You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

955 lines
32KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "internal.h"
  36. #include "wma.h"
  37. #undef NDEBUG
  38. #include <assert.h>
  39. #define EXPVLCBITS 8
  40. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  41. #define HGAINVLCBITS 9
  42. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  43. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  44. #ifdef TRACE
  45. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  46. {
  47. int i;
  48. tprintf(s->avctx, "%s[%d]:\n", name, n);
  49. for(i=0;i<n;i++) {
  50. if ((i & 7) == 0)
  51. tprintf(s->avctx, "%4d: ", i);
  52. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  53. if ((i & 7) == 7)
  54. tprintf(s->avctx, "\n");
  55. }
  56. if ((i & 7) != 0)
  57. tprintf(s->avctx, "\n");
  58. }
  59. #endif
  60. static int wma_decode_init(AVCodecContext * avctx)
  61. {
  62. WMACodecContext *s = avctx->priv_data;
  63. int i, flags2;
  64. uint8_t *extradata;
  65. s->avctx = avctx;
  66. /* extract flag infos */
  67. flags2 = 0;
  68. extradata = avctx->extradata;
  69. if (avctx->codec->id == AV_CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  70. flags2 = AV_RL16(extradata+2);
  71. } else if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  72. flags2 = AV_RL16(extradata+4);
  73. }
  74. s->use_exp_vlc = flags2 & 0x0001;
  75. s->use_bit_reservoir = flags2 & 0x0002;
  76. s->use_variable_block_len = flags2 & 0x0004;
  77. if(ff_wma_init(avctx, flags2)<0)
  78. return -1;
  79. /* init MDCT */
  80. for(i = 0; i < s->nb_block_sizes; i++)
  81. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0 / 32768.0);
  82. if (s->use_noise_coding) {
  83. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  84. ff_wma_hgain_huffbits, 1, 1,
  85. ff_wma_hgain_huffcodes, 2, 2, 0);
  86. }
  87. if (s->use_exp_vlc) {
  88. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
  89. ff_aac_scalefactor_bits, 1, 1,
  90. ff_aac_scalefactor_code, 4, 4, 0);
  91. } else {
  92. wma_lsp_to_curve_init(s, s->frame_len);
  93. }
  94. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  95. avcodec_get_frame_defaults(&s->frame);
  96. avctx->coded_frame = &s->frame;
  97. return 0;
  98. }
  99. /**
  100. * compute x^-0.25 with an exponent and mantissa table. We use linear
  101. * interpolation to reduce the mantissa table size at a small speed
  102. * expense (linear interpolation approximately doubles the number of
  103. * bits of precision).
  104. */
  105. static inline float pow_m1_4(WMACodecContext *s, float x)
  106. {
  107. union {
  108. float f;
  109. unsigned int v;
  110. } u, t;
  111. unsigned int e, m;
  112. float a, b;
  113. u.f = x;
  114. e = u.v >> 23;
  115. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  116. /* build interpolation scale: 1 <= t < 2. */
  117. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  118. a = s->lsp_pow_m_table1[m];
  119. b = s->lsp_pow_m_table2[m];
  120. return s->lsp_pow_e_table[e] * (a + b * t.f);
  121. }
  122. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  123. {
  124. float wdel, a, b;
  125. int i, e, m;
  126. wdel = M_PI / frame_len;
  127. for(i=0;i<frame_len;i++)
  128. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  129. /* tables for x^-0.25 computation */
  130. for(i=0;i<256;i++) {
  131. e = i - 126;
  132. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  133. }
  134. /* NOTE: these two tables are needed to avoid two operations in
  135. pow_m1_4 */
  136. b = 1.0;
