You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

884 lines
39KB

  1. /*
  2. * Copyright (C) 2011-2013 Michael Niedermayer (michaelni@gmx.at)
  3. *
  4. * This file is part of libswresample
  5. *
  6. * libswresample is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * libswresample is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with libswresample; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/opt.h"
  21. #include "swresample_internal.h"
  22. #include "audioconvert.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/channel_layout.h"
  25. #include <float.h>
  26. #define C30DB M_SQRT2
  27. #define C15DB 1.189207115
  28. #define C__0DB 1.0
  29. #define C_15DB 0.840896415
  30. #define C_30DB M_SQRT1_2
  31. #define C_45DB 0.594603558
  32. #define C_60DB 0.5
  33. #define ALIGN 32
  34. //TODO split options array out?
  35. #define OFFSET(x) offsetof(SwrContext,x)
  36. #define PARAM AV_OPT_FLAG_AUDIO_PARAM
  37. static const AVOption options[]={
  38. {"ich" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  39. {"in_channel_count" , "set input channel count" , OFFSET( in.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  40. {"och" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  41. {"out_channel_count" , "set output channel count" , OFFSET(out.ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  42. {"uch" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  43. {"used_channel_count" , "set used channel count" , OFFSET(used_ch_count ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_CH_MAX, PARAM},
  44. {"isr" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  45. {"in_sample_rate" , "set input sample rate" , OFFSET( in_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  46. {"osr" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  47. {"out_sample_rate" , "set output sample rate" , OFFSET(out_sample_rate), AV_OPT_TYPE_INT , {.i64=0 }, 0 , INT_MAX , PARAM},
  48. {"isf" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  49. {"in_sample_fmt" , "set input sample format" , OFFSET( in_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  50. {"osf" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  51. {"out_sample_fmt" , "set output sample format" , OFFSET(out_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  52. {"tsf" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  53. {"internal_sample_fmt" , "set internal sample format" , OFFSET(int_sample_fmt ), AV_OPT_TYPE_SAMPLE_FMT , {.i64=AV_SAMPLE_FMT_NONE}, -1 , AV_SAMPLE_FMT_NB-1, PARAM},
  54. {"icl" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  55. {"in_channel_layout" , "set input channel layout" , OFFSET( in_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  56. {"ocl" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  57. {"out_channel_layout" , "set output channel layout" , OFFSET(out_ch_layout ), AV_OPT_TYPE_INT64, {.i64=0 }, 0 , INT64_MAX , PARAM, "channel_layout"},
  58. {"clev" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  59. {"center_mix_level" , "set center mix level" , OFFSET(clev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  60. {"slev" , "set surround mix level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  61. {"surround_mix_level" , "set surround mix Level" , OFFSET(slev ), AV_OPT_TYPE_FLOAT, {.dbl=C_30DB }, -32 , 32 , PARAM},
  62. {"lfe_mix_level" , "set LFE mix level" , OFFSET(lfe_mix_level ), AV_OPT_TYPE_FLOAT, {.dbl=0 }, -32 , 32 , PARAM},
  63. {"rmvol" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  64. {"rematrix_volume" , "set rematrix volume" , OFFSET(rematrix_volume), AV_OPT_TYPE_FLOAT, {.dbl=1.0 }, -1000 , 1000 , PARAM},
  65. {"flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  66. {"swr_flags" , "set flags" , OFFSET(flags ), AV_OPT_TYPE_FLAGS, {.i64=0 }, 0 , UINT_MAX , PARAM, "flags"},
  67. {"res" , "force resampling" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_FLAG_RESAMPLE }, INT_MIN, INT_MAX , PARAM, "flags"},
  68. {"dither_scale" , "set dither scale" , OFFSET(dither.scale ), AV_OPT_TYPE_FLOAT, {.dbl=1 }, 0 , INT_MAX , PARAM},
  69. {"dither_method" , "set dither method" , OFFSET(dither.method ), AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_DITHER_NB-1, PARAM, "dither_method"},
