You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2990 lines
101KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * the C code (not assembly, mmx, ...) of this file can be used
  21. * under the LGPL license too
  22. */
  23. /*
  24. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09, PAL8
  25. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  26. {BGR,RGB}{1,4,8,15,16} support dithering
  27. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  28. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  29. x -> x
  30. YUV9 -> YV12
  31. YUV9/YV12 -> Y800
  32. Y800 -> YUV9/YV12
  33. BGR24 -> BGR32 & RGB24 -> RGB32
  34. BGR32 -> BGR24 & RGB32 -> RGB24
  35. BGR15 -> BGR16
  36. */
  37. /*
  38. tested special converters (most are tested actually, but I did not write it down ...)
  39. YV12 -> BGR16
  40. YV12 -> YV12
  41. BGR15 -> BGR16
  42. BGR16 -> BGR16
  43. YVU9 -> YV12
  44. untested special converters
  45. YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be ok)
  46. YV12/I420 -> YV12/I420
  47. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  48. BGR24 -> BGR32 & RGB24 -> RGB32
  49. BGR32 -> BGR24 & RGB32 -> RGB24
  50. BGR24 -> YV12
  51. */
  52. #include <inttypes.h>
  53. #include <string.h>
  54. #include <math.h>
  55. #include <stdio.h>
  56. #include <unistd.h>
  57. #include "config.h"
  58. #include <assert.h>
  59. #ifdef HAVE_SYS_MMAN_H
  60. #include <sys/mman.h>
  61. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  62. #define MAP_ANONYMOUS MAP_ANON
  63. #endif
  64. #endif
  65. #include "swscale.h"
  66. #include "swscale_internal.h"
  67. #include "x86_cpu.h"
  68. #include "bswap.h"
  69. #include "rgb2rgb.h"
  70. #include "libavcodec/opt.h"
  71. #undef MOVNTQ
  72. #undef PAVGB
  73. //#undef HAVE_MMX2
  74. //#define HAVE_3DNOW
  75. //#undef HAVE_MMX
  76. //#undef ARCH_X86
  77. //#define WORDS_BIGENDIAN
  78. #define DITHER1XBPP
  79. #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
  80. #define RET 0xC3 //near return opcode for X86
  81. #ifdef MP_DEBUG
  82. #define ASSERT(x) assert(x);
  83. #else
  84. #define ASSERT(x) ;
  85. #endif
  86. #ifdef M_PI
  87. #define PI M_PI
  88. #else
  89. #define PI 3.14159265358979323846
  90. #endif
  91. #define isSupportedIn(x) ( \
  92. (x)==PIX_FMT_YUV420P \
  93. || (x)==PIX_FMT_YUVA420P \
  94. || (x)==PIX_FMT_YUYV422 \
  95. || (x)==PIX_FMT_UYVY422 \
  96. || (x)==PIX_FMT_RGB32 \
  97. || (x)==PIX_FMT_BGR24 \
  98. || (x)==PIX_FMT_BGR565 \
  99. || (x)==PIX_FMT_BGR555 \
  100. || (x)==PIX_FMT_BGR32 \
  101. || (x)==PIX_FMT_RGB24 \
  102. || (x)==PIX_FMT_RGB565 \
  103. || (x)==PIX_FMT_RGB555 \
  104. || (x)==PIX_FMT_GRAY8 \
  105. || (x)==PIX_FMT_YUV410P \
  106. || (x)==PIX_FMT_GRAY16BE \
  107. || (x)==PIX_FMT_GRAY16LE \
  108. || (x)==PIX_FMT_YUV444P \
  109. || (x)==PIX_FMT_YUV422P \
  110. || (x)==PIX_FMT_YUV411P \
  111. || (x)==PIX_FMT_PAL8 \
  112. || (x)==PIX_FMT_BGR8 \
  113. || (x)==PIX_FMT_RGB8 \
  114. || (x)==PIX_FMT_BGR4_BYTE \
  115. || (x)==PIX_FMT_RGB4_BYTE \
  116. || (x)==PIX_FMT_YUV440P \
  117. )
  118. #define isSupportedOut(x) ( \
  119. (x)==PIX_FMT_YUV420P \
  120. || (x)==PIX_FMT_YUYV422 \
  121. || (x)==PIX_FMT_UYVY422 \
  122. || (x)==PIX_FMT_YUV444P \
  123. || (x)==PIX_FMT_YUV422P \
  124. || (x)==PIX_FMT_YUV411P \
  125. || isRGB(x) \
  126. || isBGR(x) \
  127. || (x)==PIX_FMT_NV12 \
  128. || (x)==PIX_FMT_NV21 \
  129. || (x)==PIX_FMT_GRAY16BE \
  130. || (x)==PIX_FMT_GRAY16LE \
  131. || (x)==PIX_FMT_GRAY8 \
  132. || (x)==PIX_FMT_YUV410P \
  133. )
  134. #define isPacked(x) ( \
  135. (x)==PIX_FMT_PAL8 \
  136. || (x)==PIX_FMT_YUYV422 \
  137. || (x)==PIX_FMT_UYVY422 \
  138. || isRGB(x) \
  139. || isBGR(x) \
  140. )
  141. #define RGB2YUV_SHIFT 16
  142. #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
  143. #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
  144. #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
  145. #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
  146. #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
  147. #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
  148. #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
  149. #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
  150. #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
  151. extern const int32_t Inverse_Table_6_9[8][4];
  152. /*
  153. NOTES
  154. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  155. TODO
  156. more intelligent misalignment avoidance for the horizontal scaler
  157. write special vertical cubic upscale version
  158. Optimize C code (yv12 / minmax)
  159. add support for packed pixel yuv input & output
  160. add support for Y8 output
  161. optimize bgr24 & bgr32
  162. add BGR4 output support
  163. write special BGR->BGR scaler
  164. */
  165. #if defined(ARCH_X86) && defined (CONFIG_GPL)
  166. DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
  167. DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
  168. DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
  169. DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
  170. DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
  171. DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
  172. DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
  173. DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
  174. static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
  175. static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
  176. static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
  177. static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
  178. const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
  179. 0x0103010301030103LL,
  180. 0x0200020002000200LL,};
  181. const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
  182. 0x0602060206020602LL,
  183. 0x0004000400040004LL,};
  184. DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
  185. DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
  186. DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
  187. DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
  188. DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
  189. DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
  190. DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
  191. DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
  192. DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
  193. #ifdef FAST_BGR2YV12
  194. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
  195. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
  196. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
  197. #else
  198. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
  199. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
  200. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
  201. #endif /* FAST_BGR2YV12 */
  202. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
  203. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