  137. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  138. m = (1 << LSP_POW_BITS) + i;
  139. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  140. a = pow(a, -0.25);
  141. s->lsp_pow_m_table1[i] = 2 * a - b;
  142. s->lsp_pow_m_table2[i] = b - a;
  143. b = a;
  144. }
  145. }
  146. /**
  147. * NOTE: We use the same code as Vorbis here
  148. * @todo optimize it further with SSE/3Dnow
  149. */
  150. static void wma_lsp_to_curve(WMACodecContext *s,
  151. float *out, float *val_max_ptr,
  152. int n, float *lsp)
  153. {
  154. int i, j;
  155. float p, q, w, v, val_max;
  156. val_max = 0;
  157. for(i=0;i<n;i++) {
  158. p = 0.5f;
  159. q = 0.5f;
  160. w = s->lsp_cos_table[i];
  161. for(j=1;j<NB_LSP_COEFS;j+=2){
  162. q *= w - lsp[j - 1];
  163. p *= w - lsp[j];
  164. }
  165. p *= p * (2.0f - w);
  166. q *= q * (2.0f + w);
  167. v = p + q;
  168. v = pow_m1_4(s, v);
  169. if (v > val_max)
  170. val_max = v;
  171. out[i] = v;
  172. }
  173. *val_max_ptr = val_max;
  174. }
  175. /**
  176. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  177. */
  178. static void decode_exp_lsp(WMACodecContext *s, int ch)
  179. {
  180. float lsp_coefs[NB_LSP_COEFS];
  181. int val, i;
  182. for(i = 0; i < NB_LSP_COEFS; i++) {
  183. if (i == 0 || i >= 8)
  184. val = get_bits(&s->gb, 3);
  185. else
  186. val = get_bits(&s->gb, 4);
  187. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  188. }
  189. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  190. s->block_len, lsp_coefs);
  191. }
  192. /** pow(10, i / 16.0) for i in -60..95 */
  193. static const float pow_tab[] = {
  194. 1.7782794100389e-04, 2.0535250264571e-04,
  195. 2.3713737056617e-04, 2.7384196342644e-04,
  196. 3.1622776601684e-04, 3.6517412725484e-04,
  197. 4.2169650342858e-04, 4.8696752516586e-04,
  198. 5.6234132519035e-04, 6.4938163157621e-04,
  199. 7.4989420933246e-04, 8.6596432336006e-04,
  200. 1.0000000000000e-03, 1.1547819846895e-03,
  201. 1.3335214321633e-03, 1.5399265260595e-03,
  202. 1.7782794100389e-03, 2.0535250264571e-03,
  203. 2.3713737056617e-03, 2.7384196342644e-03,
  204. 3.1622776601684e-03, 3.6517412725484e-03,
  205. 4.2169650342858e-03, 4.8696752516586e-03,
  206. 5.6234132519035e-03, 6.4938163157621e-03,
  207. 7.4989420933246e-03, 8.6596432336006e-03,
  208. 1.0000000000000e-02, 1.1547819846895e-02,
  209. 1.3335214321633e-02, 1.5399265260595e-02,
  210. 1.7782794100389e-02, 2.0535250264571e-02,
  211. 2.3713737056617e-02, 2.7384196342644e-02,
  212. 3.1622776601684e-02, 3.6517412725484e-02,
  213. 4.2169650342858e-02, 4.8696752516586e-02,
  214. 5.6234132519035e-02, 6.4938163157621e-02,
  215. 7.4989420933246e-02, 8.6596432336007e-02,
  216. 1.0000000000000e-01, 1.1547819846895e-01,
  217. 1.3335214321633e-01, 1.5399265260595e-01,
  218. 1.7782794100389e-01, 2.0535250264571e-01,
  219. 2.3713737056617e-01, 2.7384196342644e-01,
  220. 3.1622776601684e-01, 3.6517412725484e-01,
  221. 4.2169650342858e-01, 4.8696752516586e-01,
  222. 5.6234132519035e-01, 6.4938163157621e-01,
  223. 7.4989420933246e-01, 8.6596432336007e-01,
  224. 1.0000000000000e+00, 1.1547819846895e+00,
  225. 1.3335214321633e+00, 1.5399265260595e+00,
  226. 1.7782794100389e+00, 2.0535250264571e+00,
  227. 2.3713737056617e+00, 2.7384196342644e+00,
  228. 3.1622776601684e+00, 3.6517412725484e+00,
  229. 4.2169650342858e+00, 4.8696752516586e+00,
  230. 5.6234132519035e+00, 6.4938163157621e+00,
  231. 7.4989420933246e+00, 8.6596432336007e+00,
  232. 1.0000000000000e+01, 1.1547819846895e+01,
  233. 1.3335214321633e+01, 1.5399265260595e+01,
  234. 1.7782794100389e+01, 2.0535250264571e+01,