  70. {"rectangular" , "select rectangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_RECTANGULAR}, INT_MIN, INT_MAX , PARAM, "dither_method"},
  71. {"triangular" , "select triangular dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR }, INT_MIN, INT_MAX , PARAM, "dither_method"},
  72. {"triangular_hp" , "select triangular dither with high pass" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_TRIANGULAR_HIGHPASS }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  73. {"lipshitz" , "select lipshitz noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LIPSHITZ}, INT_MIN, INT_MAX, PARAM, "dither_method"},
  74. {"shibata" , "select shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  75. {"low_shibata" , "select low shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_LOW_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  76. {"high_shibata" , "select high shibata noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_HIGH_SHIBATA }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  77. {"f_weighted" , "select f-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_F_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  78. {"modified_e_weighted" , "select modified-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_MODIFIED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  79. {"improved_e_weighted" , "select improved-e-weighted noise shaping dither" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_DITHER_NS_IMPROVED_E_WEIGHTED }, INT_MIN, INT_MAX, PARAM, "dither_method"},
  80. {"filter_size" , "set swr resampling filter size", OFFSET(filter_size) , AV_OPT_TYPE_INT , {.i64=32 }, 0 , INT_MAX , PARAM },
  81. {"phase_shift" , "set swr resampling phase shift", OFFSET(phase_shift) , AV_OPT_TYPE_INT , {.i64=10 }, 0 , 30 , PARAM },
  82. {"linear_interp" , "enable linear interpolation" , OFFSET(linear_interp) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  83. {"cutoff" , "set cutoff frequency ratio" , OFFSET(cutoff) , AV_OPT_TYPE_DOUBLE,{.dbl=0. }, 0 , 1 , PARAM },
  84. {"resampler" , "set resampling Engine" , OFFSET(engine) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , SWR_ENGINE_NB-1, PARAM, "resampler"},
  85. {"swr" , "select SW Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SWR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  86. {"soxr" , "select SoX Resampler" , 0 , AV_OPT_TYPE_CONST, {.i64=SWR_ENGINE_SOXR }, INT_MIN, INT_MAX , PARAM, "resampler"},
  87. {"precision" , "set soxr resampling precision (in bits)"
  88. , OFFSET(precision) , AV_OPT_TYPE_DOUBLE,{.dbl=20.0 }, 15.0 , 33.0 , PARAM },
  89. {"cheby" , "enable soxr Chebyshev passband & higher-precision irrational ratio approximation"
  90. , OFFSET(cheby) , AV_OPT_TYPE_INT , {.i64=0 }, 0 , 1 , PARAM },
  91. {"min_comp" , "set minimum difference between timestamps and audio data (in seconds) below which no timestamp compensation of either kind is applied"
  92. , OFFSET(min_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=FLT_MAX }, 0 , FLT_MAX , PARAM },
  93. {"min_hard_comp" , "set minimum difference between timestamps and audio data (in seconds) to trigger padding/trimming the data."
  94. , OFFSET(min_hard_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0.1 }, 0 , INT_MAX , PARAM },
  95. {"comp_duration" , "set duration (in seconds) over which data is stretched/squeezed to make it match the timestamps."
  96. , OFFSET(soft_compensation_duration),AV_OPT_TYPE_FLOAT ,{.dbl=1 }, 0 , INT_MAX , PARAM },
  97. {"max_soft_comp" , "set maximum factor by which data is stretched/squeezed to make it match the timestamps."
  98. , OFFSET(max_soft_compensation),AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  99. {"async" , "simplified 1 parameter audio timestamp matching, 0(disabled), 1(filling and trimming), >1(maximum stretch/squeeze in samples per second)"
  100. , OFFSET(async) , AV_OPT_TYPE_FLOAT ,{.dbl=0 }, INT_MIN, INT_MAX , PARAM },
  101. { "matrix_encoding" , "set matrixed stereo encoding" , OFFSET(matrix_encoding), AV_OPT_TYPE_INT ,{.i64 = AV_MATRIX_ENCODING_NONE}, AV_MATRIX_ENCODING_NONE, AV_MATRIX_ENCODING_NB-1, PARAM, "matrix_encoding" },
