You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1771 lines
63KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #include <assert.h>
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avutil.h"
  39. #include "libavutil/bswap.h"
  40. #include "libavutil/cpu.h"
  41. #include "libavutil/intreadwrite.h"
  42. #include "libavutil/mathematics.h"
  43. #include "libavutil/opt.h"
  44. #include "libavutil/pixdesc.h"
  45. #include "libavutil/x86/asm.h"
  46. #include "libavutil/x86/cpu.h"
  47. #include "rgb2rgb.h"
  48. #include "swscale.h"
  49. #include "swscale_internal.h"
  50. unsigned swscale_version(void)
  51. {
  52. return LIBSWSCALE_VERSION_INT;
  53. }
  54. const char *swscale_configuration(void)
  55. {
  56. return LIBAV_CONFIGURATION;
  57. }
  58. const char *swscale_license(void)
  59. {
  60. #define LICENSE_PREFIX "libswscale license: "
  61. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  62. }
  63. #define RET 0xC3 // near return opcode for x86
  64. typedef struct FormatEntry {
  65. uint8_t is_supported_in :1;
  66. uint8_t is_supported_out :1;
  67. uint8_t is_supported_endianness :1;
  68. } FormatEntry;
  69. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  70. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  71. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  72. [AV_PIX_FMT_RGB24] = { 1, 1 },
  73. [AV_PIX_FMT_BGR24] = { 1, 1 },
  74. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  75. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  76. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  77. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  78. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  79. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  80. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  81. [AV_PIX_FMT_PAL8] = { 1, 0 },
  82. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  83. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  84. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  85. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  86. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  87. [AV_PIX_FMT_BGR8] = { 1, 1 },
  88. [AV_PIX_FMT_BGR4] = { 0, 1 },
  89. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  90. [AV_PIX_FMT_RGB8] = { 1, 1 },
  91. [AV_PIX_FMT_RGB4] = { 0, 1 },
  92. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  93. [AV_PIX_FMT_NV12] = { 1, 1 },
  94. [AV_PIX_FMT_NV21] = { 1, 1 },
  95. [AV_PIX_FMT_ARGB] = { 1, 1 },
  96. [AV_PIX_FMT_RGBA] = { 1, 1 },
  97. [AV_PIX_FMT_ABGR] = { 1, 1 },
  98. [AV_PIX_FMT_BGRA] = { 1, 1 },
  99. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  100. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  101. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  102. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  103. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  104. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  105. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  106. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  107. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  108. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  109. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  110. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  111. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  113. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  114. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  115. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  116. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  117. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  118. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  119. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  120. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  124. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  125. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  126. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  127. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  128. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  129. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  130. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  131. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  132. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  133. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  134. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  135. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  136. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  137. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  138. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  139. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  140. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  141. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  142. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  143. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  144. [AV_PIX_FMT_Y400A] = { 1, 0 },
  145. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  146. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  147. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  148. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  149. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  150. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  151. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  152. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  153. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  154. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  155. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  157. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  158. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  159. [AV_PIX_FMT_GBRP] = { 1, 1 },
  160. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  161. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  162. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  163. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  164. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  165. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  166. };
  167. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  168. {
  169. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  170. format_entries[pix_fmt].is_supported_in : 0;
  171. }
  172. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  173. {
  174. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  175. format_entries[pix_fmt].is_supported_out : 0;
  176. }
  177. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  178. {
  179. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  180. format_entries[pix_fmt].is_supported_endianness : 0;
  181. }
  182. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  183. const char *sws_format_name(enum AVPixelFormat format)
  184. {
  185. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  186. if (desc)
  187. return desc->name;
  188. else
  189. return "Unknown format";
  190. }
  191. static double getSplineCoeff(double a, double b, double c, double d,
  192. double dist)
  193. {
  194. if (dist <= 1.0)
  195. return ((d * dist + c) * dist + b) * dist + a;
  196. else
  197. return getSplineCoeff(0.0,
  198. b + 2.0 * c + 3.0 * d,
  199. c + 3.0 * d,
  200. -b - 3.0 * c - 6.0 * d,
  201. dist - 1.0);
  202. }
  203. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  204. int *outFilterSize, int xInc, int srcW,
  205. int dstW, int filterAlign, int one,
  206. int flags, int cpu_flags,
  207. SwsVector *srcFilter, SwsVector *dstFilter,
  208. double param[2], int is_horizontal)
  209. {
  210. int i;
  211. int filterSize;
  212. int filter2Size;
  213. int minFilterSize;
  214. int64_t *filter = NULL;
  215. int64_t *filter2 = NULL;
  216. const int64_t fone = 1LL << 54;
  217. int ret = -1;