  204. DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
  205. #endif /* defined(ARCH_X86) */
  206. // clipping helper table for C implementations:
  207. static unsigned char clip_table[768];
  208. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  209. extern const uint8_t dither_2x2_4[2][8];
  210. extern const uint8_t dither_2x2_8[2][8];
  211. extern const uint8_t dither_8x8_32[8][8];
  212. extern const uint8_t dither_8x8_73[8][8];
  213. extern const uint8_t dither_8x8_220[8][8];
  214. static const char * sws_context_to_name(void * ptr) {
  215. return "swscaler";
  216. }
  217. #define OFFSET(x) offsetof(SwsContext, x)
  218. #define DEFAULT 0
  219. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  220. static const AVOption options[] = {
  221. { "sws_flags", "scaler/cpu flags", OFFSET(flags), FF_OPT_TYPE_FLAGS, DEFAULT, 0, UINT_MAX, VE, "sws_flags" },
  222. { "fast_bilinear", "fast bilinear", 0, FF_OPT_TYPE_CONST, SWS_FAST_BILINEAR, INT_MIN, INT_MAX, VE, "sws_flags" },
  223. { "bilinear", "bilinear", 0, FF_OPT_TYPE_CONST, SWS_BILINEAR, INT_MIN, INT_MAX, VE, "sws_flags" },
  224. { "bicubic", "bicubic", 0, FF_OPT_TYPE_CONST, SWS_BICUBIC, INT_MIN, INT_MAX, VE, "sws_flags" },
  225. { "experimental", "experimental", 0, FF_OPT_TYPE_CONST, SWS_X, INT_MIN, INT_MAX, VE, "sws_flags" },
  226. { "neighbor", "nearest neighbor", 0, FF_OPT_TYPE_CONST, SWS_POINT, INT_MIN, INT_MAX, VE, "sws_flags" },
  227. { "area", "averaging area", 0, FF_OPT_TYPE_CONST, SWS_AREA, INT_MIN, INT_MAX, VE, "sws_flags" },
  228. { "bicublin", "luma bicubic, chroma bilinear", 0, FF_OPT_TYPE_CONST, SWS_BICUBLIN, INT_MIN, INT_MAX, VE, "sws_flags" },
  229. { "gauss", "gaussian", 0, FF_OPT_TYPE_CONST, SWS_GAUSS, INT_MIN, INT_MAX, VE, "sws_flags" },
  230. { "sinc", "sinc", 0, FF_OPT_TYPE_CONST, SWS_SINC, INT_MIN, INT_MAX, VE, "sws_flags" },
  231. { "lanczos", "lanczos", 0, FF_OPT_TYPE_CONST, SWS_LANCZOS, INT_MIN, INT_MAX, VE, "sws_flags" },
  232. { "spline", "natural bicubic spline", 0, FF_OPT_TYPE_CONST, SWS_SPLINE, INT_MIN, INT_MAX, VE, "sws_flags" },
  233. { "print_info", "print info", 0, FF_OPT_TYPE_CONST, SWS_PRINT_INFO, INT_MIN, INT_MAX, VE, "sws_flags" },
  234. { "accurate_rnd", "accurate rounding", 0, FF_OPT_TYPE_CONST, SWS_ACCURATE_RND, INT_MIN, INT_MAX, VE, "sws_flags" },
  235. { "mmx", "MMX SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_MMX, INT_MIN, INT_MAX, VE, "sws_flags" },
  236. { "mmx2", "MMX2 SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_MMX2, INT_MIN, INT_MAX, VE, "sws_flags" },
  237. { "3dnow", "3DNOW SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_3DNOW, INT_MIN, INT_MAX, VE, "sws_flags" },
  238. { "altivec", "AltiVec SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_ALTIVEC, INT_MIN, INT_MAX, VE, "sws_flags" },
  239. { "bfin", "Blackfin SIMD acceleration", 0, FF_OPT_TYPE_CONST, SWS_CPU_CAPS_BFIN, INT_MIN, INT_MAX, VE, "sws_flags" },
  240. { "full_chroma_int", "full chroma interpolation", 0 , FF_OPT_TYPE_CONST, SWS_FULL_CHR_H_INT, INT_MIN, INT_MAX, VE, "sws_flags" },
  241. { "full_chroma_inp", "full chroma input", 0 , FF_OPT_TYPE_CONST, SWS_FULL_CHR_H_INP, INT_MIN, INT_MAX, VE, "sws_flags" },
  242. { NULL }
  243. };
  244. #undef VE
  245. #undef DEFAULT
  246. static const AVClass sws_context_class = { "SWScaler", sws_context_to_name, options };
  247. const char *sws_format_name(enum PixelFormat format)
  248. {
  249. switch (format) {
  250. case PIX_FMT_YUV420P:
  251. return "yuv420p";
  252. case PIX_FMT_YUVA420P:
  253. return "yuva420p";
  254. case PIX_FMT_YUYV422:
  255. return "yuyv422";
  256. case PIX_FMT_RGB24:
  257. return "rgb24";
  258. case PIX_FMT_BGR24:
  259. return "bgr24";
  260. case PIX_FMT_YUV422P:
  261. return "yuv422p";
  262. case PIX_FMT_YUV444P:
  263. return "yuv444p";
  264. case PIX_FMT_RGB32:
  265. return "rgb32";
  266. case PIX_FMT_YUV410P:
  267. return "yuv410p";
  268. case PIX_FMT_YUV411P:
  269. return "yuv411p";
  270. case PIX_FMT_RGB565:
  271. return "rgb565";
  272. case PIX_FMT_RGB555:
  273. return "rgb555";
  274. case PIX_FMT_GRAY16BE:
  275. return "gray16be";
  276. case PIX_FMT_GRAY16LE:
  277. return "gray16le";
  278. case PIX_FMT_GRAY8:
  279. return "gray8";
  280. case PIX_FMT_MONOWHITE:
  281. return "mono white";
  282. case PIX_FMT_MONOBLACK:
  283. return "mono black";
  284. case PIX_FMT_PAL8:
  285. return "Palette";
  286. case PIX_FMT_YUVJ420P:
  287. return "yuvj420p";
  288. case PIX_FMT_YUVJ422P:
  289. return "yuvj422p";
  290. case PIX_FMT_YUVJ444P:
  291. return "yuvj444p";
  292. case PIX_FMT_XVMC_MPEG2_MC:
  293. return "xvmc_mpeg2_mc";
  294. case PIX_FMT_XVMC_MPEG2_IDCT:
  295. return "xvmc_mpeg2_idct";
  296. case PIX_FMT_UYVY422:
  297. return "uyvy422";
  298. case PIX_FMT_UYYVYY411:
  299. return "uyyvyy411";
  300. case PIX_FMT_RGB32_1:
  301. return "rgb32x";
  302. case PIX_FMT_BGR32_1:
  303. return "bgr32x";
  304. case PIX_FMT_BGR32:
  305. return "bgr32";
  306. case PIX_FMT_BGR565:
  307. return "bgr565";
  308. case PIX_FMT_BGR555:
  309. return "bgr555";
  310. case PIX_FMT_BGR8:
  311. return "bgr8";
  312. case PIX_FMT_BGR4:
  313. return "bgr4";
  314. case PIX_FMT_BGR4_BYTE:
  315. return "bgr4 byte";
  316. case PIX_FMT_RGB8:
  317. return "rgb8";
  318. case PIX_FMT_RGB4:
  319. return "rgb4";
  320. case PIX_FMT_RGB4_BYTE:
  321. return "rgb4 byte";
  322. case PIX_FMT_NV12:
  323. return "nv12";
  324. case PIX_FMT_NV21:
  325. return "nv21";
  326. case PIX_FMT_YUV440P:
  327. return "yuv440p";
  328. default:
  329. return "Unknown format";
  330. }
  331. }
  332. #if defined(ARCH_X86) && defined (CONFIG_GPL)
  333. void in_asm_used_var_warning_killer()
  334. {
  335. volatile int i= bF8+bFC+w10+
  336. bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
  337. ff_M24A+ff_M24B+ff_M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+ff_dither4[0]+ff_dither8[0]+bm01010101;
  338. if (i) i=0;
  339. }
  340. #endif
  341. static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  342. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  343. uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
  344. {
  345. //FIXME Optimize (just quickly writen not opti..)
  346. int i;
  347. for (i=0; i<dstW; i++)
  348. {
  349. int val=1<<18;
  350. int j;
  351. for (j=0; j<lumFilterSize; j++)
  352. val += lumSrc[j][i] * lumFilter[j];
  353. dest[i]= av_clip_uint8(val>>19);
  354. }
  355. if (uDest)
  356. for (i=0; i<chrDstW; i++)
  357. {
  358. int u=1<<18;
  359. int v=1<<18;
  360. int j;
  361. for (j=0; j<chrFilterSize; j++)
  362. {
  363. u += chrSrc[j][i] * chrFilter[j];
  364. v += chrSrc[j][i + VOFW] * chrFilter[j];
  365. }
  366. uDest[i]= av_clip_uint8(u>>19);
  367. vDest[i]= av_clip_uint8(v>>19);
  368. }
  369. }
  370. static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  371. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  372. uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
  373. {
  374. //FIXME Optimize (just quickly writen not opti..)