  102. { "none", "select none", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_NONE }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  103. { "dolby", "select Dolby", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DOLBY }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  104. { "dplii", "select Dolby Pro Logic II", 0, AV_OPT_TYPE_CONST, { .i64 = AV_MATRIX_ENCODING_DPLII }, INT_MIN, INT_MAX, PARAM, "matrix_encoding" },
  105. { "filter_type" , "select swr filter type" , OFFSET(filter_type) , AV_OPT_TYPE_INT , { .i64 = SWR_FILTER_TYPE_KAISER }, SWR_FILTER_TYPE_CUBIC, SWR_FILTER_TYPE_KAISER, PARAM, "filter_type" },
  106. { "cubic" , "select cubic" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_CUBIC }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  107. { "blackman_nuttall", "select Blackman Nuttall Windowed Sinc", 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_BLACKMAN_NUTTALL }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  108. { "kaiser" , "select Kaiser Windowed Sinc" , 0 , AV_OPT_TYPE_CONST, { .i64 = SWR_FILTER_TYPE_KAISER }, INT_MIN, INT_MAX, PARAM, "filter_type" },
  109. { "kaiser_beta" , "set swr Kaiser Window Beta" , OFFSET(kaiser_beta) , AV_OPT_TYPE_INT , {.i64=9 }, 2 , 16 , PARAM },
  110. {0}
  111. };
  112. static const char* context_to_name(void* ptr) {
  113. return "SWR";
  114. }
  115. static const AVClass av_class = {
  116. .class_name = "SWResampler",
  117. .item_name = context_to_name,
  118. .option = options,
  119. .version = LIBAVUTIL_VERSION_INT,
  120. .log_level_offset_offset = OFFSET(log_level_offset),
  121. .parent_log_context_offset = OFFSET(log_ctx),
  122. .category = AV_CLASS_CATEGORY_SWRESAMPLER,
  123. };
  124. unsigned swresample_version(void)
  125. {
  126. av_assert0(LIBSWRESAMPLE_VERSION_MICRO >= 100);
  127. return LIBSWRESAMPLE_VERSION_INT;
  128. }
  129. const char *swresample_configuration(void)
  130. {
  131. return FFMPEG_CONFIGURATION;
  132. }
  133. const char *swresample_license(void)
  134. {
  135. #define LICENSE_PREFIX "libswresample license: "
  136. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  137. }
  138. int swr_set_channel_mapping(struct SwrContext *s, const int *channel_map){
  139. if(!s || s->in_convert) // s needs to be allocated but not initialized
  140. return AVERROR(EINVAL);
  141. s->channel_map = channel_map;
  142. return 0;
  143. }
  144. const AVClass *swr_get_class(void)
  145. {
  146. return &av_class;
  147. }
  148. av_cold struct SwrContext *swr_alloc(void){
  149. SwrContext *s= av_mallocz(sizeof(SwrContext));
  150. if(s){
  151. s->av_class= &av_class;
  152. av_opt_set_defaults(s);
  153. }
  154. return s;
  155. }
  156. struct SwrContext *swr_alloc_set_opts(struct SwrContext *s,
  157. int64_t out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate,
  158. int64_t in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate,
  159. int log_offset, void *log_ctx){
  160. if(!s) s= swr_alloc();
  161. if(!s) return NULL;
  162. s->log_level_offset= log_offset;
  163. s->log_ctx= log_ctx;
  164. av_opt_set_int(s, "ocl", out_ch_layout, 0);
  165. av_opt_set_int(s, "osf", out_sample_fmt, 0);
  166. av_opt_set_int(s, "osr", out_sample_rate, 0);
  167. av_opt_set_int(s, "icl", in_ch_layout, 0);
  168. av_opt_set_int(s, "isf", in_sample_fmt, 0);
  169. av_opt_set_int(s, "isr", in_sample_rate, 0);
  170. av_opt_set_int(s, "tsf", AV_SAMPLE_FMT_NONE, 0);
  171. av_opt_set_int(s, "ich", av_get_channel_layout_nb_channels(s-> in_ch_layout), 0);
  172. av_opt_set_int(s, "och", av_get_channel_layout_nb_channels(s->out_ch_layout), 0);
  173. av_opt_set_int(s, "uch", 0, 0);
  174. return s;
  175. }
  176. static void set_audiodata_fmt(AudioData *a, enum AVSampleFormat fmt){
  177. a->fmt = fmt;
  178. a->bps = av_get_bytes_per_sample(fmt);
  179. a->planar= av_sample_fmt_is_planar(fmt);
  180. }
  181. static void free_temp(AudioData *a){
  182. av_free(a->data);
  183. memset(a, 0, sizeof(*a));
  184. }
  185. av_cold void swr_free(SwrContext **ss){
  186. SwrContext *s= *ss;
  187. if(s){
  188. free_temp(&s->postin);
  189. free_temp(&s->midbuf);
  190. free_temp(&s->preout);
  191. free_temp(&s->in_buffer);
  192. free_temp(&s->dither.noise);
  193. swri_audio_convert_free(&s-> in_convert);
  194. swri_audio_convert_free(&s->out_convert);