  235. 2.3713737056617e+01, 2.7384196342644e+01,
  236. 3.1622776601684e+01, 3.6517412725484e+01,
  237. 4.2169650342858e+01, 4.8696752516586e+01,
  238. 5.6234132519035e+01, 6.4938163157621e+01,
  239. 7.4989420933246e+01, 8.6596432336007e+01,
  240. 1.0000000000000e+02, 1.1547819846895e+02,
  241. 1.3335214321633e+02, 1.5399265260595e+02,
  242. 1.7782794100389e+02, 2.0535250264571e+02,
  243. 2.3713737056617e+02, 2.7384196342644e+02,
  244. 3.1622776601684e+02, 3.6517412725484e+02,
  245. 4.2169650342858e+02, 4.8696752516586e+02,
  246. 5.6234132519035e+02, 6.4938163157621e+02,
  247. 7.4989420933246e+02, 8.6596432336007e+02,
  248. 1.0000000000000e+03, 1.1547819846895e+03,
  249. 1.3335214321633e+03, 1.5399265260595e+03,
  250. 1.7782794100389e+03, 2.0535250264571e+03,
  251. 2.3713737056617e+03, 2.7384196342644e+03,
  252. 3.1622776601684e+03, 3.6517412725484e+03,
  253. 4.2169650342858e+03, 4.8696752516586e+03,
  254. 5.6234132519035e+03, 6.4938163157621e+03,
  255. 7.4989420933246e+03, 8.6596432336007e+03,
  256. 1.0000000000000e+04, 1.1547819846895e+04,
  257. 1.3335214321633e+04, 1.5399265260595e+04,
  258. 1.7782794100389e+04, 2.0535250264571e+04,
  259. 2.3713737056617e+04, 2.7384196342644e+04,
  260. 3.1622776601684e+04, 3.6517412725484e+04,
  261. 4.2169650342858e+04, 4.8696752516586e+04,
  262. 5.6234132519035e+04, 6.4938163157621e+04,
  263. 7.4989420933246e+04, 8.6596432336007e+04,
  264. 1.0000000000000e+05, 1.1547819846895e+05,
  265. 1.3335214321633e+05, 1.5399265260595e+05,
  266. 1.7782794100389e+05, 2.0535250264571e+05,
  267. 2.3713737056617e+05, 2.7384196342644e+05,
  268. 3.1622776601684e+05, 3.6517412725484e+05,
  269. 4.2169650342858e+05, 4.8696752516586e+05,
  270. 5.6234132519035e+05, 6.4938163157621e+05,
  271. 7.4989420933246e+05, 8.6596432336007e+05,
  272. };
  273. /**
  274. * decode exponents coded with VLC codes
  275. */
  276. static int decode_exp_vlc(WMACodecContext *s, int ch)
  277. {
  278. int last_exp, n, code;
  279. const uint16_t *ptr;
  280. float v, max_scale;
  281. uint32_t *q, *q_end, iv;
  282. const float *ptab = pow_tab + 60;
  283. const uint32_t *iptab = (const uint32_t*)ptab;
  284. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  285. q = (uint32_t *)s->exponents[ch];
  286. q_end = q + s->block_len;
  287. max_scale = 0;
  288. if (s->version == 1) {
  289. last_exp = get_bits(&s->gb, 5) + 10;
  290. v = ptab[last_exp];
  291. iv = iptab[last_exp];
  292. max_scale = v;
  293. n = *ptr++;
  294. switch (n & 3) do {
  295. case 0: *q++ = iv;
  296. case 3: *q++ = iv;
  297. case 2: *q++ = iv;
  298. case 1: *q++ = iv;
  299. } while ((n -= 4) > 0);
  300. }else
  301. last_exp = 36;
  302. while (q < q_end) {
  303. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  304. if (code < 0){
  305. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  306. return -1;
  307. }
  308. /* NOTE: this offset is the same as MPEG4 AAC ! */
  309. last_exp += code - 60;
  310. if ((unsigned)last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
  311. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  312. last_exp);
  313. return -1;
  314. }
  315. v = ptab[last_exp];
  316. iv = iptab[last_exp];
  317. if (v > max_scale)
  318. max_scale = v;
  319. n = *ptr++;
  320. switch (n & 3) do {
  321. case 0: *q++ = iv;
  322. case 3: *q++ = iv;
  323. case 2: *q++ = iv;
  324. case 1: *q++ = iv;
  325. } while ((n -= 4) > 0);
  326. }
  327. s->max_exponent[ch] = max_scale;
  328. return 0;
  329. }
  330. /**
  331. * Apply MDCT window and add into output.