  375. int i;
  376. for (i=0; i<dstW; i++)
  377. {
  378. int val=1<<18;
  379. int j;
  380. for (j=0; j<lumFilterSize; j++)
  381. val += lumSrc[j][i] * lumFilter[j];
  382. dest[i]= av_clip_uint8(val>>19);
  383. }
  384. if (!uDest)
  385. return;
  386. if (dstFormat == PIX_FMT_NV12)
  387. for (i=0; i<chrDstW; i++)
  388. {
  389. int u=1<<18;
  390. int v=1<<18;
  391. int j;
  392. for (j=0; j<chrFilterSize; j++)
  393. {
  394. u += chrSrc[j][i] * chrFilter[j];
  395. v += chrSrc[j][i + VOFW] * chrFilter[j];
  396. }
  397. uDest[2*i]= av_clip_uint8(u>>19);
  398. uDest[2*i+1]= av_clip_uint8(v>>19);
  399. }
  400. else
  401. for (i=0; i<chrDstW; i++)
  402. {
  403. int u=1<<18;
  404. int v=1<<18;
  405. int j;
  406. for (j=0; j<chrFilterSize; j++)
  407. {
  408. u += chrSrc[j][i] * chrFilter[j];
  409. v += chrSrc[j][i + VOFW] * chrFilter[j];
  410. }
  411. uDest[2*i]= av_clip_uint8(v>>19);
  412. uDest[2*i+1]= av_clip_uint8(u>>19);
  413. }
  414. }
  415. #define YSCALE_YUV_2_PACKEDX_C(type) \
  416. for (i=0; i<(dstW>>1); i++){\
  417. int j;\
  418. int Y1 = 1<<18;\
  419. int Y2 = 1<<18;\
  420. int U = 1<<18;\
  421. int V = 1<<18;\
  422. type av_unused *r, *b, *g;\
  423. const int i2= 2*i;\
  424. \
  425. for (j=0; j<lumFilterSize; j++)\
  426. {\
  427. Y1 += lumSrc[j][i2] * lumFilter[j];\
  428. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  429. }\
  430. for (j=0; j<chrFilterSize; j++)\
  431. {\
  432. U += chrSrc[j][i] * chrFilter[j];\
  433. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  434. }\
  435. Y1>>=19;\
  436. Y2>>=19;\
  437. U >>=19;\
  438. V >>=19;\
  439. if ((Y1|Y2|U|V)&256)\
  440. {\
  441. if (Y1>255) Y1=255; \
  442. else if (Y1<0)Y1=0; \
  443. if (Y2>255) Y2=255; \
  444. else if (Y2<0)Y2=0; \
  445. if (U>255) U=255; \
  446. else if (U<0) U=0; \
  447. if (V>255) V=255; \
  448. else if (V<0) V=0; \
  449. }
  450. #define YSCALE_YUV_2_RGBX_C(type) \
  451. YSCALE_YUV_2_PACKEDX_C(type) \
  452. r = (type *)c->table_rV[V]; \
  453. g = (type *)(c->table_gU[U] + c->table_gV[V]); \
  454. b = (type *)c->table_bU[U]; \
  455. #define YSCALE_YUV_2_PACKED2_C \
  456. for (i=0; i<(dstW>>1); i++){ \
  457. const int i2= 2*i; \
  458. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
  459. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
  460. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
  461. int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
  462. #define YSCALE_YUV_2_RGB2_C(type) \
  463. YSCALE_YUV_2_PACKED2_C\
  464. type *r, *b, *g;\
  465. r = (type *)c->table_rV[V];\
  466. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  467. b = (type *)c->table_bU[U];\
  468. #define YSCALE_YUV_2_PACKED1_C \
  469. for (i=0; i<(dstW>>1); i++){\
  470. const int i2= 2*i;\
  471. int Y1= buf0[i2 ]>>7;\
  472. int Y2= buf0[i2+1]>>7;\
  473. int U= (uvbuf1[i ])>>7;\
  474. int V= (uvbuf1[i+VOFW])>>7;\
  475. #define YSCALE_YUV_2_RGB1_C(type) \
  476. YSCALE_YUV_2_PACKED1_C\
  477. type *r, *b, *g;\
  478. r = (type *)c->table_rV[V];\
  479. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  480. b = (type *)c->table_bU[U];\
  481. #define YSCALE_YUV_2_PACKED1B_C \
  482. for (i=0; i<(dstW>>1); i++){\
  483. const int i2= 2*i;\
  484. int Y1= buf0[i2 ]>>7;\
  485. int Y2= buf0[i2+1]>>7;\
  486. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  487. int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
  488. #define YSCALE_YUV_2_RGB1B_C(type) \
  489. YSCALE_YUV_2_PACKED1B_C\
  490. type *r, *b, *g;\
  491. r = (type *)c->table_rV[V];\
  492. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  493. b = (type *)c->table_bU[U];\
  494. #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
  495. switch(c->dstFormat)\
  496. {\
  497. case PIX_FMT_RGB32:\
  498. case PIX_FMT_BGR32:\
  499. func(uint32_t)\
  500. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  501. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  502. } \
  503. break;\
  504. case PIX_FMT_RGB24:\
  505. func(uint8_t)\
  506. ((uint8_t*)dest)[0]= r[Y1];\
  507. ((uint8_t*)dest)[1]= g[Y1];\
  508. ((uint8_t*)dest)[2]= b[Y1];\
  509. ((uint8_t*)dest)[3]= r[Y2];\
  510. ((uint8_t*)dest)[4]= g[Y2];\
  511. ((uint8_t*)dest)[5]= b[Y2];\
  512. dest+=6;\
  513. }\
  514. break;\
  515. case PIX_FMT_BGR24:\
  516. func(uint8_t)\
  517. ((uint8_t*)dest)[0]= b[Y1];\
  518. ((uint8_t*)dest)[1]= g[Y1];\
  519. ((uint8_t*)dest)[2]= r[Y1];\
  520. ((uint8_t*)dest)[3]= b[Y2];\
  521. ((uint8_t*)dest)[4]= g[Y2];\
  522. ((uint8_t*)dest)[5]= r[Y2];\
  523. dest+=6;\
  524. }\
  525. break;\
  526. case PIX_FMT_RGB565:\
  527. case PIX_FMT_BGR565:\
  528. {\
  529. const int dr1= dither_2x2_8[y&1 ][0];\
  530. const int dg1= dither_2x2_4[y&1 ][0];\
  531. const int db1= dither_2x2_8[(y&1)^1][0];\
  532. const int dr2= dither_2x2_8[y&1 ][1];\
  533. const int dg2= dither_2x2_4[y&1 ][1];\
  534. const int db2= dither_2x2_8[(y&1)^1][1];\
  535. func(uint16_t)\
  536. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  537. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  538. }\
  539. }\
  540. break;\
  541. case PIX_FMT_RGB555:\
  542. case PIX_FMT_BGR555:\
  543. {\
  544. const int dr1= dither_2x2_8[y&1 ][0];\
  545. const int dg1= dither_2x2_8[y&1 ][1];\
  546. const int db1= dither_2x2_8[(y&1)^1][0];\
  547. const int dr2= dither_2x2_8[y&1 ][1];\
  548. const int dg2= dither_2x2_8[y&1 ][0];\
  549. const int db2= dither_2x2_8[(y&1)^1][1];\
  550. func(uint16_t)\
  551. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  552. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  553. }\
  554. }\
  555. break;\
  556. case PIX_FMT_RGB8:\
  557. case PIX_FMT_BGR8:\
  558. {\
  559. const uint8_t * const d64= dither_8x8_73[y&7];\
  560. const uint8_t * const d32= dither_8x8_32[y&7];\
  561. func(uint8_t)\
  562. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  563. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  564. }\
  565. }\
  566. break;\
  567. case PIX_FMT_RGB4:\
  568. case PIX_FMT_BGR4:\
  569. {\
  570. const uint8_t * const d64= dither_8x8_73 [y&7];\
  571. const uint8_t * const d128=dither_8x8_220[y&7];\
  572. func(uint8_t)\
  573. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  574. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  575. }\
  576. }\
  577. break;\
  578. case PIX_FMT_RGB4_BYTE:\
  579. case PIX_FMT_BGR4_BYTE:\
  580. {\
  581. const uint8_t * const d64= dither_8x8_73 [y&7];\
  582. const uint8_t * const d128=dither_8x8_220[y&7];\
  583. func(uint8_t)\
  584. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  585. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  586. }\
  587. }\
  588. break;\
  589. case PIX_FMT_MONOBLACK:\
  590. {\
  591. const uint8_t * const d128=dither_8x8_220[y&7];\
  592. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  593. for (i=0; i<dstW-7; i+=8){\
  594. int acc;\
  595. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  596. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  597. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  598. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  599. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  600. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  601. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  602. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  603. ((uint8_t*)dest)[0]= acc;\
