609. cs->predictor = (int16_t)bytestream_get_le16(&src);
  610. cs->step_index = *src++;
  611. src++;
  612. *samples++ = cs->predictor;
  613. }
  614. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  615. uint8_t v = *src;
  616. *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
  617. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
  618. }
  619. break;
  620. case CODEC_ID_ADPCM_IMA_DK3:
  621. {
  622. unsigned char last_byte = 0;
  623. unsigned char nibble;
  624. int decode_top_nibble_next = 0;
  625. int end_of_packet = 0;
  626. int diff_channel;
  627. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  628. buf_size = avctx->block_align;
  629. c->status[0].predictor = (int16_t)AV_RL16(src + 10);
  630. c->status[1].predictor = (int16_t)AV_RL16(src + 12);
  631. c->status[0].step_index = src[14];
  632. c->status[1].step_index = src[15];
  633. /* sign extend the predictors */
  634. src += 16;
  635. diff_channel = c->status[1].predictor;
  636. /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
  637. * the buffer is consumed */
  638. while (1) {
  639. /* for this algorithm, c->status[0] is the sum channel and
  640. * c->status[1] is the diff channel */
  641. /* process the first predictor of the sum channel */
  642. DK3_GET_NEXT_NIBBLE();
  643. adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
  644. /* process the diff channel predictor */
  645. DK3_GET_NEXT_NIBBLE();
  646. adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
  647. /* process the first pair of stereo PCM samples */
  648. diff_channel = (diff_channel + c->status[1].predictor) / 2;
  649. *samples++ = c->status[0].predictor + c->status[1].predictor;
  650. *samples++ = c->status[0].predictor - c->status[1].predictor;
  651. /* process the second predictor of the sum channel */
  652. DK3_GET_NEXT_NIBBLE();
  653. adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
  654. /* process the second pair of stereo PCM samples */
  655. diff_channel = (diff_channel + c->status[1].predictor) / 2;
  656. *samples++ = c->status[0].predictor + c->status[1].predictor;
  657. *samples++ = c->status[0].predictor - c->status[1].predictor;
  658. }
  659. break;
  660. }
  661. case CODEC_ID_ADPCM_IMA_ISS:
  662. for (channel = 0; channel < avctx->channels; channel++) {
  663. cs = &c->status[channel];
  664. cs->predictor = (int16_t)bytestream_get_le16(&src);
  665. cs->step_index = *src++;
  666. src++;
  667. }
  668. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  669. uint8_t v1, v2;
  670. uint8_t v = *src;
  671. /* nibbles are swapped for mono */
  672. if (st) {
  673. v1 = v >> 4;
  674. v2 = v & 0x0F;
  675. } else {
  676. v2 = v >> 4;
  677. v1 = v & 0x0F;
  678. }
  679. *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
  680. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
  681. }
  682. break;
  683. case CODEC_ID_ADPCM_IMA_WS:
  684. while (src < buf + buf_size) {
  685. uint8_t v = *src++;
  686. *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
  687. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
  688. }
  689. break;
  690. case CODEC_ID_ADPCM_XA:
  691. while (buf_size >= 128) {
  692. xa_decode(samples, src, &c->status[0], &c->status[1],
  693. avctx->channels);
  694. src += 128;
  695. samples += 28 * 8;
  696. buf_size -= 128;
  697. }
  698. break;
  699. case CODEC_ID_ADPCM_IMA_EA_EACS:
  700. src += 4; // skip sample count (already read)
  701. for (i=0; i<=st; i++)
  702. c->status[i].step_index = bytestream_get_le32(&src);
  703. for (i=0; i<=st; i++)
  704. c->status[i].predictor = bytestream_get_le32(&src);
  705. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  706. *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
  707. *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
  708. }
  709. break;
  710. case CODEC_ID_ADPCM_IMA_EA_SEAD:
  711. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  712. *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
  713. *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
  714. }
  715. break;
  716. case CODEC_ID_ADPCM_EA:
  717. {
  718. int32_t previous_left_sample, previous_right_sample;
  719. int32_t current_left_sample, current_right_sample;
  720. int32_t next_left_sample, next_right_sample;
  721. int32_t coeff1l, coeff2l, coeff1r, coeff2r;
  722. uint8_t shift_left, shift_right;
  723. /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
  724. each coding 28 stereo samples. */
  725. src += 4; // skip sample count (already read)
  726. current_left_sample = (int16_t)bytestream_get_le16(&src);
  727. previous_left_sample = (int16_t)bytestream_get_le16(&src);
  728. current_right_sample = (int16_t)bytestream_get_le16(&src);
  729. previous_right_sample = (int16_t)bytestream_get_le16(&src);