  218. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  219. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  220. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  221. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  222. int i;
  223. filterSize = 1;
  224. FF_ALLOCZ_OR_GOTO(NULL, filter,
  225. dstW * sizeof(*filter) * filterSize, fail);
  226. for (i = 0; i < dstW; i++) {
  227. filter[i * filterSize] = fone;
  228. (*filterPos)[i] = i;
  229. }
  230. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  231. int i;
  232. int xDstInSrc;
  233. filterSize = 1;
  234. FF_ALLOC_OR_GOTO(NULL, filter,
  235. dstW * sizeof(*filter) * filterSize, fail);
  236. xDstInSrc = xInc / 2 - 0x8000;
  237. for (i = 0; i < dstW; i++) {
  238. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  239. (*filterPos)[i] = xx;
  240. filter[i] = fone;
  241. xDstInSrc += xInc;
  242. }
  243. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  244. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  245. int i;
  246. int xDstInSrc;
  247. filterSize = 2;
  248. FF_ALLOC_OR_GOTO(NULL, filter,
  249. dstW * sizeof(*filter) * filterSize, fail);
  250. xDstInSrc = xInc / 2 - 0x8000;
  251. for (i = 0; i < dstW; i++) {
  252. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  253. int j;
  254. (*filterPos)[i] = xx;
  255. // bilinear upscale / linear interpolate / area averaging
  256. for (j = 0; j < filterSize; j++) {
  257. int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
  258. (fone >> 16);
  259. if (coeff < 0)
  260. coeff = 0;
  261. filter[i * filterSize + j] = coeff;
  262. xx++;
  263. }
  264. xDstInSrc += xInc;
  265. }
  266. } else {
  267. int64_t xDstInSrc;
  268. int sizeFactor;
  269. if (flags & SWS_BICUBIC)
  270. sizeFactor = 4;
  271. else if (flags & SWS_X)
  272. sizeFactor = 8;
  273. else if (flags & SWS_AREA)
  274. sizeFactor = 1; // downscale only, for upscale it is bilinear
  275. else if (flags & SWS_GAUSS)
  276. sizeFactor = 8; // infinite ;)
  277. else if (flags & SWS_LANCZOS)
  278. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  279. else if (flags & SWS_SINC)
  280. sizeFactor = 20; // infinite ;)
  281. else if (flags & SWS_SPLINE)
  282. sizeFactor = 20; // infinite ;)
  283. else if (flags & SWS_BILINEAR)
  284. sizeFactor = 2;
  285. else {
  286. sizeFactor = 0; // GCC warning killer
  287. assert(0);
  288. }
  289. if (xInc <= 1 << 16)
  290. filterSize = 1 + sizeFactor; // upscale
  291. else
  292. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  293. filterSize = FFMIN(filterSize, srcW - 2);
  294. filterSize = FFMAX(filterSize, 1);
  295. FF_ALLOC_OR_GOTO(NULL, filter,
  296. dstW * sizeof(*filter) * filterSize, fail);
  297. xDstInSrc = xInc - 0x10000;
  298. for (i = 0; i < dstW; i++) {
  299. int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
  300. int j;
  301. (*filterPos)[i] = xx;
  302. for (j = 0; j < filterSize; j++) {
  303. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  304. double floatd;
  305. int64_t coeff;
  306. if (xInc > 1 << 16)
  307. d = d * dstW / srcW;
  308. floatd = d * (1.0 / (1 << 30));
  309. if (flags & SWS_BICUBIC) {
  310. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  311. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  312. if (d >= 1LL << 31) {
  313. coeff = 0.0;
  314. } else {
  315. int64_t dd = (d * d) >> 30;
  316. int64_t ddd = (dd * d) >> 30;
  317. if (d < 1LL << 30)
  318. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  319. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  320. (6 * (1 << 24) - 2 * B) * (1 << 30);
  321. else
  322. coeff = (-B - 6 * C) * ddd +
  323. (6 * B + 30 * C) * dd +
  324. (-12 * B - 48 * C) * d +
  325. (8 * B + 24 * C) * (1 << 30);
  326. }
  327. coeff *= fone >> (30 + 24);
  328. }
  329. #if 0
  330. else if (flags & SWS_X) {
  331. double p = param ? param * 0.01 : 0.3;
  332. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  333. coeff *= pow(2.0, -p * d * d);
  334. }
  335. #endif
  336. else if (flags & SWS_X) {
  337. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  338. double c;
  339. if (floatd < 1.0)
  340. c = cos(floatd * M_PI);
  341. else
  342. c = -1.0;
  343. if (c < 0.0)
  344. c = -pow(-c, A);
  345. else
  346. c = pow(c, A);
  347. coeff = (c * 0.5 + 0.5) * fone;
  348. } else if (flags & SWS_AREA) {
  349. int64_t d2 = d - (1 << 29);
  350. if (d2 * xInc < -(1LL << (29 + 16)))
  351. coeff = 1.0 * (1LL << (30 + 16));
  352. else if (d2 * xInc < (1LL << (29 + 16)))
  353. coeff = -d2 * xInc + (1LL << (29 + 16));
  354. else
  355. coeff = 0.0;
  356. coeff *= fone >> (30 + 16);
  357. } else if (flags & SWS_GAUSS) {
  358. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  359. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  360. } else if (flags & SWS_SINC) {
  361. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  362. } else if (flags & SWS_LANCZOS) {
  363. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  364. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  365. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  366. if (floatd > p)
  367. coeff = 0;
  368. } else if (flags & SWS_BILINEAR) {
  369. coeff = (1 << 30) - d;
  370. if (coeff < 0)
  371. coeff = 0;
  372. coeff *= fone >> 30;
  373. } else if (flags & SWS_SPLINE) {
  374. double p = -2.196152422706632;
  375. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  376. } else {
  377. coeff = 0.0; // GCC warning killer
  378. assert(0);
  379. }
  380. filter[i * filterSize + j] = coeff;
  381. xx++;
  382. }
  383. xDstInSrc += 2 * xInc;
  384. }
  385. }
  386. /* apply src & dst Filter to filter -> filter2
  387. * av_free(filter);
  388. */
  389. assert(filterSize > 0);
  390. filter2Size = filterSize;
  391. if (srcFilter)
  392. filter2Size += srcFilter->length - 1;
  393. if (dstFilter)
  394. filter2Size += dstFilter->length - 1;
  395. assert(filter2Size > 0);
  396. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  397. for (i = 0; i < dstW; i++) {
  398. int j, k;
  399. if (srcFilter) {
  400. for (k = 0; k < srcFilter->length; k++) {
  401. for (j = 0; j < filterSize; j++)
  402. filter2[i * filter2Size + k + j] +=
  403. srcFilter->coeff[k] * filter[i * filterSize + j];
  404. }
  405. } else {
  406. for (j = 0; j < filterSize; j++)
  407. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  408. }
  409. // FIXME dstFilter
  410. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  411. }
  412. av_freep(&filter);
  413. /* try to reduce the filter-size (step1 find size and shift left) */
  414. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  415. minFilterSize = 0;
  416. for (i = dstW - 1; i >= 0; i--) {
  417. int min = filter2Size;
  418. int j;
  419. int64_t cutOff = 0.0;
  420. /* get rid of near zero elements on the left by shifting left */
  421. for (j = 0; j < filter2Size; j++) {
  422. int k;
  423. cutOff += FFABS(filter2[i * filter2Size]);
  424. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  425. break;
  426. /* preserve monotonicity because the core can't handle the
  427. * filter otherwise */
  428. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  429. break;
  430. // move filter coefficients left
  431. for (k = 1; k < filter2Size; k++)
  432. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  433. filter2[i * filter2Size + k - 1] = 0;
  434. (*filterPos)[i]++;
  435. }
  436. cutOff = 0;
  437. /* count near zeros on the right */
  438. for (j = filter2Size - 1; j > 0; j--) {
  439. cutOff += FFABS(filter2[i * filter2Size + j]);
  440. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  441. break;
  442. min--;
  443. }
  444. if (min > minFilterSize)
  445. minFilterSize = min;
  446. }
  447. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  448. // we can handle the special case 4, so we don't want to go the full 8
  449. if (minFilterSize < 5)
  450. filterAlign = 4;
  451. /* We really don't want to waste our time doing useless computation, so
  452. * fall back on the scalar C code for very small filters.