  195. swri_audio_convert_free(&s->full_convert);
  196. if (s->resampler)
  197. s->resampler->free(&s->resample);
  198. swri_rematrix_free(s);
  199. }
  200. av_freep(ss);
  201. }
  202. av_cold int swr_init(struct SwrContext *s){
  203. s->in_buffer_index= 0;
  204. s->in_buffer_count= 0;
  205. s->resample_in_constraint= 0;
  206. free_temp(&s->postin);
  207. free_temp(&s->midbuf);
  208. free_temp(&s->preout);
  209. free_temp(&s->in_buffer);
  210. free_temp(&s->dither.noise);
  211. memset(s->in.ch, 0, sizeof(s->in.ch));
  212. memset(s->out.ch, 0, sizeof(s->out.ch));
  213. swri_audio_convert_free(&s-> in_convert);
  214. swri_audio_convert_free(&s->out_convert);
  215. swri_audio_convert_free(&s->full_convert);
  216. swri_rematrix_free(s);
  217. s->flushed = 0;
  218. if(s-> in_sample_fmt >= AV_SAMPLE_FMT_NB){
  219. av_log(s, AV_LOG_ERROR, "Requested input sample format %d is invalid\n", s->in_sample_fmt);
  220. return AVERROR(EINVAL);
  221. }
  222. if(s->out_sample_fmt >= AV_SAMPLE_FMT_NB){
  223. av_log(s, AV_LOG_ERROR, "Requested output sample format %d is invalid\n", s->out_sample_fmt);
  224. return AVERROR(EINVAL);
  225. }
  226. if(s->int_sample_fmt == AV_SAMPLE_FMT_NONE){
  227. if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_S16P){
  228. s->int_sample_fmt= AV_SAMPLE_FMT_S16P;
  229. }else if(av_get_planar_sample_fmt(s->in_sample_fmt) <= AV_SAMPLE_FMT_FLTP){
  230. s->int_sample_fmt= AV_SAMPLE_FMT_FLTP;
  231. }else{
  232. av_log(s, AV_LOG_DEBUG, "Using double precision mode\n");
  233. s->int_sample_fmt= AV_SAMPLE_FMT_DBLP;
  234. }
  235. }
  236. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  237. &&s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  238. &&s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  239. &&s->int_sample_fmt != AV_SAMPLE_FMT_DBLP){
  240. av_log(s, AV_LOG_ERROR, "Requested sample format %s is not supported internally, S16/S32/FLT/DBL is supported\n", av_get_sample_fmt_name(s->int_sample_fmt));
  241. return AVERROR(EINVAL);
  242. }
  243. switch(s->engine){
  244. #if CONFIG_LIBSOXR
  245. extern struct Resampler const soxr_resampler;
  246. case SWR_ENGINE_SOXR: s->resampler = &soxr_resampler; break;
  247. #endif
  248. case SWR_ENGINE_SWR : s->resampler = &swri_resampler; break;
  249. default:
  250. av_log(s, AV_LOG_ERROR, "Requested resampling engine is unavailable\n");
  251. return AVERROR(EINVAL);
  252. }
  253. set_audiodata_fmt(&s-> in, s-> in_sample_fmt);
  254. set_audiodata_fmt(&s->out, s->out_sample_fmt);
  255. if (s->async) {
  256. if (s->min_compensation >= FLT_MAX/2)
  257. s->min_compensation = 0.001;
  258. if (s->async > 1.0001) {
  259. s->max_soft_compensation = s->async / (double) s->in_sample_rate;
  260. }
  261. }
  262. if (s->out_sample_rate!=s->in_sample_rate || (s->flags & SWR_FLAG_RESAMPLE)){
  263. s->resample = s->resampler->init(s->resample, s->out_sample_rate, s->in_sample_rate, s->filter_size, s->phase_shift, s->linear_interp, s->cutoff, s->int_sample_fmt, s->filter_type, s->kaiser_beta, s->precision, s->cheby);
  264. }else
  265. s->resampler->free(&s->resample);
  266. if( s->int_sample_fmt != AV_SAMPLE_FMT_S16P
  267. && s->int_sample_fmt != AV_SAMPLE_FMT_S32P
  268. && s->int_sample_fmt != AV_SAMPLE_FMT_FLTP
  269. && s->int_sample_fmt != AV_SAMPLE_FMT_DBLP
  270. && s->resample){
  271. av_log(s, AV_LOG_ERROR, "Resampling only supported with internal s16/s32/flt/dbl\n");
  272. return -1;
  273. }
  274. if(!s->used_ch_count)
  275. s->used_ch_count= s->in.ch_count;
  276. if(s->used_ch_count && s-> in_ch_layout && s->used_ch_count != av_get_channel_layout_nb_channels(s-> in_ch_layout)){
  277. av_log(s, AV_LOG_WARNING, "Input channel layout has a different number of channels than the number of used channels, ignoring layout\n");
  278. s-> in_ch_layout= 0;
  279. }
  280. if(!s-> in_ch_layout)
  281. s-> in_ch_layout= av_get_default_channel_layout(s->used_ch_count);
  282. if(!s->out_ch_layout)
  283. s->out_ch_layout= av_get_default_channel_layout(s->out.ch_count);
  284. s->rematrix= s->out_ch_layout !=s->in_ch_layout || s->rematrix_volume!=1.0 ||
  285. s->rematrix_custom;
  286. #define RSC 1 //FIXME finetune
  287. if(!s-> in.ch_count)
  288. s-> in.ch_count= av_get_channel_layout_nb_channels(s-> in_ch_layout);