  730. for (count1 = 0; count1 < nb_samples / 28; count1++) {
  731. coeff1l = ea_adpcm_table[ *src >> 4 ];
  732. coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
  733. coeff1r = ea_adpcm_table[*src & 0x0F];
  734. coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
  735. src++;
  736. shift_left = 20 - (*src >> 4);
  737. shift_right = 20 - (*src & 0x0F);
  738. src++;
  739. for (count2 = 0; count2 < 28; count2++) {
  740. next_left_sample = sign_extend(*src >> 4, 4) << shift_left;
  741. next_right_sample = sign_extend(*src, 4) << shift_right;
  742. src++;
  743. next_left_sample = (next_left_sample +
  744. (current_left_sample * coeff1l) +
  745. (previous_left_sample * coeff2l) + 0x80) >> 8;
  746. next_right_sample = (next_right_sample +
  747. (current_right_sample * coeff1r) +
  748. (previous_right_sample * coeff2r) + 0x80) >> 8;
  749. previous_left_sample = current_left_sample;
  750. current_left_sample = av_clip_int16(next_left_sample);
  751. previous_right_sample = current_right_sample;
  752. current_right_sample = av_clip_int16(next_right_sample);
  753. *samples++ = (unsigned short)current_left_sample;
  754. *samples++ = (unsigned short)current_right_sample;
  755. }
  756. }
  757. if (src - buf == buf_size - 2)
  758. src += 2; // Skip terminating 0x0000
  759. break;
  760. }
  761. case CODEC_ID_ADPCM_EA_MAXIS_XA:
  762. {
  763. int coeff[2][2], shift[2];
  764. for(channel = 0; channel < avctx->channels; channel++) {
  765. for (i=0; i<2; i++)
  766. coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
  767. shift[channel] = 20 - (*src & 0x0F);
  768. src++;
  769. }
  770. for (count1 = 0; count1 < nb_samples / 2; count1++) {
  771. for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
  772. for(channel = 0; channel < avctx->channels; channel++) {
  773. int32_t sample = sign_extend(src[channel] >> i, 4) << shift[channel];
  774. sample = (sample +
  775. c->status[channel].sample1 * coeff[channel][0] +
  776. c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
  777. c->status[channel].sample2 = c->status[channel].sample1;
  778. c->status[channel].sample1 = av_clip_int16(sample);
  779. *samples++ = c->status[channel].sample1;
  780. }
  781. }
  782. src+=avctx->channels;
  783. }
  784. /* consume whole packet */
  785. src = buf + buf_size;
  786. break;
  787. }
  788. case CODEC_ID_ADPCM_EA_R1:
  789. case CODEC_ID_ADPCM_EA_R2:
  790. case CODEC_ID_ADPCM_EA_R3: {
  791. /* channel numbering
  792. 2chan: 0=fl, 1=fr
  793. 4chan: 0=fl, 1=rl, 2=fr, 3=rr
  794. 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
  795. const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
  796. int32_t previous_sample, current_sample, next_sample;
  797. int32_t coeff1, coeff2;
  798. uint8_t shift;
  799. unsigned int channel;
  800. uint16_t *samplesC;
  801. const uint8_t *srcC;
  802. const uint8_t *src_end = buf + buf_size;
  803. int count = 0;
  804. src += 4; // skip sample count (already read)
  805. for (channel=0; channel<avctx->channels; channel++) {
  806. int32_t offset = (big_endian ? bytestream_get_be32(&src)
  807. : bytestream_get_le32(&src))
  808. + (avctx->channels-channel-1) * 4;
  809. if ((offset < 0) || (offset >= src_end - src - 4)) break;
  810. srcC = src + offset;
  811. samplesC = samples + channel;
  812. if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
  813. current_sample = (int16_t)bytestream_get_le16(&srcC);
  814. previous_sample = (int16_t)bytestream_get_le16(&srcC);
  815. } else {
  816. current_sample = c->status[channel].predictor;
  817. previous_sample = c->status[channel].prev_sample;
  818. }
  819. for (count1 = 0; count1 < nb_samples / 28; count1++) {
  820. if (*srcC == 0xEE) { /* only seen in R2 and R3 */
  821. srcC++;
  822. if (srcC > src_end - 30*2) break;
  823. current_sample = (int16_t)bytestream_get_be16(&srcC);
  824. previous_sample = (int16_t)bytestream_get_be16(&srcC);
  825. for (count2=0; count2<28; count2++) {
  826. *samplesC = (int16_t)bytestream_get_be16(&srcC);
  827. samplesC += avctx->channels;
  828. }
  829. } else {
  830. coeff1 = ea_adpcm_table[ *srcC>>4 ];
  831. coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
  832. shift = 20 - (*srcC++ & 0x0F);
  833. if (srcC > src_end - 14) break;
  834. for (count2=0; count2<28; count2++) {
  835. if (count2 & 1)
  836. next_sample = sign_extend(*srcC++, 4) << shift;
  837. else
  838. next_sample = sign_extend(*srcC >> 4, 4) << shift;
  839. next_sample += (current_sample * coeff1) +
  840. (previous_sample * coeff2);
  841. next_sample = av_clip_int16(next_sample >> 8);
  842. previous_sample = current_sample;
  843. current_sample = next_sample;
  844. *samplesC = current_sample;
  845. samplesC += avctx->channels;
  846. }
  847. }
  848. }