  332. *
  333. * We ensure that when the windows overlap their squared sum
  334. * is always 1 (MDCT reconstruction rule).
  335. */
  336. static void wma_window(WMACodecContext *s, float *out)
  337. {
  338. float *in = s->output;
  339. int block_len, bsize, n;
  340. /* left part */
  341. if (s->block_len_bits <= s->prev_block_len_bits) {
  342. block_len = s->block_len;
  343. bsize = s->frame_len_bits - s->block_len_bits;
  344. s->dsp.vector_fmul_add(out, in, s->windows[bsize],
  345. out, block_len);
  346. } else {
  347. block_len = 1 << s->prev_block_len_bits;
  348. n = (s->block_len - block_len) / 2;
  349. bsize = s->frame_len_bits - s->prev_block_len_bits;
  350. s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  351. out+n, block_len);
  352. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  353. }
  354. out += s->block_len;
  355. in += s->block_len;
  356. /* right part */
  357. if (s->block_len_bits <= s->next_block_len_bits) {
  358. block_len = s->block_len;
  359. bsize = s->frame_len_bits - s->block_len_bits;
  360. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  361. } else {
  362. block_len = 1 << s->next_block_len_bits;
  363. n = (s->block_len - block_len) / 2;
  364. bsize = s->frame_len_bits - s->next_block_len_bits;
  365. memcpy(out, in, n*sizeof(float));
  366. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  367. memset(out+n+block_len, 0, n*sizeof(float));
  368. }
  369. }
  370. /**
  371. * @return 0 if OK. 1 if last block of frame. return -1 if
  372. * unrecorrable error.
  373. */
  374. static int wma_decode_block(WMACodecContext *s)
  375. {
  376. int n, v, a, ch, bsize;
  377. int coef_nb_bits, total_gain;
  378. int nb_coefs[MAX_CHANNELS];
  379. float mdct_norm;
  380. FFTContext *mdct;
  381. #ifdef TRACE
  382. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  383. #endif
  384. /* compute current block length */
  385. if (s->use_variable_block_len) {
  386. n = av_log2(s->nb_block_sizes - 1) + 1;
  387. if (s->reset_block_lengths) {
  388. s->reset_block_lengths = 0;
  389. v = get_bits(&s->gb, n);
  390. if (v >= s->nb_block_sizes){
  391. av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
  392. return -1;
  393. }
  394. s->prev_block_len_bits = s->frame_len_bits - v;
  395. v = get_bits(&s->gb, n);
  396. if (v >= s->nb_block_sizes){
  397. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
  398. return -1;
  399. }
  400. s->block_len_bits = s->frame_len_bits - v;
  401. } else {
  402. /* update block lengths */
  403. s->prev_block_len_bits = s->block_len_bits;
  404. s->block_len_bits = s->next_block_len_bits;
  405. }
  406. v = get_bits(&s->gb, n);
  407. if (v >= s->nb_block_sizes){
  408. av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
  409. return -1;
  410. }
  411. s->next_block_len_bits = s->frame_len_bits - v;
  412. } else {
  413. /* fixed block len */
  414. s->next_block_len_bits = s->frame_len_bits;
  415. s->prev_block_len_bits = s->frame_len_bits;
  416. s->block_len_bits = s->frame_len_bits;
  417. }
  418. /* now check if the block length is coherent with the frame length */
  419. s->block_len = 1 << s->block_len_bits;
  420. if ((s->block_pos + s->block_len) > s->frame_len){
  421. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  422. return -1;
  423. }
  424. if (s->avctx->channels == 2) {
  425. s->ms_stereo = get_bits1(&s->gb);
  426. }
  427. v = 0;
  428. for(ch = 0; ch < s->avctx->channels; ch++) {
  429. a = get_bits1(&s->gb);
  430. s->channel_coded[ch] = a;
  431. v |= a;
  432. }