  453. * Vectorizing is worth it only if you have a decent-sized vector. */
  454. if (minFilterSize < 3)
  455. filterAlign = 1;
  456. }
  457. if (INLINE_MMX(cpu_flags)) {
  458. // special case for unscaled vertical filtering
  459. if (minFilterSize == 1 && filterAlign == 2)
  460. filterAlign = 1;
  461. }
  462. assert(minFilterSize > 0);
  463. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  464. assert(filterSize > 0);
  465. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  466. if (filterSize >= MAX_FILTER_SIZE * 16 /
  467. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  468. goto fail;
  469. *outFilterSize = filterSize;
  470. if (flags & SWS_PRINT_INFO)
  471. av_log(NULL, AV_LOG_VERBOSE,
  472. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  473. filter2Size, filterSize);
  474. /* try to reduce the filter-size (step2 reduce it) */
  475. for (i = 0; i < dstW; i++) {
  476. int j;
  477. for (j = 0; j < filterSize; j++) {
  478. if (j >= filter2Size)
  479. filter[i * filterSize + j] = 0;
  480. else
  481. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  482. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  483. filter[i * filterSize + j] = 0;
  484. }
  485. }
  486. // FIXME try to align filterPos if possible
  487. // fix borders
  488. if (is_horizontal) {
  489. for (i = 0; i < dstW; i++) {
  490. int j;
  491. if ((*filterPos)[i] < 0) {
  492. // move filter coefficients left to compensate for filterPos
  493. for (j = 1; j < filterSize; j++) {
  494. int left = FFMAX(j + (*filterPos)[i], 0);
  495. filter[i * filterSize + left] += filter[i * filterSize + j];
  496. filter[i * filterSize + j] = 0;
  497. }
  498. (*filterPos)[i] = 0;
  499. }
  500. if ((*filterPos)[i] + filterSize > srcW) {
  501. int shift = (*filterPos)[i] + filterSize - srcW;
  502. // move filter coefficients right to compensate for filterPos
  503. for (j = filterSize - 2; j >= 0; j--) {
  504. int right = FFMIN(j + shift, filterSize - 1);
  505. filter[i * filterSize + right] += filter[i * filterSize + j];
  506. filter[i * filterSize + j] = 0;
  507. }
  508. (*filterPos)[i] = srcW - filterSize;
  509. }
  510. }
  511. }
  512. // Note the +1 is for the MMX scaler which reads over the end
  513. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  514. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  515. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  516. /* normalize & store in outFilter */
  517. for (i = 0; i < dstW; i++) {
  518. int j;
  519. int64_t error = 0;
  520. int64_t sum = 0;
  521. for (j = 0; j < filterSize; j++) {
  522. sum += filter[i * filterSize + j];
  523. }
  524. sum = (sum + one / 2) / one;
  525. for (j = 0; j < *outFilterSize; j++) {
  526. int64_t v = filter[i * filterSize + j] + error;
  527. int intV = ROUNDED_DIV(v, sum);
  528. (*outFilter)[i * (*outFilterSize) + j] = intV;
  529. error = v - intV * sum;
  530. }
  531. }
  532. (*filterPos)[dstW + 0] =
  533. (*filterPos)[dstW + 1] =
  534. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  535. * read over the end */
  536. for (i = 0; i < *outFilterSize; i++) {
  537. int k = (dstW - 1) * (*outFilterSize) + i;
  538. (*outFilter)[k + 1 * (*outFilterSize)] =
  539. (*outFilter)[k + 2 * (*outFilterSize)] =
  540. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  541. }
  542. ret = 0;
  543. fail:
  544. av_free(filter);
  545. av_free(filter2);
  546. return ret;
  547. }
  548. #if HAVE_MMXEXT_INLINE
  549. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  550. int16_t *filter, int32_t *filterPos,
  551. int numSplits)
  552. {
  553. uint8_t *fragmentA;
  554. x86_reg imm8OfPShufW1A;
  555. x86_reg imm8OfPShufW2A;
  556. x86_reg fragmentLengthA;
  557. uint8_t *fragmentB;
  558. x86_reg imm8OfPShufW1B;
  559. x86_reg imm8OfPShufW2B;
  560. x86_reg fragmentLengthB;
  561. int fragmentPos;
  562. int xpos, i;
  563. // create an optimized horizontal scaling routine
  564. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  565. * pshufw instructions. For every four output pixels, if four input pixels
  566. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  567. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  568. */
  569. // code fragment
  570. __asm__ volatile (
  571. "jmp 9f \n\t"
  572. // Begin
  573. "0: \n\t"
  574. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  575. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  576. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  577. "punpcklbw %%mm7, %%mm1 \n\t"
  578. "punpcklbw %%mm7, %%mm0 \n\t"
  579. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  580. "1: \n\t"
  581. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  582. "2: \n\t"
  583. "psubw %%mm1, %%mm0 \n\t"
  584. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  585. "pmullw %%mm3, %%mm0 \n\t"
  586. "psllw $7, %%mm1 \n\t"
  587. "paddw %%mm1, %%mm0 \n\t"
  588. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  589. "add $8, %%"REG_a" \n\t"
  590. // End
  591. "9: \n\t"
  592. // "int $3 \n\t"
  593. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  594. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  595. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  596. "dec %1 \n\t"
  597. "dec %2 \n\t"
  598. "sub %0, %1 \n\t"
  599. "sub %0, %2 \n\t"
  600. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  601. "sub %0, %3 \n\t"
  602. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  603. "=r" (fragmentLengthA)
  604. );
  605. __asm__ volatile (
  606. "jmp 9f \n\t"
  607. // Begin
  608. "0: \n\t"
  609. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  610. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  611. "punpcklbw %%mm7, %%mm0 \n\t"
  612. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  613. "1: \n\t"
  614. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  615. "2: \n\t"
  616. "psubw %%mm1, %%mm0 \n\t"
  617. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  618. "pmullw %%mm3, %%mm0 \n\t"
  619. "psllw $7, %%mm1 \n\t"
  620. "paddw %%mm1, %%mm0 \n\t"
  621. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  622. "add $8, %%"REG_a" \n\t"
  623. // End
  624. "9: \n\t"
  625. // "int $3 \n\t"