  849. if (!count) {
  850. count = count1;
  851. } else if (count != count1) {
  852. av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
  853. count = FFMAX(count, count1);
  854. }
  855. if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
  856. c->status[channel].predictor = current_sample;
  857. c->status[channel].prev_sample = previous_sample;
  858. }
  859. }
  860. c->frame.nb_samples = count * 28;
  861. src = src_end;
  862. break;
  863. }
  864. case CODEC_ID_ADPCM_EA_XAS:
  865. for (channel=0; channel<avctx->channels; channel++) {
  866. int coeff[2][4], shift[4];
  867. short *s2, *s = &samples[channel];
  868. for (n=0; n<4; n++, s+=32*avctx->channels) {
  869. for (i=0; i<2; i++)
  870. coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
  871. shift[n] = 20 - (src[2] & 0x0F);
  872. for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
  873. s2[0] = (src[0]&0xF0) + (src[1]<<8);
  874. }
  875. for (m=2; m<32; m+=2) {
  876. s = &samples[m*avctx->channels + channel];
  877. for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
  878. for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
  879. int level = sign_extend(*src >> (4 - i), 4) << shift[n];
  880. int pred = s2[-1*avctx->channels] * coeff[0][n]
  881. + s2[-2*avctx->channels] * coeff[1][n];
  882. s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
  883. }
  884. }
  885. }
  886. }
  887. break;
  888. case CODEC_ID_ADPCM_IMA_AMV:
  889. case CODEC_ID_ADPCM_IMA_SMJPEG:
  890. if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) {
  891. c->status[0].predictor = sign_extend(bytestream_get_le16(&src), 16);
  892. c->status[0].step_index = bytestream_get_le16(&src);
  893. src += 4;
  894. } else {
  895. c->status[0].predictor = sign_extend(bytestream_get_be16(&src), 16);
  896. c->status[0].step_index = bytestream_get_byte(&src);
  897. src += 1;
  898. }
  899. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  900. char hi, lo;
  901. lo = *src & 0x0F;
  902. hi = *src >> 4;
  903. if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
  904. FFSWAP(char, hi, lo);
  905. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  906. lo, 3);
  907. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  908. hi, 3);
  909. }
  910. break;
  911. case CODEC_ID_ADPCM_CT:
  912. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  913. uint8_t v = *src;
  914. *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
  915. *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
  916. }
  917. break;
  918. case CODEC_ID_ADPCM_SBPRO_4:
  919. case CODEC_ID_ADPCM_SBPRO_3:
  920. case CODEC_ID_ADPCM_SBPRO_2:
  921. if (!c->status[0].step_index) {
  922. /* the first byte is a raw sample */
  923. *samples++ = 128 * (*src++ - 0x80);
  924. if (st)
  925. *samples++ = 128 * (*src++ - 0x80);
  926. c->status[0].step_index = 1;
  927. nb_samples--;
  928. }
  929. if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
  930. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  931. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  932. src[0] >> 4, 4, 0);
  933. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  934. src[0] & 0x0F, 4, 0);
  935. }
  936. } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
  937. for (n = nb_samples / 3; n > 0; n--, src++) {
  938. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  939. src[0] >> 5 , 3, 0);
  940. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  941. (src[0] >> 2) & 0x07, 3, 0);
  942. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  943. src[0] & 0x03, 2, 0);
  944. }
  945. } else {
  946. for (n = nb_samples >> (2 - st); n > 0; n--, src++) {
  947. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  948. src[0] >> 6 , 2, 2);
  949. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  950. (src[0] >> 4) & 0x03, 2, 2);
  951. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  952. (src[0] >> 2) & 0x03, 2, 2);
  953. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  954. src[0] & 0x03, 2, 2);
  955. }
  956. }
  957. break;
  958. case CODEC_ID_ADPCM_SWF:
  959. {
  960. GetBitContext gb;
  961. const int *table;
  962. int k0, signmask, nb_bits, count;
  963. int size = buf_size*8;
  964. init_get_bits(&gb, buf, size);
  965. //read bits & initial values
  966. nb_bits = get_bits(&gb, 2)+2;
  967. //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
  968. table = swf_index_tables[nb_bits-2];
  969. k0 = 1 << (nb_bits-2);
  970. signmask = 1 << (nb_bits-1);
  971. while (get_bits_count(&gb) <= size - 22*avctx->channels) {
  972. for (i = 0; i < avctx->channels; i++) {
  973. *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
  974. c->status[i].step_index = get_bits(&gb, 6);
  975. }
  976. for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