  289. if(!s->used_ch_count)
  290. s->used_ch_count= s->in.ch_count;
  291. if(!s->out.ch_count)
  292. s->out.ch_count= av_get_channel_layout_nb_channels(s->out_ch_layout);
  293. if(!s-> in.ch_count){
  294. av_assert0(!s->in_ch_layout);
  295. av_log(s, AV_LOG_ERROR, "Input channel count and layout are unset\n");
  296. return -1;
  297. }
  298. if ((!s->out_ch_layout || !s->in_ch_layout) && s->used_ch_count != s->out.ch_count && !s->rematrix_custom) {
  299. char l1[1024], l2[1024];
  300. av_get_channel_layout_string(l1, sizeof(l1), s-> in.ch_count, s-> in_ch_layout);
  301. av_get_channel_layout_string(l2, sizeof(l2), s->out.ch_count, s->out_ch_layout);
  302. av_log(s, AV_LOG_ERROR, "Rematrix is needed between %s and %s "
  303. "but there is not enough information to do it\n", l1, l2);
  304. return -1;
  305. }
  306. av_assert0(s->used_ch_count);
  307. av_assert0(s->out.ch_count);
  308. s->resample_first= RSC*s->out.ch_count/s->in.ch_count - RSC < s->out_sample_rate/(float)s-> in_sample_rate - 1.0;
  309. s->in_buffer= s->in;
  310. if(!s->resample && !s->rematrix && !s->channel_map && !s->dither.method){
  311. s->full_convert = swri_audio_convert_alloc(s->out_sample_fmt,
  312. s-> in_sample_fmt, s-> in.ch_count, NULL, 0);
  313. return 0;
  314. }
  315. s->in_convert = swri_audio_convert_alloc(s->int_sample_fmt,
  316. s-> in_sample_fmt, s->used_ch_count, s->channel_map, 0);
  317. s->out_convert= swri_audio_convert_alloc(s->out_sample_fmt,
  318. s->int_sample_fmt, s->out.ch_count, NULL, 0);
  319. s->postin= s->in;
  320. s->preout= s->out;
  321. s->midbuf= s->in;
  322. if(s->channel_map){
  323. s->postin.ch_count=
  324. s->midbuf.ch_count= s->used_ch_count;
  325. if(s->resample)
  326. s->in_buffer.ch_count= s->used_ch_count;
  327. }
  328. if(!s->resample_first){
  329. s->midbuf.ch_count= s->out.ch_count;
  330. if(s->resample)
  331. s->in_buffer.ch_count = s->out.ch_count;
  332. }
  333. set_audiodata_fmt(&s->postin, s->int_sample_fmt);
  334. set_audiodata_fmt(&s->midbuf, s->int_sample_fmt);
  335. set_audiodata_fmt(&s->preout, s->int_sample_fmt);
  336. if(s->resample){
  337. set_audiodata_fmt(&s->in_buffer, s->int_sample_fmt);
  338. }
  339. s->dither.noise = s->preout;
  340. if(s->rematrix || s->dither.method)
  341. return swri_rematrix_init(s);
  342. return 0;
  343. }
  344. int swri_realloc_audio(AudioData *a, int count){
  345. int i, countb;
  346. AudioData old;
  347. if(count < 0 || count > INT_MAX/2/a->bps/a->ch_count)
  348. return AVERROR(EINVAL);
  349. if(a->count >= count)
  350. return 0;
  351. count*=2;
  352. countb= FFALIGN(count*a->bps, ALIGN);
  353. old= *a;
  354. av_assert0(a->bps);
  355. av_assert0(a->ch_count);
  356. a->data= av_mallocz(countb*a->ch_count);
  357. if(!a->data)
  358. return AVERROR(ENOMEM);
  359. for(i=0; i<a->ch_count; i++){
  360. a->ch[i]= a->data + i*(a->planar ? countb : a->bps);
  361. if(a->planar) memcpy(a->ch[i], old.ch[i], a->count*a->bps);
  362. }
  363. if(!a->planar) memcpy(a->ch[0], old.ch[0], a->count*a->ch_count*a->bps);
  364. av_free(old.data);
  365. a->count= count;
  366. return 1;
  367. }
  368. static void copy(AudioData *out, AudioData *in,
  369. int count){
  370. av_assert0(out->planar == in->planar);
  371. av_assert0(out->bps == in->bps);
  372. av_assert0(out->ch_count == in->ch_count);
  373. if(out->planar){
  374. int ch;
  375. for(ch=0; ch<out->ch_count; ch++)
  376. memcpy(out->ch[ch], in->ch[ch], count*out->bps);
  377. }else
  378. memcpy(out->ch[0], in->ch[0], count*out->ch_count*out->bps);
  379. }
  380. static void fill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  381. int i;
  382. if(!in_arg){
  383. memset(out->ch, 0, sizeof(out->ch));
  384. }else if(out->planar){
  385. for(i=0; i<out->ch_count; i++)
  386. out->ch[i]= in_arg[i];
  387. }else{
  388. for(i=0; i<out->ch_count; i++)
  389. out->ch[i]= in_arg[0] + i*out->bps;
  390. }
  391. }
  392. static void reversefill_audiodata(AudioData *out, uint8_t *in_arg [SWR_CH_MAX]){
  393. int i;
  394. if(out->planar){
  395. for(i=0; i<out->ch_count; i++)
  396. in_arg[i]= out->ch[i];
  397. }else{
  398. in_arg[0]= out->ch[0];
  399. }
  400. }
  401. /**
  402. *
  403. * out may be equal in.