  626. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  627. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  628. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  629. "dec %1 \n\t"
  630. "dec %2 \n\t"
  631. "sub %0, %1 \n\t"
  632. "sub %0, %2 \n\t"
  633. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  634. "sub %0, %3 \n\t"
  635. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  636. "=r" (fragmentLengthB)
  637. );
  638. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  639. fragmentPos = 0;
  640. for (i = 0; i < dstW / numSplits; i++) {
  641. int xx = xpos >> 16;
  642. if ((i & 3) == 0) {
  643. int a = 0;
  644. int b = ((xpos + xInc) >> 16) - xx;
  645. int c = ((xpos + xInc * 2) >> 16) - xx;
  646. int d = ((xpos + xInc * 3) >> 16) - xx;
  647. int inc = (d + 1 < 4);
  648. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  649. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  650. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  651. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  652. int maxShift = 3 - (d + inc);
  653. int shift = 0;
  654. if (filterCode) {
  655. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  656. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  657. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  658. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  659. filterPos[i / 2] = xx;
  660. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  661. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  662. ((b + inc) << 2) |
  663. ((c + inc) << 4) |
  664. ((d + inc) << 6);
  665. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  666. (c << 4) |
  667. (d << 6);
  668. if (i + 4 - inc >= dstW)
  669. shift = maxShift; // avoid overread
  670. else if ((filterPos[i / 2] & 3) <= maxShift)
  671. shift = filterPos[i / 2] & 3; // align
  672. if (shift && i >= shift) {
  673. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  674. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  675. filterPos[i / 2] -= shift;
  676. }
  677. }
  678. fragmentPos += fragmentLength;
  679. if (filterCode)
  680. filterCode[fragmentPos] = RET;
  681. }
  682. xpos += xInc;
  683. }
  684. if (filterCode)
  685. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  686. return fragmentPos + 1;
  687. }
  688. #endif /* HAVE_MMXEXT_INLINE */
  689. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  690. {
  691. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  692. *h = desc->log2_chroma_w;
  693. *v = desc->log2_chroma_h;
  694. }
  695. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  696. int srcRange, const int table[4], int dstRange,
  697. int brightness, int contrast, int saturation)
  698. {
  699. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  700. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  701. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  702. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  703. c->brightness = brightness;
  704. c->contrast = contrast;
  705. c->saturation = saturation;
  706. c->srcRange = srcRange;
  707. c->dstRange = dstRange;
  708. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  709. return -1;
  710. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  711. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  712. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  713. contrast, saturation);
  714. // FIXME factorize
  715. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  716. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness,
  717. contrast, saturation);
  718. return 0;
  719. }
  720. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  721. int *srcRange, int **table, int *dstRange,
  722. int *brightness, int *contrast, int *saturation)
  723. {
  724. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  725. return -1;
  726. *inv_table = c->srcColorspaceTable;
  727. *table = c->dstColorspaceTable;
  728. *srcRange = c->srcRange;
  729. *dstRange = c->dstRange;
  730. *brightness = c->brightness;
  731. *contrast = c->contrast;
  732. *saturation = c->saturation;
  733. return 0;
  734. }
  735. static int handle_jpeg(enum AVPixelFormat *format)
  736. {
  737. switch (*format) {
  738. case AV_PIX_FMT_YUVJ420P:
  739. *format = AV_PIX_FMT_YUV420P;
  740. return 1;
  741. case AV_PIX_FMT_YUVJ422P:
  742. *format = AV_PIX_FMT_YUV422P;
  743. return 1;
  744. case AV_PIX_FMT_YUVJ444P:
  745. *format = AV_PIX_FMT_YUV444P;
  746. return 1;
  747. case AV_PIX_FMT_YUVJ440P:
  748. *format = AV_PIX_FMT_YUV440P;
  749. return 1;
  750. default:
  751. return 0;
  752. }
  753. }
  754. SwsContext *sws_alloc_context(void)
  755. {
  756. SwsContext *c = av_mallocz(sizeof(SwsContext));
  757. if (c) {
  758. c->av_class = &sws_context_class;
  759. av_opt_set_defaults(c);
  760. }
  761. return c;
  762. }
  763. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  764. SwsFilter *dstFilter)
  765. {
  766. int i;
  767. int usesVFilter, usesHFilter;
  768. int unscaled;
  769. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  770. int srcW = c->srcW;
  771. int srcH = c->srcH;
  772. int dstW = c->dstW;
  773. int dstH = c->dstH;
  774. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
  775. int dst_stride_px = dst_stride >> 1;
  776. int flags, cpu_flags;
  777. enum AVPixelFormat srcFormat = c->srcFormat;
  778. enum AVPixelFormat dstFormat = c->dstFormat;
  779. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  780. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  781. cpu_flags = av_get_cpu_flags();
  782. flags = c->flags;
  783. emms_c();
  784. if (!rgb15to16)
  785. sws_rgb2rgb_init();
  786. unscaled = (srcW == dstW && srcH == dstH);
  787. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  788. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  789. if (!sws_isSupportedInput(srcFormat)) {
  790. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  791. sws_format_name(srcFormat));
  792. return AVERROR(EINVAL);
  793. }
  794. if (!sws_isSupportedOutput(dstFormat)) {
  795. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  796. sws_format_name(dstFormat));
  797. return AVERROR(EINVAL);
  798. }
  799. }
  800. i = flags & (SWS_POINT |
  801. SWS_AREA |
  802. SWS_BILINEAR |