  977. int i;
  978. for (i = 0; i < avctx->channels; i++) {
  979. // similar to IMA adpcm
  980. int delta = get_bits(&gb, nb_bits);
  981. int step = ff_adpcm_step_table[c->status[i].step_index];
  982. long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
  983. int k = k0;
  984. do {
  985. if (delta & k)
  986. vpdiff += step;
  987. step >>= 1;
  988. k >>= 1;
  989. } while(k);
  990. vpdiff += step;
  991. if (delta & signmask)
  992. c->status[i].predictor -= vpdiff;
  993. else
  994. c->status[i].predictor += vpdiff;
  995. c->status[i].step_index += table[delta & (~signmask)];
  996. c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
  997. c->status[i].predictor = av_clip_int16(c->status[i].predictor);
  998. *samples++ = c->status[i].predictor;
  999. }
  1000. }
  1001. }
  1002. src += buf_size;
  1003. break;
  1004. }
  1005. case CODEC_ID_ADPCM_YAMAHA:
  1006. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  1007. uint8_t v = *src;
  1008. *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
  1009. *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
  1010. }
  1011. break;
  1012. case CODEC_ID_ADPCM_THP:
  1013. {
  1014. int table[2][16];
  1015. int prev[2][2];
  1016. int ch;
  1017. src += 4; // skip channel size
  1018. src += 4; // skip number of samples (already read)
  1019. for (i = 0; i < 32; i++)
  1020. table[0][i] = (int16_t)bytestream_get_be16(&src);
  1021. /* Initialize the previous sample. */
  1022. for (i = 0; i < 4; i++)
  1023. prev[0][i] = (int16_t)bytestream_get_be16(&src);
  1024. for (ch = 0; ch <= st; ch++) {
  1025. samples = (short *)c->frame.data[0] + ch;
  1026. /* Read in every sample for this channel. */
  1027. for (i = 0; i < nb_samples / 14; i++) {
  1028. int index = (*src >> 4) & 7;
  1029. unsigned int exp = *src++ & 15;
  1030. int factor1 = table[ch][index * 2];
  1031. int factor2 = table[ch][index * 2 + 1];
  1032. /* Decode 14 samples. */
  1033. for (n = 0; n < 14; n++) {
  1034. int32_t sampledat;
  1035. if(n&1) sampledat = sign_extend(*src++, 4);
  1036. else sampledat = sign_extend(*src >> 4, 4);
  1037. sampledat = ((prev[ch][0]*factor1
  1038. + prev[ch][1]*factor2) >> 11) + (sampledat << exp);
  1039. *samples = av_clip_int16(sampledat);
  1040. prev[ch][1] = prev[ch][0];
  1041. prev[ch][0] = *samples++;
  1042. /* In case of stereo, skip one sample, this sample
  1043. is for the other channel. */
  1044. samples += st;
  1045. }
  1046. }
  1047. }
  1048. break;
  1049. }
  1050. default:
  1051. return -1;
  1052. }
  1053. *got_frame_ptr = 1;
  1054. *(AVFrame *)data = c->frame;
  1055. return src - buf;
  1056. }
  1057. #define ADPCM_DECODER(id_, name_, long_name_) \
  1058. AVCodec ff_ ## name_ ## _decoder = { \
  1059. .name = #name_, \
  1060. .type = AVMEDIA_TYPE_AUDIO, \
  1061. .id = id_, \
  1062. .priv_data_size = sizeof(ADPCMDecodeContext), \
  1063. .init = adpcm_decode_init, \
  1064. .decode = adpcm_decode_frame, \
  1065. .capabilities = CODEC_CAP_DR1, \
  1066. .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
  1067. }
  1068. /* Note: Do not forget to add new entries to the Makefile as well. */
  1069. ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
  1070. ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
  1071. ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
  1072. ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
  1073. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
  1074. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
  1075. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
  1076. ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
  1077. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
  1078. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
  1079. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
  1080. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
  1081. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
  1082. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
  1083. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
  1084. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
  1085. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
  1086. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
  1087. ADPCM_DECODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
  1088. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
  1089. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
  1090. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
  1091. ADPCM_DECODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
  1092. ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
  1093. ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
  1094. ADPCM_DECODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");