  433. bsize = s->frame_len_bits - s->block_len_bits;
  434. /* if no channel coded, no need to go further */
  435. /* XXX: fix potential framing problems */
  436. if (!v)
  437. goto next;
  438. /* read total gain and extract corresponding number of bits for
  439. coef escape coding */
  440. total_gain = 1;
  441. for(;;) {
  442. a = get_bits(&s->gb, 7);
  443. total_gain += a;
  444. if (a != 127)
  445. break;
  446. }
  447. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  448. /* compute number of coefficients */
  449. n = s->coefs_end[bsize] - s->coefs_start;
  450. for(ch = 0; ch < s->avctx->channels; ch++)
  451. nb_coefs[ch] = n;
  452. /* complex coding */
  453. if (s->use_noise_coding) {
  454. for(ch = 0; ch < s->avctx->channels; ch++) {
  455. if (s->channel_coded[ch]) {
  456. int i, n, a;
  457. n = s->exponent_high_sizes[bsize];
  458. for(i=0;i<n;i++) {
  459. a = get_bits1(&s->gb);
  460. s->high_band_coded[ch][i] = a;
  461. /* if noise coding, the coefficients are not transmitted */
  462. if (a)
  463. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  464. }
  465. }
  466. }
  467. for(ch = 0; ch < s->avctx->channels; ch++) {
  468. if (s->channel_coded[ch]) {
  469. int i, n, val, code;
  470. n = s->exponent_high_sizes[bsize];
  471. val = (int)0x80000000;
  472. for(i=0;i<n;i++) {
  473. if (s->high_band_coded[ch][i]) {
  474. if (val == (int)0x80000000) {
  475. val = get_bits(&s->gb, 7) - 19;
  476. } else {
  477. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  478. if (code < 0){
  479. av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
  480. return -1;
  481. }
  482. val += code - 18;
  483. }
  484. s->high_band_values[ch][i] = val;
  485. }
  486. }
  487. }
  488. }
  489. }
  490. /* exponents can be reused in short blocks. */
  491. if ((s->block_len_bits == s->frame_len_bits) ||
  492. get_bits1(&s->gb)) {
  493. for(ch = 0; ch < s->avctx->channels; ch++) {
  494. if (s->channel_coded[ch]) {
  495. if (s->use_exp_vlc) {
  496. if (decode_exp_vlc(s, ch) < 0)
  497. return -1;
  498. } else {
  499. decode_exp_lsp(s, ch);
  500. }
  501. s->exponents_bsize[ch] = bsize;
  502. }
  503. }
  504. }
  505. /* parse spectral coefficients : just RLE encoding */
  506. for (ch = 0; ch < s->avctx->channels; ch++) {
  507. if (s->channel_coded[ch]) {
  508. int tindex;
  509. WMACoef* ptr = &s->coefs1[ch][0];
  510. /* special VLC tables are used for ms stereo because
  511. there is potentially less energy there */
  512. tindex = (ch == 1 && s->ms_stereo);
  513. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  514. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  515. s->level_table[tindex], s->run_table[tindex],
  516. 0, ptr, 0, nb_coefs[ch],
  517. s->block_len, s->frame_len_bits, coef_nb_bits);
  518. }
  519. if (s->version == 1 && s->avctx->channels >= 2) {
  520. align_get_bits(&s->gb);
  521. }
  522. }
  523. /* normalize */
  524. {
  525. int n4 = s->block_len / 2;
  526. mdct_norm = 1.0 / (float)n4;
  527. if (s->version == 1) {
  528. mdct_norm *= sqrt(n4);
  529. }
  530. }
  531. /* finally compute the MDCT coefficients */
  532. for (ch = 0; ch < s->avctx->channels; ch++) {
  533. if (s->channel_coded[ch]) {
  534. WMACoef *coefs1;
  535. float *coefs, *exponents, mult, mult1, noise;
  536. int i, j, n, n1, last_high_band, esize;
  537. float exp_power[HIGH_BAND_MAX_SIZE];
  538. coefs1 = s->coefs1[ch];
  539. exponents = s->exponents[ch];
  540. esize = s->exponents_bsize[ch];
  541. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  542. mult *= mdct_norm;