  803. SWS_FAST_BILINEAR |
  804. SWS_BICUBIC |
  805. SWS_X |
  806. SWS_GAUSS |
  807. SWS_LANCZOS |
  808. SWS_SINC |
  809. SWS_SPLINE |
  810. SWS_BICUBLIN);
  811. if (!i || (i & (i - 1))) {
  812. av_log(c, AV_LOG_ERROR,
  813. "Exactly one scaler algorithm must be chosen\n");
  814. return AVERROR(EINVAL);
  815. }
  816. /* sanity check */
  817. if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
  818. /* FIXME check if these are enough and try to lower them after
  819. * fixing the relevant parts of the code */
  820. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  821. srcW, srcH, dstW, dstH);
  822. return AVERROR(EINVAL);
  823. }
  824. if (!dstFilter)
  825. dstFilter = &dummyFilter;
  826. if (!srcFilter)
  827. srcFilter = &dummyFilter;
  828. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  829. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  830. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  831. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  832. c->vRounder = 4 * 0x0001000100010001ULL;
  833. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  834. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  835. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  836. (dstFilter->chrV && dstFilter->chrV->length > 1);
  837. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  838. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  839. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  840. (dstFilter->chrH && dstFilter->chrH->length > 1);
  841. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  842. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  843. if (isPlanarRGB(dstFormat)) {
  844. if (!(flags & SWS_FULL_CHR_H_INT)) {
  845. av_log(c, AV_LOG_DEBUG,
  846. "%s output is not supported with half chroma resolution, switching to full\n",
  847. av_get_pix_fmt_name(dstFormat));
  848. flags |= SWS_FULL_CHR_H_INT;
  849. c->flags = flags;
  850. }
  851. }
  852. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  853. * chroma interpolation */
  854. if (flags & SWS_FULL_CHR_H_INT &&
  855. isAnyRGB(dstFormat) &&
  856. !isPlanarRGB(dstFormat) &&
  857. dstFormat != AV_PIX_FMT_RGBA &&
  858. dstFormat != AV_PIX_FMT_ARGB &&
  859. dstFormat != AV_PIX_FMT_BGRA &&
  860. dstFormat != AV_PIX_FMT_ABGR &&
  861. dstFormat != AV_PIX_FMT_RGB24 &&
  862. dstFormat != AV_PIX_FMT_BGR24) {
  863. av_log(c, AV_LOG_ERROR,
  864. "full chroma interpolation for destination format '%s' not yet implemented\n",
  865. sws_format_name(dstFormat));
  866. flags &= ~SWS_FULL_CHR_H_INT;
  867. c->flags = flags;
  868. }
  869. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  870. c->chrDstHSubSample = 1;
  871. // drop some chroma lines if the user wants it
  872. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  873. SWS_SRC_V_CHR_DROP_SHIFT;
  874. c->chrSrcVSubSample += c->vChrDrop;
  875. /* drop every other pixel for chroma calculation unless user
  876. * wants full chroma */
  877. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  878. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  879. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  880. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  881. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  882. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  883. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  884. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  885. (flags & SWS_FAST_BILINEAR)))
  886. c->chrSrcHSubSample = 1;
  887. // Note the -((-x)>>y) is so that we always round toward +inf.
  888. c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
  889. c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
  890. c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
  891. c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
  892. /* unscaled special cases */
  893. if (unscaled && !usesHFilter && !usesVFilter &&
  894. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  895. ff_get_unscaled_swscale(c);
  896. if (c->swScale) {
  897. if (flags & SWS_PRINT_INFO)
  898. av_log(c, AV_LOG_INFO,
  899. "using unscaled %s -> %s special converter\n",
  900. sws_format_name(srcFormat), sws_format_name(dstFormat));
  901. return 0;
  902. }
  903. }
  904. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  905. if (c->srcBpc < 8)
  906. c->srcBpc = 8;
  907. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  908. if (c->dstBpc < 8)
  909. c->dstBpc = 8;
  910. if (c->dstBpc == 16)
  911. dst_stride <<= 1;
  912. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
  913. (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
  914. fail);
  915. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 10) {
  916. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  917. (srcW & 15) == 0) ? 1 : 0;
  918. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  919. && (flags & SWS_FAST_BILINEAR)) {
  920. if (flags & SWS_PRINT_INFO)
  921. av_log(c, AV_LOG_INFO,
  922. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  923. }
  924. if (usesHFilter)
  925. c->canMMXEXTBeUsed = 0;
  926. } else
  927. c->canMMXEXTBeUsed = 0;
  928. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  929. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  930. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  931. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  932. * correct scaling.
  933. * n-2 is the last chrominance sample available.
  934. * This is not perfect, but no one should notice the difference, the more
  935. * correct variant would be like the vertical one, but that would require
  936. * some special code for the first and last pixel */
  937. if (flags & SWS_FAST_BILINEAR) {
  938. if (c->canMMXEXTBeUsed) {
  939. c->lumXInc += 20;
  940. c->chrXInc += 20;
  941. }
  942. // we don't use the x86 asm scaler if MMX is available
  943. else if (INLINE_MMX(cpu_flags)) {
  944. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  945. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  946. }
  947. }
  948. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  949. /* precalculate horizontal scaler filter coefficients */
  950. {
  951. #if HAVE_MMXEXT_INLINE
  952. // can't downscale !!!