  604. dest++;\
  605. }\
  606. \
  607. /*\
  608. ((uint8_t*)dest)-= dstW>>4;\
  609. {\
  610. int acc=0;\
  611. int left=0;\
  612. static int top[1024];\
  613. static int last_new[1024][1024];\
  614. static int last_in3[1024][1024];\
  615. static int drift[1024][1024];\
  616. int topLeft=0;\
  617. int shift=0;\
  618. int count=0;\
  619. const uint8_t * const d128=dither_8x8_220[y&7];\
  620. int error_new=0;\
  621. int error_in3=0;\
  622. int f=0;\
  623. \
  624. for (i=dstW>>1; i<dstW; i++){\
  625. int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
  626. int in2 = (76309 * (in - 16) + 32768) >> 16;\
  627. int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
  628. int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
  629. + (last_new[y][i] - in3)*f/256;\
  630. int new= old> 128 ? 255 : 0;\
  631. \
  632. error_new+= FFABS(last_new[y][i] - new);\
  633. error_in3+= FFABS(last_in3[y][i] - in3);\
  634. f= error_new - error_in3*4;\
  635. if (f<0) f=0;\
  636. if (f>256) f=256;\
  637. \
  638. topLeft= top[i];\
  639. left= top[i]= old - new;\
  640. last_new[y][i]= new;\
  641. last_in3[y][i]= in3;\
  642. \
  643. acc+= acc + (new&1);\
  644. if ((i&7)==6){\
  645. ((uint8_t*)dest)[0]= acc;\
  646. ((uint8_t*)dest)++;\
  647. }\
  648. }\
  649. }\
  650. */\
  651. }\
  652. break;\
  653. case PIX_FMT_YUYV422:\
  654. func2\
  655. ((uint8_t*)dest)[2*i2+0]= Y1;\
  656. ((uint8_t*)dest)[2*i2+1]= U;\
  657. ((uint8_t*)dest)[2*i2+2]= Y2;\
  658. ((uint8_t*)dest)[2*i2+3]= V;\
  659. } \
  660. break;\
  661. case PIX_FMT_UYVY422:\
  662. func2\
  663. ((uint8_t*)dest)[2*i2+0]= U;\
  664. ((uint8_t*)dest)[2*i2+1]= Y1;\
  665. ((uint8_t*)dest)[2*i2+2]= V;\
  666. ((uint8_t*)dest)[2*i2+3]= Y2;\
  667. } \
  668. break;\
  669. }\
  670. static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  671. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  672. uint8_t *dest, int dstW, int y)
  673. {
  674. int i;
  675. switch(c->dstFormat)
  676. {
  677. case PIX_FMT_BGR32:
  678. case PIX_FMT_RGB32:
  679. YSCALE_YUV_2_RGBX_C(uint32_t)
  680. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
  681. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
  682. }
  683. break;
  684. case PIX_FMT_RGB24:
  685. YSCALE_YUV_2_RGBX_C(uint8_t)
  686. ((uint8_t*)dest)[0]= r[Y1];
  687. ((uint8_t*)dest)[1]= g[Y1];
  688. ((uint8_t*)dest)[2]= b[Y1];
  689. ((uint8_t*)dest)[3]= r[Y2];
  690. ((uint8_t*)dest)[4]= g[Y2];
  691. ((uint8_t*)dest)[5]= b[Y2];
  692. dest+=6;
  693. }
  694. break;
  695. case PIX_FMT_BGR24:
  696. YSCALE_YUV_2_RGBX_C(uint8_t)
  697. ((uint8_t*)dest)[0]= b[Y1];
  698. ((uint8_t*)dest)[1]= g[Y1];
  699. ((uint8_t*)dest)[2]= r[Y1];
  700. ((uint8_t*)dest)[3]= b[Y2];
  701. ((uint8_t*)dest)[4]= g[Y2];
  702. ((uint8_t*)dest)[5]= r[Y2];
  703. dest+=6;
  704. }
  705. break;
  706. case PIX_FMT_RGB565:
  707. case PIX_FMT_BGR565:
  708. {
  709. const int dr1= dither_2x2_8[y&1 ][0];
  710. const int dg1= dither_2x2_4[y&1 ][0];
  711. const int db1= dither_2x2_8[(y&1)^1][0];
  712. const int dr2= dither_2x2_8[y&1 ][1];
  713. const int dg2= dither_2x2_4[y&1 ][1];
  714. const int db2= dither_2x2_8[(y&1)^1][1];
  715. YSCALE_YUV_2_RGBX_C(uint16_t)
  716. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
  717. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
  718. }
  719. }
  720. break;
  721. case PIX_FMT_RGB555:
  722. case PIX_FMT_BGR555:
  723. {
  724. const int dr1= dither_2x2_8[y&1 ][0];
  725. const int dg1= dither_2x2_8[y&1 ][1];
  726. const int db1= dither_2x2_8[(y&1)^1][0];
  727. const int dr2= dither_2x2_8[y&1 ][1];
  728. const int dg2= dither_2x2_8[y&1 ][0];
  729. const int db2= dither_2x2_8[(y&1)^1][1];
  730. YSCALE_YUV_2_RGBX_C(uint16_t)
  731. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
  732. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
  733. }
  734. }
  735. break;
  736. case PIX_FMT_RGB8:
  737. case PIX_FMT_BGR8:
  738. {
  739. const uint8_t * const d64= dither_8x8_73[y&7];
  740. const uint8_t * const d32= dither_8x8_32[y&7];
  741. YSCALE_YUV_2_RGBX_C(uint8_t)
  742. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
  743. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
  744. }
  745. }
  746. break;
  747. case PIX_FMT_RGB4:
  748. case PIX_FMT_BGR4:
  749. {
  750. const uint8_t * const d64= dither_8x8_73 [y&7];
  751. const uint8_t * const d128=dither_8x8_220[y&7];
  752. YSCALE_YUV_2_RGBX_C(uint8_t)
  753. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
  754. +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
  755. }
  756. }
  757. break;
  758. case PIX_FMT_RGB4_BYTE:
  759. case PIX_FMT_BGR4_BYTE:
  760. {
  761. const uint8_t * const d64= dither_8x8_73 [y&7];
  762. const uint8_t * const d128=dither_8x8_220[y&7];
  763. YSCALE_YUV_2_RGBX_C(uint8_t)
  764. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
  765. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
  766. }
  767. }
  768. break;
  769. case PIX_FMT_MONOBLACK:
  770. {
  771. const uint8_t * const d128=dither_8x8_220[y&7];
  772. uint8_t *g= c->table_gU[128] + c->table_gV[128];
  773. int acc=0;
  774. for (i=0; i<dstW-1; i+=2){
  775. int j;
  776. int Y1=1<<18;
  777. int Y2=1<<18;
  778. for (j=0; j<lumFilterSize; j++)
  779. {
  780. Y1 += lumSrc[j][i] * lumFilter[j];
  781. Y2 += lumSrc[j][i+1] * lumFilter[j];
  782. }
  783. Y1>>=19;
  784. Y2>>=19;
  785. if ((Y1|Y2)&256)
  786. {
  787. if (Y1>255) Y1=255;
  788. else if (Y1<0)Y1=0;
  789. if (Y2>255) Y2=255;
  790. else if (Y2<0)Y2=0;
  791. }
  792. acc+= acc + g[Y1+d128[(i+0)&7]];
  793. acc+= acc + g[Y2+d128[(i+1)&7]];
  794. if ((i&7)==6){
  795. ((uint8_t*)dest)[0]= acc;
  796. dest++;
  797. }
  798. }
  799. }
  800. break;
  801. case PIX_FMT_YUYV422:
  802. YSCALE_YUV_2_PACKEDX_C(void)
  803. ((uint8_t*)dest)[2*i2+0]= Y1;
  804. ((uint8_t*)dest)[2*i2+1]= U;
  805. ((uint8_t*)dest)[2*i2+2]= Y2;
  806. ((uint8_t*)dest)[2*i2+3]= V;
  807. }
  808. break;
  809. case PIX_FMT_UYVY422:
  810. YSCALE_YUV_2_PACKEDX_C(void)
  811. ((uint8_t*)dest)[2*i2+0]= U;
  812. ((uint8_t*)dest)[2*i2+1]= Y1;
  813. ((uint8_t*)dest)[2*i2+2]= V;
  814. ((uint8_t*)dest)[2*i2+3]= Y2;
  815. }
  816. break;
  817. }
  818. }
  819. //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
  820. //Plain C versions
  821. #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
  822. #define COMPILE_C
  823. #endif
  824. #ifdef ARCH_POWERPC
  825. #if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  826. #define COMPILE_ALTIVEC
  827. #endif //HAVE_ALTIVEC
  828. #endif //ARCH_POWERPC
  829. #if defined(ARCH_X86)
  830. #if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  831. #define COMPILE_MMX
  832. #endif
  833. #if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  834. #define COMPILE_MMX2
  835. #endif
  836. #if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
  837. #define COMPILE_3DNOW
  838. #endif
  839. #endif //ARCH_X86 || ARCH_X86_64
  840. #undef HAVE_MMX
  841. #undef HAVE_MMX2
  842. #undef HAVE_3DNOW
  843. #ifdef COMPILE_C
  844. #undef HAVE_MMX
  845. #undef HAVE_MMX2
  846. #undef HAVE_3DNOW
  847. #undef HAVE_ALTIVEC
  848. #define RENAME(a) a ## _C