  543. coefs = s->coefs[ch];
  544. if (s->use_noise_coding) {
  545. mult1 = mult;
  546. /* very low freqs : noise */
  547. for(i = 0;i < s->coefs_start; i++) {
  548. *coefs++ = s->noise_table[s->noise_index] *
  549. exponents[i<<bsize>>esize] * mult1;
  550. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  551. }
  552. n1 = s->exponent_high_sizes[bsize];
  553. /* compute power of high bands */
  554. exponents = s->exponents[ch] +
  555. (s->high_band_start[bsize]<<bsize>>esize);
  556. last_high_band = 0; /* avoid warning */
  557. for(j=0;j<n1;j++) {
  558. n = s->exponent_high_bands[s->frame_len_bits -
  559. s->block_len_bits][j];
  560. if (s->high_band_coded[ch][j]) {
  561. float e2, v;
  562. e2 = 0;
  563. for(i = 0;i < n; i++) {
  564. v = exponents[i<<bsize>>esize];
  565. e2 += v * v;
  566. }
  567. exp_power[j] = e2 / n;
  568. last_high_band = j;
  569. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  570. }
  571. exponents += n<<bsize>>esize;
  572. }
  573. /* main freqs and high freqs */
  574. exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
  575. for(j=-1;j<n1;j++) {
  576. if (j < 0) {
  577. n = s->high_band_start[bsize] -
  578. s->coefs_start;
  579. } else {
  580. n = s->exponent_high_bands[s->frame_len_bits -
  581. s->block_len_bits][j];
  582. }
  583. if (j >= 0 && s->high_band_coded[ch][j]) {
  584. /* use noise with specified power */
  585. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  586. /* XXX: use a table */
  587. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  588. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  589. mult1 *= mdct_norm;
  590. for(i = 0;i < n; i++) {
  591. noise = s->noise_table[s->noise_index];
  592. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  593. *coefs++ = noise *
  594. exponents[i<<bsize>>esize] * mult1;
  595. }
  596. exponents += n<<bsize>>esize;
  597. } else {
  598. /* coded values + small noise */
  599. for(i = 0;i < n; i++) {
  600. noise = s->noise_table[s->noise_index];
  601. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  602. *coefs++ = ((*coefs1++) + noise) *
  603. exponents[i<<bsize>>esize] * mult;
  604. }
  605. exponents += n<<bsize>>esize;
  606. }
  607. }
  608. /* very high freqs : noise */
  609. n = s->block_len - s->coefs_end[bsize];
  610. mult1 = mult * exponents[((-1<<bsize))>>esize];
  611. for(i = 0; i < n; i++) {
  612. *coefs++ = s->noise_table[s->noise_index] * mult1;
  613. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  614. }
  615. } else {
  616. /* XXX: optimize more */
  617. for(i = 0;i < s->coefs_start; i++)
  618. *coefs++ = 0.0;
  619. n = nb_coefs[ch];
  620. for(i = 0;i < n; i++) {
  621. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  622. }
  623. n = s->block_len - s->coefs_end[bsize];
  624. for(i = 0;i < n; i++)
  625. *coefs++ = 0.0;
  626. }
  627. }
  628. }
  629. #ifdef TRACE
  630. for (ch = 0; ch < s->avctx->channels; ch++) {
  631. if (s->channel_coded[ch]) {
  632. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  633. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  634. }
  635. }
  636. #endif
  637. if (s->ms_stereo && s->channel_coded[1]) {
  638. /* nominal case for ms stereo: we do it before mdct */
  639. /* no need to optimize this case because it should almost
  640. never happen */
  641. if (!s->channel_coded[0]) {
  642. tprintf(s->avctx, "rare ms-stereo case happened\n");
  643. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  644. s->channel_coded[0] = 1;
  645. }