  404. */
  405. static void buf_set(AudioData *out, AudioData *in, int count){
  406. int ch;
  407. if(in->planar){
  408. for(ch=0; ch<out->ch_count; ch++)
  409. out->ch[ch]= in->ch[ch] + count*out->bps;
  410. }else{
  411. for(ch=out->ch_count-1; ch>=0; ch--)
  412. out->ch[ch]= in->ch[0] + (ch + count*out->ch_count) * out->bps;
  413. }
  414. }
  415. /**
  416. *
  417. * @return number of samples output per channel
  418. */
  419. static int resample(SwrContext *s, AudioData *out_param, int out_count,
  420. const AudioData * in_param, int in_count){
  421. AudioData in, out, tmp;
  422. int ret_sum=0;
  423. int border=0;
  424. av_assert1(s->in_buffer.ch_count == in_param->ch_count);
  425. av_assert1(s->in_buffer.planar == in_param->planar);
  426. av_assert1(s->in_buffer.fmt == in_param->fmt);
  427. tmp=out=*out_param;
  428. in = *in_param;
  429. do{
  430. int ret, size, consumed;
  431. if(!s->resample_in_constraint && s->in_buffer_count){
  432. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  433. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &tmp, s->in_buffer_count, &consumed);
  434. out_count -= ret;
  435. ret_sum += ret;
  436. buf_set(&out, &out, ret);
  437. s->in_buffer_count -= consumed;
  438. s->in_buffer_index += consumed;
  439. if(!in_count)
  440. break;
  441. if(s->in_buffer_count <= border){
  442. buf_set(&in, &in, -s->in_buffer_count);
  443. in_count += s->in_buffer_count;
  444. s->in_buffer_count=0;
  445. s->in_buffer_index=0;
  446. border = 0;
  447. }
  448. }
  449. if((s->flushed || in_count) && !s->in_buffer_count){
  450. s->in_buffer_index=0;
  451. ret= s->resampler->multiple_resample(s->resample, &out, out_count, &in, in_count, &consumed);
  452. out_count -= ret;
  453. ret_sum += ret;
  454. buf_set(&out, &out, ret);
  455. in_count -= consumed;
  456. buf_set(&in, &in, consumed);
  457. }
  458. //TODO is this check sane considering the advanced copy avoidance below
  459. size= s->in_buffer_index + s->in_buffer_count + in_count;
  460. if( size > s->in_buffer.count
  461. && s->in_buffer_count + in_count <= s->in_buffer_index){
  462. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  463. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  464. s->in_buffer_index=0;
  465. }else
  466. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  467. return ret;
  468. if(in_count){
  469. int count= in_count;
  470. if(s->in_buffer_count && s->in_buffer_count+2 < count && out_count) count= s->in_buffer_count+2;
  471. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  472. copy(&tmp, &in, /*in_*/count);
  473. s->in_buffer_count += count;
  474. in_count -= count;
  475. border += count;
  476. buf_set(&in, &in, count);
  477. s->resample_in_constraint= 0;
  478. if(s->in_buffer_count != count || in_count)
  479. continue;
  480. }
  481. break;
  482. }while(1);
  483. s->resample_in_constraint= !!out_count;
  484. return ret_sum;
  485. }
  486. static int swr_convert_internal(struct SwrContext *s, AudioData *out, int out_count,
  487. AudioData *in , int in_count){
  488. AudioData *postin, *midbuf, *preout;
  489. int ret/*, in_max*/;
  490. AudioData preout_tmp, midbuf_tmp;
  491. if(s->full_convert){
  492. av_assert0(!s->resample);
  493. swri_audio_convert(s->full_convert, out, in, in_count);
  494. return out_count;
  495. }
  496. // in_max= out_count*(int64_t)s->in_sample_rate / s->out_sample_rate + resample_filter_taps;
  497. // in_count= FFMIN(in_count, in_in + 2 - s->hist_buffer_count);
  498. if((ret=swri_realloc_audio(&s->postin, in_count))<0)
  499. return ret;
  500. if(s->resample_first){
  501. av_assert0(s->midbuf.ch_count == s->used_ch_count);
  502. if((ret=swri_realloc_audio(&s->midbuf, out_count))<0)
  503. return ret;
  504. }else{
  505. av_assert0(s->midbuf.ch_count == s->out.ch_count);
  506. if((ret=swri_realloc_audio(&s->midbuf, in_count))<0)
  507. return ret;
  508. }
  509. if((ret=swri_realloc_audio(&s->preout, out_count))<0)
  510. return ret;
  511. postin= &s->postin;
  512. midbuf_tmp= s->midbuf;
  513. midbuf= &midbuf_tmp;
  514. preout_tmp= s->preout;
  515. preout= &preout_tmp;
  516. if(s->int_sample_fmt == s-> in_sample_fmt && s->in.planar && !s->channel_map)
  517. postin= in;
  518. if(s->resample_first ? !s->resample : !s->rematrix)
  519. midbuf= postin;
  520. if(s->resample_first ? !s->rematrix : !s->resample)
  521. preout= midbuf;
  522. if (preout == in && s->dither.method) {
  523. av_assert1(postin == midbuf && midbuf == preout);
  524. postin = midbuf = preout = &preout_tmp;
  525. }
  526. if(s->int_sample_fmt == s->out_sample_fmt && s->out.planar){
  527. if(preout==in){
  528. out_count= FFMIN(out_count, in_count); //TODO check at the end if this is needed or redundant