  849. #include "swscale_template.c"
  850. #endif
  851. #ifdef COMPILE_ALTIVEC
  852. #undef RENAME
  853. #define HAVE_ALTIVEC
  854. #define RENAME(a) a ## _altivec
  855. #include "swscale_template.c"
  856. #endif
  857. #if defined(ARCH_X86)
  858. //X86 versions
  859. /*
  860. #undef RENAME
  861. #undef HAVE_MMX
  862. #undef HAVE_MMX2
  863. #undef HAVE_3DNOW
  864. #define ARCH_X86
  865. #define RENAME(a) a ## _X86
  866. #include "swscale_template.c"
  867. */
  868. //MMX versions
  869. #ifdef COMPILE_MMX
  870. #undef RENAME
  871. #define HAVE_MMX
  872. #undef HAVE_MMX2
  873. #undef HAVE_3DNOW
  874. #define RENAME(a) a ## _MMX
  875. #include "swscale_template.c"
  876. #endif
  877. //MMX2 versions
  878. #ifdef COMPILE_MMX2
  879. #undef RENAME
  880. #define HAVE_MMX
  881. #define HAVE_MMX2
  882. #undef HAVE_3DNOW
  883. #define RENAME(a) a ## _MMX2
  884. #include "swscale_template.c"
  885. #endif
  886. //3DNOW versions
  887. #ifdef COMPILE_3DNOW
  888. #undef RENAME
  889. #define HAVE_MMX
  890. #undef HAVE_MMX2
  891. #define HAVE_3DNOW
  892. #define RENAME(a) a ## _3DNow
  893. #include "swscale_template.c"
  894. #endif
  895. #endif //ARCH_X86 || ARCH_X86_64
  896. // minor note: the HAVE_xyz is messed up after that line so don't use it
  897. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  898. {
  899. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  900. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  901. else return getSplineCoeff( 0.0,
  902. b+ 2.0*c + 3.0*d,
  903. c + 3.0*d,
  904. -b- 3.0*c - 6.0*d,
  905. dist-1.0);
  906. }
  907. static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  908. int srcW, int dstW, int filterAlign, int one, int flags,
  909. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  910. {
  911. int i;
  912. int filterSize;
  913. int filter2Size;
  914. int minFilterSize;
  915. double *filter=NULL;
  916. double *filter2=NULL;
  917. #if defined(ARCH_X86)
  918. if (flags & SWS_CPU_CAPS_MMX)
  919. asm volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
  920. #endif
  921. // Note the +1 is for the MMXscaler which reads over the end
  922. *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
  923. if (FFABS(xInc - 0x10000) <10) // unscaled
  924. {
  925. int i;
  926. filterSize= 1;
  927. filter= av_malloc(dstW*sizeof(double)*filterSize);
  928. for (i=0; i<dstW*filterSize; i++) filter[i]=0;
  929. for (i=0; i<dstW; i++)
  930. {
  931. filter[i*filterSize]=1;
  932. (*filterPos)[i]=i;
  933. }
  934. }
  935. else if (flags&SWS_POINT) // lame looking point sampling mode
  936. {
  937. int i;
  938. int xDstInSrc;
  939. filterSize= 1;
  940. filter= av_malloc(dstW*sizeof(double)*filterSize);
  941. xDstInSrc= xInc/2 - 0x8000;
  942. for (i=0; i<dstW; i++)
  943. {
  944. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  945. (*filterPos)[i]= xx;
  946. filter[i]= 1.0;
  947. xDstInSrc+= xInc;
  948. }
  949. }
  950. else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  951. {
  952. int i;
  953. int xDstInSrc;
  954. if (flags&SWS_BICUBIC) filterSize= 4;
  955. else if (flags&SWS_X ) filterSize= 4;
  956. else filterSize= 2; // SWS_BILINEAR / SWS_AREA
  957. filter= av_malloc(dstW*sizeof(double)*filterSize);
  958. xDstInSrc= xInc/2 - 0x8000;
  959. for (i=0; i<dstW; i++)
  960. {
  961. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  962. int j;
  963. (*filterPos)[i]= xx;
  964. //Bilinear upscale / linear interpolate / Area averaging
  965. for (j=0; j<filterSize; j++)
  966. {
  967. double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
  968. double coeff= 1.0 - d;
  969. if (coeff<0) coeff=0;
  970. filter[i*filterSize + j]= coeff;
  971. xx++;
  972. }
  973. xDstInSrc+= xInc;
  974. }
  975. }
  976. else
  977. {
  978. double xDstInSrc;
  979. double sizeFactor, filterSizeInSrc;
  980. const double xInc1= (double)xInc / (double)(1<<16);
  981. if (flags&SWS_BICUBIC) sizeFactor= 4.0;
  982. else if (flags&SWS_X) sizeFactor= 8.0;
  983. else if (flags&SWS_AREA) sizeFactor= 1.0; //downscale only, for upscale it is bilinear
  984. else if (flags&SWS_GAUSS) sizeFactor= 8.0; // infinite ;)
  985. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
  986. else if (flags&SWS_SINC) sizeFactor= 20.0; // infinite ;)
  987. else if (flags&SWS_SPLINE) sizeFactor= 20.0; // infinite ;)
  988. else if (flags&SWS_BILINEAR) sizeFactor= 2.0;
  989. else {
  990. sizeFactor= 0.0; //GCC warning killer
  991. ASSERT(0)
  992. }
  993. if (xInc1 <= 1.0) filterSizeInSrc= sizeFactor; // upscale
  994. else filterSizeInSrc= sizeFactor*srcW / (double)dstW;
  995. filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
  996. if (filterSize > srcW-2) filterSize=srcW-2;
  997. filter= av_malloc(dstW*sizeof(double)*filterSize);
  998. xDstInSrc= xInc1 / 2.0 - 0.5;
  999. for (i=0; i<dstW; i++)
  1000. {
  1001. int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
  1002. int j;
  1003. (*filterPos)[i]= xx;
  1004. for (j=0; j<filterSize; j++)
  1005. {
  1006. double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
  1007. double coeff;
  1008. if (flags & SWS_BICUBIC)
  1009. {
  1010. double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
  1011. double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
  1012. if (d<1.0)
  1013. coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
  1014. else if (d<2.0)
  1015. coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
  1016. else
  1017. coeff=0.0;
  1018. }
  1019. /* else if (flags & SWS_X)
  1020. {
  1021. double p= param ? param*0.01 : 0.3;
  1022. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  1023. coeff*= pow(2.0, - p*d*d);
  1024. }*/
  1025. else if (flags & SWS_X)
  1026. {
  1027. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  1028. if (d<1.0)
  1029. coeff = cos(d*PI);
  1030. else
  1031. coeff=-1.0;
  1032. if (coeff<0.0) coeff= -pow(-coeff, A);
  1033. else coeff= pow( coeff, A);
  1034. coeff= coeff*0.5 + 0.5;
  1035. }
  1036. else if (flags & SWS_AREA)
  1037. {
  1038. double srcPixelSize= 1.0/xInc1;
  1039. if (d + srcPixelSize/2 < 0.5) coeff= 1.0;
  1040. else if (d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
  1041. else coeff=0.0;
  1042. }
  1043. else if (flags & SWS_GAUSS)
  1044. {
  1045. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1046. coeff = pow(2.0, - p*d*d);
  1047. }
  1048. else if (flags & SWS_SINC)
  1049. {
  1050. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  1051. }
  1052. else if (flags & SWS_LANCZOS)
  1053. {
  1054. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1055. coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
  1056. if (d>p) coeff=0;
  1057. }
  1058. else if (flags & SWS_BILINEAR)
  1059. {
  1060. coeff= 1.0 - d;
  1061. if (coeff<0) coeff=0;
  1062. }
  1063. else if (flags & SWS_SPLINE)
  1064. {
  1065. double p=-2.196152422706632;
  1066. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
  1067. }
  1068. else {
  1069. coeff= 0.0; //GCC warning killer
  1070. ASSERT(0)
  1071. }
  1072. filter[i*filterSize + j]= coeff;
  1073. xx++;
  1074. }
  1075. xDstInSrc+= xInc1;
  1076. }
  1077. }
  1078. /* apply src & dst Filter to filter -> filter2
  1079. av_free(filter);
  1080. */
  1081. ASSERT(filterSize>0)
  1082. filter2Size= filterSize;