  646. s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  647. }
  648. next:
  649. mdct = &s->mdct_ctx[bsize];
  650. for (ch = 0; ch < s->avctx->channels; ch++) {
  651. int n4, index;
  652. n4 = s->block_len / 2;
  653. if(s->channel_coded[ch]){
  654. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  655. }else if(!(s->ms_stereo && ch==1))
  656. memset(s->output, 0, sizeof(s->output));
  657. /* multiply by the window and add in the frame */
  658. index = (s->frame_len / 2) + s->block_pos - n4;
  659. wma_window(s, &s->frame_out[ch][index]);
  660. }
  661. /* update block number */
  662. s->block_num++;
  663. s->block_pos += s->block_len;
  664. if (s->block_pos >= s->frame_len)
  665. return 1;
  666. else
  667. return 0;
  668. }
  669. /* decode a frame of frame_len samples */
  670. static int wma_decode_frame(WMACodecContext *s, float **samples,
  671. int samples_offset)
  672. {
  673. int ret, ch;
  674. #ifdef TRACE
  675. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  676. #endif
  677. /* read each block */
  678. s->block_num = 0;
  679. s->block_pos = 0;
  680. for(;;) {
  681. ret = wma_decode_block(s);
  682. if (ret < 0)
  683. return -1;
  684. if (ret)
  685. break;
  686. }
  687. for (ch = 0; ch < s->avctx->channels; ch++) {
  688. /* copy current block to output */
  689. memcpy(samples[ch] + samples_offset, s->frame_out[ch],
  690. s->frame_len * sizeof(*s->frame_out[ch]));
  691. /* prepare for next block */
  692. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  693. s->frame_len * sizeof(*s->frame_out[ch]));
  694. #ifdef TRACE
  695. dump_floats(s, "samples", 6, samples[ch] + samples_offset, s->frame_len);
  696. #endif
  697. }
  698. return 0;
  699. }
  700. static int wma_decode_superframe(AVCodecContext *avctx, void *data,
  701. int *got_frame_ptr, AVPacket *avpkt)
  702. {
  703. const uint8_t *buf = avpkt->data;
  704. int buf_size = avpkt->size;
  705. WMACodecContext *s = avctx->priv_data;
  706. int nb_frames, bit_offset, i, pos, len, ret;
  707. uint8_t *q;
  708. float **samples;
  709. int samples_offset;
  710. tprintf(avctx, "***decode_superframe:\n");
  711. if(buf_size==0){
  712. s->last_superframe_len = 0;
  713. return 0;
  714. }
  715. if (buf_size < avctx->block_align) {
  716. av_log(avctx, AV_LOG_ERROR,
  717. "Input packet size too small (%d < %d)\n",
  718. buf_size, avctx->block_align);
  719. return AVERROR_INVALIDDATA;
  720. }
  721. buf_size = avctx->block_align;
  722. init_get_bits(&s->gb, buf, buf_size*8);
  723. if (s->use_bit_reservoir) {
  724. /* read super frame header */
  725. skip_bits(&s->gb, 4); /* super frame index */
  726. nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
  727. } else {
  728. nb_frames = 1;
  729. }
  730. /* get output buffer */
  731. s->frame.nb_samples = nb_frames * s->frame_len;
  732. if ((ret = ff_get_buffer(avctx, &s->frame)) < 0) {
  733. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  734. return ret;
  735. }
  736. samples = (float **)s->frame.extended_data;
  737. samples_offset = 0;
  738. if (s->use_bit_reservoir) {
  739. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  740. if (bit_offset > get_bits_left(&s->gb)) {
  741. av_log(avctx, AV_LOG_ERROR,
  742. "Invalid last frame bit offset %d > buf size %d (%d)\n",
  743. bit_offset, get_bits_left(&s->gb), buf_size);
  744. goto fail;
  745. }
  746. if (s->last_superframe_len > 0) {
  747. /* add bit_offset bits to last frame */
  748. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  749. MAX_CODED_SUPERFRAME_SIZE)