  953. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  954. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  955. NULL, NULL, 8);
  956. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  957. NULL, NULL, NULL, 4);
  958. #if USE_MMAP
  959. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  960. PROT_READ | PROT_WRITE,
  961. MAP_PRIVATE | MAP_ANONYMOUS,
  962. -1, 0);
  963. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  964. PROT_READ | PROT_WRITE,
  965. MAP_PRIVATE | MAP_ANONYMOUS,
  966. -1, 0);
  967. #elif HAVE_VIRTUALALLOC
  968. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  969. c->lumMmxextFilterCodeSize,
  970. MEM_COMMIT,
  971. PAGE_EXECUTE_READWRITE);
  972. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  973. c->chrMmxextFilterCodeSize,
  974. MEM_COMMIT,
  975. PAGE_EXECUTE_READWRITE);
  976. #else
  977. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  978. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  979. #endif
  980. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  981. return AVERROR(ENOMEM);
  982. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  983. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  984. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  985. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  986. init_hscaler_mmxext(dstW, c->lumXInc, c->lumMmxextFilterCode,
  987. c->hLumFilter, c->hLumFilterPos, 8);
  988. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  989. c->hChrFilter, c->hChrFilterPos, 4);
  990. #if USE_MMAP
  991. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  992. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  993. #endif
  994. } else
  995. #endif /* HAVE_MMXEXT_INLINE */
  996. {
  997. const int filterAlign =
  998. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  999. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1000. 1;
  1001. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1002. &c->hLumFilterSize, c->lumXInc,
  1003. srcW, dstW, filterAlign, 1 << 14,
  1004. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1005. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1006. c->param, 1) < 0)
  1007. goto fail;
  1008. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1009. &c->hChrFilterSize, c->chrXInc,
  1010. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1011. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1012. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1013. c->param, 1) < 0)
  1014. goto fail;
  1015. }
  1016. } // initialize horizontal stuff
  1017. /* precalculate vertical scaler filter coefficients */
  1018. {
  1019. const int filterAlign =
  1020. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 :
  1021. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  1022. 1;
  1023. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1024. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1025. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1026. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1027. c->param, 0) < 0)
  1028. goto fail;
  1029. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1030. c->chrYInc, c->chrSrcH, c->chrDstH,
  1031. filterAlign, (1 << 12),
  1032. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1033. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1034. c->param, 0) < 0)
  1035. goto fail;
  1036. #if HAVE_ALTIVEC
  1037. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1038. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1039. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1040. int j;
  1041. short *p = (short *)&c->vYCoeffsBank[i];
  1042. for (j = 0; j < 8; j++)
  1043. p[j] = c->vLumFilter[i];
  1044. }
  1045. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1046. int j;
  1047. short *p = (short *)&c->vCCoeffsBank[i];
  1048. for (j = 0; j < 8; j++)
  1049. p[j] = c->vChrFilter[i];
  1050. }
  1051. #endif
  1052. }
  1053. // calculate buffer sizes so that they won't run out while handling these damn slices
  1054. c->vLumBufSize = c->vLumFilterSize;
  1055. c->vChrBufSize = c->vChrFilterSize;
  1056. for (i = 0; i < dstH; i++) {
  1057. int chrI = (int64_t)i * c->chrDstH / dstH;
  1058. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1059. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1060. << c->chrSrcVSubSample));
  1061. nextSlice >>= c->chrSrcVSubSample;
  1062. nextSlice <<= c->chrSrcVSubSample;
  1063. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1064. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1065. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1066. (nextSlice >> c->chrSrcVSubSample))
  1067. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1068. c->vChrFilterPos[chrI];
  1069. }
  1070. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1071. * need to allocate several megabytes to handle all possible cases) */
  1072. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1073. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1074. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1075. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1076. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1077. /* Note we need at least one pixel more at the end because of the MMX code
  1078. * (just in case someone wants to replace the 4000/8000). */
  1079. /* align at 16 bytes for AltiVec */
  1080. for (i = 0; i < c->vLumBufSize; i++) {
  1081. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1082. dst_stride + 16, fail);
  1083. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1084. }
  1085. // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
  1086. c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
  1087. c->uv_off_byte = dst_stride + 16;
  1088. for (i = 0; i < c->vChrBufSize; i++) {
  1089. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1090. dst_stride * 2 + 32, fail);
  1091. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1092. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1093. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1094. }
  1095. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1096. for (i = 0; i < c->vLumBufSize; i++) {
  1097. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1098. dst_stride + 16, fail);
  1099. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1100. }
  1101. // try to avoid drawing green stuff between the right end and the stride end
  1102. for (i = 0; i < c->vChrBufSize; i++)
  1103. memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
  1104. assert(c->chrDstH <= dstH);
  1105. if (flags & SWS_PRINT_INFO) {
  1106. if (flags & SWS_FAST_BILINEAR)
  1107. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1108. else if (flags & SWS_BILINEAR)
  1109. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1110. else if (flags & SWS_BICUBIC)
  1111. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1112. else if (flags & SWS_X)
  1113. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1114. else if (flags & SWS_POINT)
  1115. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1116. else if (flags & SWS_AREA)
  1117. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1118. else if (flags & SWS_BICUBLIN)