  1083. if (srcFilter) filter2Size+= srcFilter->length - 1;
  1084. if (dstFilter) filter2Size+= dstFilter->length - 1;
  1085. ASSERT(filter2Size>0)
  1086. filter2= av_malloc(filter2Size*dstW*sizeof(double));
  1087. for (i=0; i<dstW; i++)
  1088. {
  1089. int j;
  1090. SwsVector scaleFilter;
  1091. SwsVector *outVec;
  1092. scaleFilter.coeff= filter + i*filterSize;
  1093. scaleFilter.length= filterSize;
  1094. if (srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
  1095. else outVec= &scaleFilter;
  1096. ASSERT(outVec->length == filter2Size)
  1097. //FIXME dstFilter
  1098. for (j=0; j<outVec->length; j++)
  1099. {
  1100. filter2[i*filter2Size + j]= outVec->coeff[j];
  1101. }
  1102. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  1103. if (outVec != &scaleFilter) sws_freeVec(outVec);
  1104. }
  1105. av_free(filter); filter=NULL;
  1106. /* try to reduce the filter-size (step1 find size and shift left) */
  1107. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  1108. minFilterSize= 0;
  1109. for (i=dstW-1; i>=0; i--)
  1110. {
  1111. int min= filter2Size;
  1112. int j;
  1113. double cutOff=0.0;
  1114. /* get rid off near zero elements on the left by shifting left */
  1115. for (j=0; j<filter2Size; j++)
  1116. {
  1117. int k;
  1118. cutOff += FFABS(filter2[i*filter2Size]);
  1119. if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
  1120. /* preserve monotonicity because the core can't handle the filter otherwise */
  1121. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  1122. // Move filter coeffs left
  1123. for (k=1; k<filter2Size; k++)
  1124. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  1125. filter2[i*filter2Size + k - 1]= 0.0;
  1126. (*filterPos)[i]++;
  1127. }
  1128. cutOff=0.0;
  1129. /* count near zeros on the right */
  1130. for (j=filter2Size-1; j>0; j--)
  1131. {
  1132. cutOff += FFABS(filter2[i*filter2Size + j]);
  1133. if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
  1134. min--;
  1135. }
  1136. if (min>minFilterSize) minFilterSize= min;
  1137. }
  1138. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1139. // we can handle the special case 4,
  1140. // so we don't want to go to the full 8
  1141. if (minFilterSize < 5)
  1142. filterAlign = 4;
  1143. // we really don't want to waste our time
  1144. // doing useless computation, so fall-back on
  1145. // the scalar C code for very small filter.
  1146. // vectorizing is worth it only if you have
  1147. // decent-sized vector.
  1148. if (minFilterSize < 3)
  1149. filterAlign = 1;
  1150. }
  1151. if (flags & SWS_CPU_CAPS_MMX) {
  1152. // special case for unscaled vertical filtering
  1153. if (minFilterSize == 1 && filterAlign == 2)
  1154. filterAlign= 1;
  1155. }
  1156. ASSERT(minFilterSize > 0)
  1157. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  1158. ASSERT(filterSize > 0)
  1159. filter= av_malloc(filterSize*dstW*sizeof(double));
  1160. if (filterSize >= MAX_FILTER_SIZE)
  1161. return -1;
  1162. *outFilterSize= filterSize;
  1163. if (flags&SWS_PRINT_INFO)
  1164. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  1165. /* try to reduce the filter-size (step2 reduce it) */
  1166. for (i=0; i<dstW; i++)
  1167. {
  1168. int j;
  1169. for (j=0; j<filterSize; j++)
  1170. {
  1171. if (j>=filter2Size) filter[i*filterSize + j]= 0.0;
  1172. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  1173. }
  1174. }
  1175. av_free(filter2); filter2=NULL;
  1176. //FIXME try to align filterpos if possible
  1177. //fix borders
  1178. for (i=0; i<dstW; i++)
  1179. {
  1180. int j;
  1181. if ((*filterPos)[i] < 0)
  1182. {
  1183. // Move filter coeffs left to compensate for filterPos
  1184. for (j=1; j<filterSize; j++)
  1185. {
  1186. int left= FFMAX(j + (*filterPos)[i], 0);
  1187. filter[i*filterSize + left] += filter[i*filterSize + j];
  1188. filter[i*filterSize + j]=0;
  1189. }
  1190. (*filterPos)[i]= 0;
  1191. }
  1192. if ((*filterPos)[i] + filterSize > srcW)
  1193. {
  1194. int shift= (*filterPos)[i] + filterSize - srcW;
  1195. // Move filter coeffs right to compensate for filterPos
  1196. for (j=filterSize-2; j>=0; j--)
  1197. {
  1198. int right= FFMIN(j + shift, filterSize-1);
  1199. filter[i*filterSize +right] += filter[i*filterSize +j];
  1200. filter[i*filterSize +j]=0;
  1201. }
  1202. (*filterPos)[i]= srcW - filterSize;
  1203. }
  1204. }
  1205. // Note the +1 is for the MMXscaler which reads over the end
  1206. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  1207. *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
  1208. /* Normalize & Store in outFilter */
  1209. for (i=0; i<dstW; i++)
  1210. {
  1211. int j;
  1212. double error=0;
  1213. double sum=0;
  1214. double scale= one;
  1215. for (j=0; j<filterSize; j++)
  1216. {
  1217. sum+= filter[i*filterSize + j];
  1218. }
  1219. scale/= sum;
  1220. for (j=0; j<*outFilterSize; j++)
  1221. {
  1222. double v= filter[i*filterSize + j]*scale + error;
  1223. int intV= floor(v + 0.5);
  1224. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1225. error = v - intV;
  1226. }
  1227. }
  1228. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1229. for (i=0; i<*outFilterSize; i++)
  1230. {
  1231. int j= dstW*(*outFilterSize);
  1232. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1233. }
  1234. av_free(filter);
  1235. return 0;
  1236. }
  1237. #ifdef COMPILE_MMX2
  1238. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1239. {
  1240. uint8_t *fragmentA;
  1241. long imm8OfPShufW1A;
  1242. long imm8OfPShufW2A;
  1243. long fragmentLengthA;
  1244. uint8_t *fragmentB;
  1245. long imm8OfPShufW1B;
  1246. long imm8OfPShufW2B;
  1247. long fragmentLengthB;
  1248. int fragmentPos;
  1249. int xpos, i;
  1250. // create an optimized horizontal scaling routine
  1251. //code fragment
  1252. asm volatile(
  1253. "jmp 9f \n\t"
  1254. // Begin
  1255. "0: \n\t"
  1256. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1257. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1258. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  1259. "punpcklbw %%mm7, %%mm1 \n\t"
  1260. "punpcklbw %%mm7, %%mm0 \n\t"
  1261. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1262. "1: \n\t"
  1263. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1264. "2: \n\t"
  1265. "psubw %%mm1, %%mm0 \n\t"
  1266. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1267. "pmullw %%mm3, %%mm0 \n\t"
  1268. "psllw $7, %%mm1 \n\t"
  1269. "paddw %%mm1, %%mm0 \n\t"
  1270. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1271. "add $8, %%"REG_a" \n\t"
  1272. // End
  1273. "9: \n\t"
  1274. // "int $3 \n\t"
  1275. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1276. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1277. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1278. "dec %1 \n\t"
  1279. "dec %2 \n\t"
  1280. "sub %0, %1 \n\t"
  1281. "sub %0, %2 \n\t"
  1282. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1283. "sub %0, %3 \n\t"
  1284. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1285. "=r" (fragmentLengthA)
  1286. );
  1287. asm volatile(
  1288. "jmp 9f \n\t"
  1289. // Begin
  1290. "0: \n\t"
  1291. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1292. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1293. "punpcklbw %%mm7, %%mm0 \n\t"