  529. av_assert0(s->in.planar); //we only support planar internally so it has to be, we support copying non planar though
  530. copy(out, in, out_count);
  531. return out_count;
  532. }
  533. else if(preout==postin) preout= midbuf= postin= out;
  534. else if(preout==midbuf) preout= midbuf= out;
  535. else preout= out;
  536. }
  537. if(in != postin){
  538. swri_audio_convert(s->in_convert, postin, in, in_count);
  539. }
  540. if(s->resample_first){
  541. if(postin != midbuf)
  542. out_count= resample(s, midbuf, out_count, postin, in_count);
  543. if(midbuf != preout)
  544. swri_rematrix(s, preout, midbuf, out_count, preout==out);
  545. }else{
  546. if(postin != midbuf)
  547. swri_rematrix(s, midbuf, postin, in_count, midbuf==out);
  548. if(midbuf != preout)
  549. out_count= resample(s, preout, out_count, midbuf, in_count);
  550. }
  551. if(preout != out && out_count){
  552. if(s->dither.method){
  553. int ch;
  554. int dither_count= FFMAX(out_count, 1<<16);
  555. av_assert0(preout != in);
  556. if((ret=swri_realloc_audio(&s->dither.noise, dither_count))<0)
  557. return ret;
  558. if(ret)
  559. for(ch=0; ch<s->dither.noise.ch_count; ch++)
  560. swri_get_dither(s, s->dither.noise.ch[ch], s->dither.noise.count, 12345678913579<<ch, s->out_sample_fmt, s->int_sample_fmt);
  561. av_assert0(s->dither.noise.ch_count == preout->ch_count);
  562. if(s->dither.dither_pos + out_count > s->dither.noise.count)
  563. s->dither.dither_pos = 0;
  564. if (s->dither.method < SWR_DITHER_NS){
  565. if (s->mix_2_1_simd) {
  566. int len1= out_count&~15;
  567. int off = len1 * preout->bps;
  568. if(len1)
  569. for(ch=0; ch<preout->ch_count; ch++)
  570. s->mix_2_1_simd(preout->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.dither_pos, s->native_one, 0, 0, len1);
  571. if(out_count != len1)
  572. for(ch=0; ch<preout->ch_count; ch++)
  573. s->mix_2_1_f(preout->ch[ch] + off, preout->ch[ch] + off, s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.dither_pos + off + len1, s->native_one, 0, 0, out_count - len1);
  574. } else {
  575. for(ch=0; ch<preout->ch_count; ch++)
  576. s->mix_2_1_f(preout->ch[ch], preout->ch[ch], s->dither.noise.ch[ch] + s->dither.noise.bps * s->dither.dither_pos, s->native_one, 0, 0, out_count);
  577. }
  578. } else {
  579. switch(s->int_sample_fmt) {
  580. case AV_SAMPLE_FMT_S16P :swri_noise_shaping_int16(s, preout, &s->dither.noise, out_count); break;
  581. case AV_SAMPLE_FMT_S32P :swri_noise_shaping_int32(s, preout, &s->dither.noise, out_count); break;
  582. case AV_SAMPLE_FMT_FLTP :swri_noise_shaping_float(s, preout, &s->dither.noise, out_count); break;
  583. case AV_SAMPLE_FMT_DBLP :swri_noise_shaping_double(s,preout, &s->dither.noise, out_count); break;
  584. }
  585. }
  586. s->dither.dither_pos += out_count;
  587. }
  588. //FIXME packed doesnt need more than 1 chan here!
  589. swri_audio_convert(s->out_convert, out, preout, out_count);
  590. }
  591. return out_count;
  592. }
  593. int swr_convert(struct SwrContext *s, uint8_t *out_arg[SWR_CH_MAX], int out_count,
  594. const uint8_t *in_arg [SWR_CH_MAX], int in_count){
  595. AudioData * in= &s->in;
  596. AudioData *out= &s->out;
  597. if(s->drop_output > 0){
  598. int ret;
  599. AudioData tmp = s->out;
  600. uint8_t *tmp_arg[SWR_CH_MAX];
  601. tmp.count = 0;
  602. tmp.data = NULL;
  603. if((ret=swri_realloc_audio(&tmp, s->drop_output))<0)
  604. return ret;
  605. reversefill_audiodata(&tmp, tmp_arg);
  606. s->drop_output *= -1; //FIXME find a less hackish solution
  607. ret = swr_convert(s, tmp_arg, -s->drop_output, in_arg, in_count); //FIXME optimize but this is as good as never called so maybe it doesnt matter
  608. s->drop_output *= -1;
  609. if(ret>0)
  610. s->drop_output -= ret;
  611. av_freep(&tmp.data);
  612. if(s->drop_output || !out_arg)
  613. return 0;
  614. in_count = 0;
  615. }
  616. if(!in_arg){
  617. if(s->resample){
  618. if (!s->flushed)
  619. s->resampler->flush(s);
  620. s->resample_in_constraint = 0;
  621. s->flushed = 1;
  622. }else if(!s->in_buffer_count){
  623. return 0;
  624. }
  625. }else
  626. fill_audiodata(in , (void*)in_arg);
  627. fill_audiodata(out, out_arg);
  628. if(s->resample){
  629. int ret = swr_convert_internal(s, out, out_count, in, in_count);
  630. if(ret>0 && !s->drop_output)
  631. s->outpts += ret * (int64_t)s->in_sample_rate;
  632. return ret;
  633. }else{
  634. AudioData tmp= *in;
  635. int ret2=0;
  636. int ret, size;
  637. size = FFMIN(out_count, s->in_buffer_count);
  638. if(size){
  639. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  640. ret= swr_convert_internal(s, out, size, &tmp, size);
  641. if(ret<0)
  642. return ret;