  750. goto fail;
  751. q = s->last_superframe + s->last_superframe_len;
  752. len = bit_offset;
  753. while (len > 7) {
  754. *q++ = (get_bits)(&s->gb, 8);
  755. len -= 8;
  756. }
  757. if (len > 0) {
  758. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  759. }
  760. memset(q, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  761. /* XXX: bit_offset bits into last frame */
  762. init_get_bits(&s->gb, s->last_superframe, s->last_superframe_len * 8 + bit_offset);
  763. /* skip unused bits */
  764. if (s->last_bitoffset > 0)
  765. skip_bits(&s->gb, s->last_bitoffset);
  766. /* this frame is stored in the last superframe and in the
  767. current one */
  768. if (wma_decode_frame(s, samples, samples_offset) < 0)
  769. goto fail;
  770. samples_offset += s->frame_len;
  771. nb_frames--;
  772. }
  773. /* read each frame starting from bit_offset */
  774. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  775. if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
  776. return AVERROR_INVALIDDATA;
  777. init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3))*8);
  778. len = pos & 7;
  779. if (len > 0)
  780. skip_bits(&s->gb, len);
  781. s->reset_block_lengths = 1;
  782. for(i=0;i<nb_frames;i++) {
  783. if (wma_decode_frame(s, samples, samples_offset) < 0)
  784. goto fail;
  785. samples_offset += s->frame_len;
  786. }
  787. /* we copy the end of the frame in the last frame buffer */
  788. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  789. s->last_bitoffset = pos & 7;
  790. pos >>= 3;
  791. len = buf_size - pos;
  792. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  793. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  794. goto fail;
  795. }
  796. s->last_superframe_len = len;
  797. memcpy(s->last_superframe, buf + pos, len);
  798. } else {
  799. /* single frame decode */
  800. if (wma_decode_frame(s, samples, samples_offset) < 0)
  801. goto fail;
  802. samples_offset += s->frame_len;
  803. }
  804. av_dlog(s->avctx, "%d %d %d %d outbytes:%td eaten:%d\n",
  805. s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len,
  806. (int8_t *)samples - (int8_t *)data, avctx->block_align);
  807. *got_frame_ptr = 1;
  808. *(AVFrame *)data = s->frame;
  809. return avctx->block_align;
  810. fail:
  811. /* when error, we reset the bit reservoir */
  812. s->last_superframe_len = 0;
  813. return -1;
  814. }
  815. static av_cold void flush(AVCodecContext *avctx)
  816. {
  817. WMACodecContext *s = avctx->priv_data;
  818. s->last_bitoffset=
  819. s->last_superframe_len= 0;
  820. }
  821. AVCodec ff_wmav1_decoder = {
  822. .name = "wmav1",
  823. .type = AVMEDIA_TYPE_AUDIO,
  824. .id = AV_CODEC_ID_WMAV1,
  825. .priv_data_size = sizeof(WMACodecContext),
  826. .init = wma_decode_init,
  827. .close = ff_wma_end,
  828. .decode = wma_decode_superframe,
  829. .flush = flush,
  830. .capabilities = CODEC_CAP_DR1,
  831. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  832. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  833. AV_SAMPLE_FMT_NONE },
  834. };
  835. AVCodec ff_wmav2_decoder = {
  836. .name = "wmav2",
  837. .type = AVMEDIA_TYPE_AUDIO,
  838. .id = AV_CODEC_ID_WMAV2,
  839. .priv_data_size = sizeof(WMACodecContext),
  840. .init = wma_decode_init,
  841. .close = ff_wma_end,
  842. .decode = wma_decode_superframe,
  843. .flush = flush,
  844. .capabilities = CODEC_CAP_DR1,
  845. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  846. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  847. AV_SAMPLE_FMT_NONE },
  848. };