  1294. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1295. "1: \n\t"
  1296. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1297. "2: \n\t"
  1298. "psubw %%mm1, %%mm0 \n\t"
  1299. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1300. "pmullw %%mm3, %%mm0 \n\t"
  1301. "psllw $7, %%mm1 \n\t"
  1302. "paddw %%mm1, %%mm0 \n\t"
  1303. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1304. "add $8, %%"REG_a" \n\t"
  1305. // End
  1306. "9: \n\t"
  1307. // "int $3 \n\t"
  1308. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1309. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1310. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1311. "dec %1 \n\t"
  1312. "dec %2 \n\t"
  1313. "sub %0, %1 \n\t"
  1314. "sub %0, %2 \n\t"
  1315. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1316. "sub %0, %3 \n\t"
  1317. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1318. "=r" (fragmentLengthB)
  1319. );
  1320. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1321. fragmentPos=0;
  1322. for (i=0; i<dstW/numSplits; i++)
  1323. {
  1324. int xx=xpos>>16;
  1325. if ((i&3) == 0)
  1326. {
  1327. int a=0;
  1328. int b=((xpos+xInc)>>16) - xx;
  1329. int c=((xpos+xInc*2)>>16) - xx;
  1330. int d=((xpos+xInc*3)>>16) - xx;
  1331. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1332. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1333. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1334. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1335. filterPos[i/2]= xx;
  1336. if (d+1<4)
  1337. {
  1338. int maxShift= 3-(d+1);
  1339. int shift=0;
  1340. memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
  1341. funnyCode[fragmentPos + imm8OfPShufW1B]=
  1342. (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
  1343. funnyCode[fragmentPos + imm8OfPShufW2B]=
  1344. a | (b<<2) | (c<<4) | (d<<6);
  1345. if (i+3>=dstW) shift=maxShift; //avoid overread
  1346. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1347. if (shift && i>=shift)
  1348. {
  1349. funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
  1350. funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
  1351. filterPos[i/2]-=shift;
  1352. }
  1353. fragmentPos+= fragmentLengthB;
  1354. }
  1355. else
  1356. {
  1357. int maxShift= 3-d;
  1358. int shift=0;
  1359. memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
  1360. funnyCode[fragmentPos + imm8OfPShufW1A]=
  1361. funnyCode[fragmentPos + imm8OfPShufW2A]=
  1362. a | (b<<2) | (c<<4) | (d<<6);
  1363. if (i+4>=dstW) shift=maxShift; //avoid overread
  1364. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
  1365. if (shift && i>=shift)
  1366. {
  1367. funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
  1368. funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
  1369. filterPos[i/2]-=shift;
  1370. }
  1371. fragmentPos+= fragmentLengthA;
  1372. }
  1373. funnyCode[fragmentPos]= RET;
  1374. }
  1375. xpos+=xInc;
  1376. }
  1377. filterPos[i/2]= xpos>>16; // needed to jump to the next part
  1378. }
  1379. #endif /* COMPILE_MMX2 */
  1380. static void globalInit(void){
  1381. // generating tables:
  1382. int i;
  1383. for (i=0; i<768; i++){
  1384. int c= av_clip_uint8(i-256);
  1385. clip_table[i]=c;
  1386. }
  1387. }
  1388. static SwsFunc getSwsFunc(int flags){
  1389. #if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
  1390. #if defined(ARCH_X86)
  1391. // ordered per speed fastest first
  1392. if (flags & SWS_CPU_CAPS_MMX2)
  1393. return swScale_MMX2;
  1394. else if (flags & SWS_CPU_CAPS_3DNOW)
  1395. return swScale_3DNow;
  1396. else if (flags & SWS_CPU_CAPS_MMX)
  1397. return swScale_MMX;
  1398. else
  1399. return swScale_C;
  1400. #else
  1401. #ifdef ARCH_POWERPC
  1402. if (flags & SWS_CPU_CAPS_ALTIVEC)
  1403. return swScale_altivec;
  1404. else
  1405. return swScale_C;
  1406. #endif
  1407. return swScale_C;
  1408. #endif /* defined(ARCH_X86) */
  1409. #else //RUNTIME_CPUDETECT
  1410. #ifdef HAVE_MMX2
  1411. return swScale_MMX2;
  1412. #elif defined (HAVE_3DNOW)
  1413. return swScale_3DNow;
  1414. #elif defined (HAVE_MMX)
  1415. return swScale_MMX;
  1416. #elif defined (HAVE_ALTIVEC)
  1417. return swScale_altivec;
  1418. #else
  1419. return swScale_C;
  1420. #endif
  1421. #endif //!RUNTIME_CPUDETECT
  1422. }
  1423. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1424. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1425. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1426. /* Copy Y plane */
  1427. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1428. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1429. else
  1430. {
  1431. int i;
  1432. uint8_t *srcPtr= src[0];
  1433. uint8_t *dstPtr= dst;
  1434. for (i=0; i<srcSliceH; i++)
  1435. {
  1436. memcpy(dstPtr, srcPtr, c->srcW);
  1437. srcPtr+= srcStride[0];
  1438. dstPtr+= dstStride[0];
  1439. }
  1440. }
  1441. dst = dstParam[1] + dstStride[1]*srcSliceY/2;
  1442. if (c->dstFormat == PIX_FMT_NV12)
  1443. interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
  1444. else
  1445. interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
  1446. return srcSliceH;
  1447. }
  1448. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1449. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1450. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1451. yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1452. return srcSliceH;
  1453. }
  1454. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1455. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1456. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1457. yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1458. return srcSliceH;
  1459. }
  1460. /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
  1461. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1462. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1463. const int srcFormat= c->srcFormat;
  1464. const int dstFormat= c->dstFormat;
  1465. const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
  1466. const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
  1467. const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
  1468. const int dstId= fmt_depth(dstFormat) >> 2;
  1469. void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
  1470. /* BGR -> BGR */
  1471. if ( (isBGR(srcFormat) && isBGR(dstFormat))
  1472. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1473. switch(srcId | (dstId<<4)){
  1474. case 0x34: conv= rgb16to15; break;
  1475. case 0x36: conv= rgb24to15; break;
  1476. case 0x38: conv= rgb32to15; break;
  1477. case 0x43: conv= rgb15to16; break;
  1478. case 0x46: conv= rgb24to16; break;
  1479. case 0x48: conv= rgb32to16; break;
  1480. case 0x63: conv= rgb15to24; break;
  1481. case 0x64: conv= rgb16to24; break;
  1482. case 0x68: conv= rgb32to24; break;
  1483. case 0x83: conv= rgb15to32; break;
  1484. case 0x84: conv= rgb16to32; break;
  1485. case 0x86: conv= rgb24to32; break;
  1486. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1487. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1488. }
  1489. }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
  1490. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1491. switch(srcId | (dstId<<4)){
  1492. case 0x33: conv= rgb15tobgr15; break;