  1119. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1120. else if (flags & SWS_GAUSS)
  1121. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1122. else if (flags & SWS_SINC)
  1123. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1124. else if (flags & SWS_LANCZOS)
  1125. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1126. else if (flags & SWS_SPLINE)
  1127. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1128. else
  1129. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1130. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1131. sws_format_name(srcFormat),
  1132. #ifdef DITHER1XBPP
  1133. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1134. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1135. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1136. "dithered " : "",
  1137. #else
  1138. "",
  1139. #endif
  1140. sws_format_name(dstFormat));
  1141. if (INLINE_MMXEXT(cpu_flags))
  1142. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1143. else if (INLINE_AMD3DNOW(cpu_flags))
  1144. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1145. else if (INLINE_MMX(cpu_flags))
  1146. av_log(c, AV_LOG_INFO, "using MMX\n");
  1147. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC)
  1148. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1149. else
  1150. av_log(c, AV_LOG_INFO, "using C\n");
  1151. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1152. av_log(c, AV_LOG_DEBUG,
  1153. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1154. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1155. av_log(c, AV_LOG_DEBUG,
  1156. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1157. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1158. c->chrXInc, c->chrYInc);
  1159. }
  1160. c->swScale = ff_getSwsFunc(c);
  1161. return 0;
  1162. fail: // FIXME replace things by appropriate error codes
  1163. return -1;
  1164. }
  1165. #if FF_API_SWS_GETCONTEXT
  1166. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1167. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1168. int flags, SwsFilter *srcFilter,
  1169. SwsFilter *dstFilter, const double *param)
  1170. {
  1171. SwsContext *c;
  1172. if (!(c = sws_alloc_context()))
  1173. return NULL;
  1174. c->flags = flags;
  1175. c->srcW = srcW;
  1176. c->srcH = srcH;
  1177. c->dstW = dstW;
  1178. c->dstH = dstH;
  1179. c->srcRange = handle_jpeg(&srcFormat);
  1180. c->dstRange = handle_jpeg(&dstFormat);
  1181. c->srcFormat = srcFormat;
  1182. c->dstFormat = dstFormat;
  1183. if (param) {
  1184. c->param[0] = param[0];
  1185. c->param[1] = param[1];
  1186. }
  1187. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1188. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1189. c->dstRange, 0, 1 << 16, 1 << 16);
  1190. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1191. sws_freeContext(c);
  1192. return NULL;
  1193. }
  1194. return c;
  1195. }
  1196. #endif
  1197. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1198. float lumaSharpen, float chromaSharpen,
  1199. float chromaHShift, float chromaVShift,
  1200. int verbose)
  1201. {
  1202. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1203. if (!filter)
  1204. return NULL;
  1205. if (lumaGBlur != 0.0) {
  1206. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1207. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1208. } else {
  1209. filter->lumH = sws_getIdentityVec();
  1210. filter->lumV = sws_getIdentityVec();
  1211. }
  1212. if (chromaGBlur != 0.0) {
  1213. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1214. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1215. } else {
  1216. filter->chrH = sws_getIdentityVec();
  1217. filter->chrV = sws_getIdentityVec();
  1218. }
  1219. if (chromaSharpen != 0.0) {
  1220. SwsVector *id = sws_getIdentityVec();
  1221. sws_scaleVec(filter->chrH, -chromaSharpen);
  1222. sws_scaleVec(filter->chrV, -chromaSharpen);
  1223. sws_addVec(filter->chrH, id);
  1224. sws_addVec(filter->chrV, id);
  1225. sws_freeVec(id);
  1226. }
  1227. if (lumaSharpen != 0.0) {
  1228. SwsVector *id = sws_getIdentityVec();
  1229. sws_scaleVec(filter->lumH, -lumaSharpen);
  1230. sws_scaleVec(filter->lumV, -lumaSharpen);
  1231. sws_addVec(filter->lumH, id);
  1232. sws_addVec(filter->lumV, id);
  1233. sws_freeVec(id);
  1234. }
  1235. if (chromaHShift != 0.0)
  1236. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1237. if (chromaVShift != 0.0)
  1238. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1239. sws_normalizeVec(filter->chrH, 1.0);
  1240. sws_normalizeVec(filter->chrV, 1.0);
  1241. sws_normalizeVec(filter->lumH, 1.0);
  1242. sws_normalizeVec(filter->lumV, 1.0);
  1243. if (verbose)
  1244. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1245. if (verbose)
  1246. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1247. return filter;
  1248. }
  1249. SwsVector *sws_allocVec(int length)
  1250. {
  1251. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1252. if (!vec)
  1253. return NULL;
  1254. vec->length = length;
  1255. vec->coeff = av_malloc(sizeof(double) * length);
  1256. if (!vec->coeff)
  1257. av_freep(&vec);
  1258. return vec;
  1259. }
  1260. SwsVector *sws_getGaussianVec(double variance, double quality)
  1261. {
  1262. const int length = (int)(variance * quality + 0.5) | 1;
  1263. int i;
  1264. double middle = (length - 1) * 0.5;
  1265. SwsVector *vec = sws_allocVec(length);
  1266. if (!vec)
  1267. return NULL;
  1268. for (i = 0; i < length; i++) {
  1269. double dist = i - middle;
  1270. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1271. sqrt(2 * variance * M_PI);
  1272. }
  1273. sws_normalizeVec(vec, 1.0);
  1274. return vec;
  1275. }
  1276. SwsVector *sws_getConstVec(double c, int length)
  1277. {
  1278. int i;
  1279. SwsVector *vec = sws_allocVec(length);
  1280. if (!vec)
  1281. return NULL;
  1282. for (i = 0; i < length; i++)
  1283. vec->coeff[i] = c;
  1284. return vec;
  1285. }
  1286. SwsVector *sws_getIdentityVec(void)
  1287. {
  1288. return sws_getConstVec(1.0, 1);
  1289. }
  1290. static double sws_dcVec(SwsVector *a)
  1291. {
  1292. int i;
  1293. double sum = 0;
  1294. for (i = 0; i < a->length; i++)
  1295. sum += a->coeff[i];
  1296. return sum;
  1297. }
  1298. void sws_scaleVec(SwsVector *a, double scalar)
  1299. {
  1300. int i;
  1301. for (i = 0; i < a->length; i++)
  1302. a->coeff[i] *= scalar;
  1303. }
  1304. void sws_normalizeVec(SwsVector *a, double height)
  1305. {
  1306. sws_scaleVec(a, height / sws_dcVec(a));
  1307. }
  1308. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1309. {
  1310. int length = a->length + b->length - 1;
  1311. int i, j;
  1312. SwsVector *vec = sws_getConstVec(0.0, length);
  1313. if (!vec)
  1314. return NULL;
  1315. for (i = 0; i < a->length; i++) {
  1316. for (j = 0; j < b->length; j++) {
  1317. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1318. }
  1319. }
  1320. return vec;
  1321. }
  1322. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1323. {
  1324. int length = FFMAX(a->length, b->length);