  643. ret2= ret;
  644. s->in_buffer_count -= ret;
  645. s->in_buffer_index += ret;
  646. buf_set(out, out, ret);
  647. out_count -= ret;
  648. if(!s->in_buffer_count)
  649. s->in_buffer_index = 0;
  650. }
  651. if(in_count){
  652. size= s->in_buffer_index + s->in_buffer_count + in_count - out_count;
  653. if(in_count > out_count) { //FIXME move after swr_convert_internal
  654. if( size > s->in_buffer.count
  655. && s->in_buffer_count + in_count - out_count <= s->in_buffer_index){
  656. buf_set(&tmp, &s->in_buffer, s->in_buffer_index);
  657. copy(&s->in_buffer, &tmp, s->in_buffer_count);
  658. s->in_buffer_index=0;
  659. }else
  660. if((ret=swri_realloc_audio(&s->in_buffer, size)) < 0)
  661. return ret;
  662. }
  663. if(out_count){
  664. size = FFMIN(in_count, out_count);
  665. ret= swr_convert_internal(s, out, size, in, size);
  666. if(ret<0)
  667. return ret;
  668. buf_set(in, in, ret);
  669. in_count -= ret;
  670. ret2 += ret;
  671. }
  672. if(in_count){
  673. buf_set(&tmp, &s->in_buffer, s->in_buffer_index + s->in_buffer_count);
  674. copy(&tmp, in, in_count);
  675. s->in_buffer_count += in_count;
  676. }
  677. }
  678. if(ret2>0 && !s->drop_output)
  679. s->outpts += ret2 * (int64_t)s->in_sample_rate;
  680. return ret2;
  681. }
  682. }
  683. int swr_drop_output(struct SwrContext *s, int count){
  684. s->drop_output += count;
  685. if(s->drop_output <= 0)
  686. return 0;
  687. av_log(s, AV_LOG_VERBOSE, "discarding %d audio samples\n", count);
  688. return swr_convert(s, NULL, s->drop_output, NULL, 0);
  689. }
  690. int swr_inject_silence(struct SwrContext *s, int count){
  691. int ret, i;
  692. AudioData silence = s->in;
  693. uint8_t *tmp_arg[SWR_CH_MAX];
  694. if(count <= 0)
  695. return 0;
  696. silence.count = 0;
  697. silence.data = NULL;
  698. if((ret=swri_realloc_audio(&silence, count))<0)
  699. return ret;
  700. if(silence.planar) for(i=0; i<silence.ch_count; i++) {
  701. memset(silence.ch[i], silence.bps==1 ? 0x80 : 0, count*silence.bps);
  702. } else
  703. memset(silence.ch[0], silence.bps==1 ? 0x80 : 0, count*silence.bps*silence.ch_count);
  704. reversefill_audiodata(&silence, tmp_arg);
  705. av_log(s, AV_LOG_VERBOSE, "adding %d audio samples of silence\n", count);
  706. ret = swr_convert(s, NULL, 0, (const uint8_t**)tmp_arg, count);
  707. av_freep(&silence.data);
  708. return ret;
  709. }
  710. int64_t swr_get_delay(struct SwrContext *s, int64_t base){
  711. if (s->resampler && s->resample){
  712. return s->resampler->get_delay(s, base);
  713. }else{
  714. return (s->in_buffer_count*base + (s->in_sample_rate>>1))/ s->in_sample_rate;
  715. }
  716. }
  717. int swr_set_compensation(struct SwrContext *s, int sample_delta, int compensation_distance){
  718. int ret;
  719. if (!s || compensation_distance < 0)
  720. return AVERROR(EINVAL);
  721. if (!compensation_distance && sample_delta)
  722. return AVERROR(EINVAL);
  723. if (!s->resample) {
  724. s->flags |= SWR_FLAG_RESAMPLE;
  725. ret = swr_init(s);
  726. if (ret < 0)
  727. return ret;
  728. }
  729. if (!s->resampler->set_compensation){
  730. return AVERROR(EINVAL);
  731. }else{
  732. return s->resampler->set_compensation(s->resample, sample_delta, compensation_distance);
  733. }
  734. }
  735. int64_t swr_next_pts(struct SwrContext *s, int64_t pts){
  736. if(pts == INT64_MIN)
  737. return s->outpts;
  738. if(s->min_compensation >= FLT_MAX) {
  739. return (s->outpts = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate));
  740. } else {
  741. int64_t delta = pts - swr_get_delay(s, s->in_sample_rate * (int64_t)s->out_sample_rate) - s->outpts;
  742. double fdelta = delta /(double)(s->in_sample_rate * (int64_t)s->out_sample_rate);
  743. if(fabs(fdelta) > s->min_compensation) {
  744. if(!s->outpts || fabs(fdelta) > s->min_hard_compensation){
  745. int ret;
  746. if(delta > 0) ret = swr_inject_silence(s, delta / s->out_sample_rate);
  747. else ret = swr_drop_output (s, -delta / s-> in_sample_rate);
  748. if(ret<0){
  749. av_log(s, AV_LOG_ERROR, "Failed to compensate for timestamp delta of %f\n", fdelta);
  750. }
  751. } else if(s->soft_compensation_duration && s->max_soft_compensation) {
  752. int duration = s->out_sample_rate * s->soft_compensation_duration;
  753. double max_soft_compensation = s->max_soft_compensation / (s->max_soft_compensation < 0 ? -s->in_sample_rate : 1);
  754. int comp = av_clipf(fdelta, -max_soft_compensation, max_soft_compensation) * duration ;
  755. av_log(s, AV_LOG_VERBOSE, "compensating audio timestamp drift:%f compensation:%d in:%d\n", fdelta, comp, duration);
  756. swr_set_compensation(s, comp, duration);
  757. }
  758. }
  759. return s->outpts;
  760. }
  761. }