  1325. int i;
  1326. SwsVector *vec = sws_getConstVec(0.0, length);
  1327. if (!vec)
  1328. return NULL;
  1329. for (i = 0; i < a->length; i++)
  1330. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1331. for (i = 0; i < b->length; i++)
  1332. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1333. return vec;
  1334. }
  1335. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1336. {
  1337. int length = FFMAX(a->length, b->length);
  1338. int i;
  1339. SwsVector *vec = sws_getConstVec(0.0, length);
  1340. if (!vec)
  1341. return NULL;
  1342. for (i = 0; i < a->length; i++)
  1343. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1344. for (i = 0; i < b->length; i++)
  1345. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1346. return vec;
  1347. }
  1348. /* shift left / or right if "shift" is negative */
  1349. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1350. {
  1351. int length = a->length + FFABS(shift) * 2;
  1352. int i;
  1353. SwsVector *vec = sws_getConstVec(0.0, length);
  1354. if (!vec)
  1355. return NULL;
  1356. for (i = 0; i < a->length; i++) {
  1357. vec->coeff[i + (length - 1) / 2 -
  1358. (a->length - 1) / 2 - shift] = a->coeff[i];
  1359. }
  1360. return vec;
  1361. }
  1362. void sws_shiftVec(SwsVector *a, int shift)
  1363. {
  1364. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1365. av_free(a->coeff);
  1366. a->coeff = shifted->coeff;
  1367. a->length = shifted->length;
  1368. av_free(shifted);
  1369. }
  1370. void sws_addVec(SwsVector *a, SwsVector *b)
  1371. {
  1372. SwsVector *sum = sws_sumVec(a, b);
  1373. av_free(a->coeff);
  1374. a->coeff = sum->coeff;
  1375. a->length = sum->length;
  1376. av_free(sum);
  1377. }
  1378. void sws_subVec(SwsVector *a, SwsVector *b)
  1379. {
  1380. SwsVector *diff = sws_diffVec(a, b);
  1381. av_free(a->coeff);
  1382. a->coeff = diff->coeff;
  1383. a->length = diff->length;
  1384. av_free(diff);
  1385. }
  1386. void sws_convVec(SwsVector *a, SwsVector *b)
  1387. {
  1388. SwsVector *conv = sws_getConvVec(a, b);
  1389. av_free(a->coeff);
  1390. a->coeff = conv->coeff;
  1391. a->length = conv->length;
  1392. av_free(conv);
  1393. }
  1394. SwsVector *sws_cloneVec(SwsVector *a)
  1395. {
  1396. int i;
  1397. SwsVector *vec = sws_allocVec(a->length);
  1398. if (!vec)
  1399. return NULL;
  1400. for (i = 0; i < a->length; i++)
  1401. vec->coeff[i] = a->coeff[i];
  1402. return vec;
  1403. }
  1404. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1405. {
  1406. int i;
  1407. double max = 0;
  1408. double min = 0;
  1409. double range;
  1410. for (i = 0; i < a->length; i++)
  1411. if (a->coeff[i] > max)
  1412. max = a->coeff[i];
  1413. for (i = 0; i < a->length; i++)
  1414. if (a->coeff[i] < min)
  1415. min = a->coeff[i];
  1416. range = max - min;
  1417. for (i = 0; i < a->length; i++) {
  1418. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1419. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1420. for (; x > 0; x--)
  1421. av_log(log_ctx, log_level, " ");
  1422. av_log(log_ctx, log_level, "|\n");
  1423. }
  1424. }
  1425. void sws_freeVec(SwsVector *a)
  1426. {
  1427. if (!a)
  1428. return;
  1429. av_freep(&a->coeff);
  1430. a->length = 0;
  1431. av_free(a);
  1432. }
  1433. void sws_freeFilter(SwsFilter *filter)
  1434. {
  1435. if (!filter)
  1436. return;
  1437. if (filter->lumH)
  1438. sws_freeVec(filter->lumH);
  1439. if (filter->lumV)
  1440. sws_freeVec(filter->lumV);
  1441. if (filter->chrH)
  1442. sws_freeVec(filter->chrH);
  1443. if (filter->chrV)
  1444. sws_freeVec(filter->chrV);
  1445. av_free(filter);
  1446. }
  1447. void sws_freeContext(SwsContext *c)
  1448. {
  1449. int i;
  1450. if (!c)
  1451. return;
  1452. if (c->lumPixBuf) {
  1453. for (i = 0; i < c->vLumBufSize; i++)
  1454. av_freep(&c->lumPixBuf[i]);
  1455. av_freep(&c->lumPixBuf);
  1456. }
  1457. if (c->chrUPixBuf) {
  1458. for (i = 0; i < c->vChrBufSize; i++)
  1459. av_freep(&c->chrUPixBuf[i]);
  1460. av_freep(&c->chrUPixBuf);
  1461. av_freep(&c->chrVPixBuf);
  1462. }
  1463. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1464. for (i = 0; i < c->vLumBufSize; i++)
  1465. av_freep(&c->alpPixBuf[i]);
  1466. av_freep(&c->alpPixBuf);
  1467. }
  1468. av_freep(&c->vLumFilter);
  1469. av_freep(&c->vChrFilter);
  1470. av_freep(&c->hLumFilter);
  1471. av_freep(&c->hChrFilter);
  1472. #if HAVE_ALTIVEC
  1473. av_freep(&c->vYCoeffsBank);
  1474. av_freep(&c->vCCoeffsBank);
  1475. #endif
  1476. av_freep(&c->vLumFilterPos);
  1477. av_freep(&c->vChrFilterPos);
  1478. av_freep(&c->hLumFilterPos);
  1479. av_freep(&c->hChrFilterPos);
  1480. #if HAVE_MMX_INLINE
  1481. #if USE_MMAP
  1482. if (c->lumMmxextFilterCode)
  1483. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1484. if (c->chrMmxextFilterCode)
  1485. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1486. #elif HAVE_VIRTUALALLOC
  1487. if (c->lumMmxextFilterCode)
  1488. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1489. if (c->chrMmxextFilterCode)
  1490. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1491. #else
  1492. av_free(c->lumMmxextFilterCode);
  1493. av_free(c->chrMmxextFilterCode);
  1494. #endif
  1495. c->lumMmxextFilterCode = NULL;
  1496. c->chrMmxextFilterCode = NULL;
  1497. #endif /* HAVE_MMX_INLINE */
  1498. av_freep(&c->yuvTable);
  1499. av_free(c->formatConvBuffer);
  1500. av_free(c);
  1501. }
  1502. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1503. int srcH, enum AVPixelFormat srcFormat,
  1504. int dstW, int dstH,
  1505. enum AVPixelFormat dstFormat, int flags,
  1506. SwsFilter *srcFilter,
  1507. SwsFilter *dstFilter,
  1508. const double *param)
  1509. {
  1510. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1511. SWS_PARAM_DEFAULT };
  1512. if (!param)
  1513. param = default_param;
  1514. if (context &&
  1515. (context->srcW != srcW ||
  1516. context->srcH != srcH ||
  1517. context->srcFormat != srcFormat ||
  1518. context->dstW != dstW ||
  1519. context->dstH != dstH ||
  1520. context->dstFormat != dstFormat ||
  1521. context->flags != flags ||
  1522. context->param[0] != param[0] ||
  1523. context->param[1] != param[1])) {
  1524. sws_freeContext(context);
  1525. context = NULL;
  1526. }
  1527. if (!context) {
  1528. if (!(context = sws_alloc_context()))
  1529. return NULL;
  1530. context->srcW = srcW;
  1531. context->srcH = srcH;
  1532. context->srcRange = handle_jpeg(&srcFormat);
  1533. context->srcFormat = srcFormat;
  1534. context->dstW = dstW;
  1535. context->dstH = dstH;
  1536. context->dstRange = handle_jpeg(&dstFormat);
  1537. context->dstFormat = dstFormat;
  1538. context->flags = flags;
  1539. context->param[0] = param[0];
  1540. context->param[1] = param[1];
  1541. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1542. context->srcRange,
  1543. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1544. context->dstRange, 0, 1 << 16, 1 << 16);
  1545. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1546. sws_freeContext(context);
  1547. return NULL;
  1548. }
  1549. }
  1550. return context;
  1551. }