  1493. case 0x34: conv= rgb16tobgr15; break;
  1494. case 0x36: conv= rgb24tobgr15; break;
  1495. case 0x38: conv= rgb32tobgr15; break;
  1496. case 0x43: conv= rgb15tobgr16; break;
  1497. case 0x44: conv= rgb16tobgr16; break;
  1498. case 0x46: conv= rgb24tobgr16; break;
  1499. case 0x48: conv= rgb32tobgr16; break;
  1500. case 0x63: conv= rgb15tobgr24; break;
  1501. case 0x64: conv= rgb16tobgr24; break;
  1502. case 0x66: conv= rgb24tobgr24; break;
  1503. case 0x68: conv= rgb32tobgr24; break;
  1504. case 0x83: conv= rgb15tobgr32; break;
  1505. case 0x84: conv= rgb16tobgr32; break;
  1506. case 0x86: conv= rgb24tobgr32; break;
  1507. case 0x88: conv= rgb32tobgr32; break;
  1508. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1509. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1510. }
  1511. }else{
  1512. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1513. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1514. }
  1515. if(conv)
  1516. {
  1517. if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
  1518. conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  1519. else
  1520. {
  1521. int i;
  1522. uint8_t *srcPtr= src[0];
  1523. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1524. for (i=0; i<srcSliceH; i++)
  1525. {
  1526. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  1527. srcPtr+= srcStride[0];
  1528. dstPtr+= dstStride[0];
  1529. }
  1530. }
  1531. }
  1532. return srcSliceH;
  1533. }
  1534. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1535. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1536. rgb24toyv12(
  1537. src[0],
  1538. dst[0]+ srcSliceY *dstStride[0],
  1539. dst[1]+(srcSliceY>>1)*dstStride[1],
  1540. dst[2]+(srcSliceY>>1)*dstStride[2],
  1541. c->srcW, srcSliceH,
  1542. dstStride[0], dstStride[1], srcStride[0]);
  1543. return srcSliceH;
  1544. }
  1545. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1546. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1547. int i;
  1548. /* copy Y */
  1549. if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
  1550. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  1551. else{
  1552. uint8_t *srcPtr= src[0];
  1553. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1554. for (i=0; i<srcSliceH; i++)
  1555. {
  1556. memcpy(dstPtr, srcPtr, c->srcW);
  1557. srcPtr+= srcStride[0];
  1558. dstPtr+= dstStride[0];
  1559. }
  1560. }
  1561. if (c->dstFormat==PIX_FMT_YUV420P){
  1562. planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
  1563. planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
  1564. }else{
  1565. planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
  1566. planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
  1567. }
  1568. return srcSliceH;
  1569. }
  1570. /* unscaled copy like stuff (assumes nearly identical formats) */
  1571. static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1572. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1573. if (isPacked(c->srcFormat))
  1574. {
  1575. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1576. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  1577. else
  1578. {
  1579. int i;
  1580. uint8_t *srcPtr= src[0];
  1581. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1582. int length=0;
  1583. /* universal length finder */
  1584. while(length+c->srcW <= FFABS(dstStride[0])
  1585. && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
  1586. ASSERT(length!=0);
  1587. for (i=0; i<srcSliceH; i++)
  1588. {
  1589. memcpy(dstPtr, srcPtr, length);
  1590. srcPtr+= srcStride[0];
  1591. dstPtr+= dstStride[0];
  1592. }
  1593. }
  1594. }
  1595. else
  1596. { /* Planar YUV or gray */
  1597. int plane;
  1598. for (plane=0; plane<3; plane++)
  1599. {
  1600. int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  1601. int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  1602. int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  1603. if ((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
  1604. {
  1605. if (!isGray(c->dstFormat))
  1606. memset(dst[plane], 128, dstStride[plane]*height);
  1607. }
  1608. else
  1609. {
  1610. if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
  1611. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  1612. else
  1613. {
  1614. int i;
  1615. uint8_t *srcPtr= src[plane];
  1616. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  1617. for (i=0; i<height; i++)
  1618. {
  1619. memcpy(dstPtr, srcPtr, length);
  1620. srcPtr+= srcStride[plane];
  1621. dstPtr+= dstStride[plane];
  1622. }
  1623. }
  1624. }
  1625. }
  1626. }
  1627. return srcSliceH;
  1628. }
  1629. static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1630. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1631. int length= c->srcW;
  1632. int y= srcSliceY;
  1633. int height= srcSliceH;
  1634. int i, j;
  1635. uint8_t *srcPtr= src[0];
  1636. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1637. if (!isGray(c->dstFormat)){
  1638. int height= -((-srcSliceH)>>c->chrDstVSubSample);
  1639. memset(dst[1], 128, dstStride[1]*height);
  1640. memset(dst[2], 128, dstStride[2]*height);
  1641. }
  1642. if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
  1643. for (i=0; i<height; i++)
  1644. {
  1645. for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
  1646. srcPtr+= srcStride[0];
  1647. dstPtr+= dstStride[0];
  1648. }
  1649. return srcSliceH;
  1650. }
  1651. static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1652. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1653. int length= c->srcW;
  1654. int y= srcSliceY;
  1655. int height= srcSliceH;
  1656. int i, j;
  1657. uint8_t *srcPtr= src[0];
  1658. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1659. for (i=0; i<height; i++)
  1660. {
  1661. for (j=0; j<length; j++)
  1662. {
  1663. dstPtr[j<<1] = srcPtr[j];
  1664. dstPtr[(j<<1)+1] = srcPtr[j];
  1665. }
  1666. srcPtr+= srcStride[0];
  1667. dstPtr+= dstStride[0];
  1668. }
  1669. return srcSliceH;
  1670. }
  1671. static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1672. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1673. int length= c->srcW;
  1674. int y= srcSliceY;
  1675. int height= srcSliceH;
  1676. int i, j;
  1677. uint16_t *srcPtr= src[0];
  1678. uint16_t *dstPtr= dst[0] + dstStride[0]*y/2;
  1679. for (i=0; i<height; i++)
  1680. {
  1681. for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
  1682. srcPtr+= srcStride[0]/2;
  1683. dstPtr+= dstStride[0]/2;
  1684. }
  1685. return srcSliceH;
  1686. }
  1687. static void getSubSampleFactors(int *h, int *v, int format){
  1688. switch(format){
  1689. case PIX_FMT_UYVY422:
  1690. case PIX_FMT_YUYV422:
  1691. *h=1;
  1692. *v=0;
  1693. break;
  1694. case PIX_FMT_YUV420P:
  1695. case PIX_FMT_YUVA420P:
  1696. case PIX_FMT_GRAY16BE:
  1697. case PIX_FMT_GRAY16LE:
  1698. case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
  1699. case PIX_FMT_NV12:
  1700. case PIX_FMT_NV21:
  1701. *h=1;
  1702. *v=1;
  1703. break;
  1704. case PIX_FMT_YUV440P:
  1705. *h=0;
  1706. *v=1;
  1707. break;
  1708. case PIX_FMT_YUV410P:
  1709. *h=2;
  1710. *v=2;
  1711. break;
  1712. case PIX_FMT_YUV444P:
  1713. *h=0;
  1714. *v=0;
  1715. break;
  1716. case PIX_FMT_YUV422P:
  1717. *h=1;
  1718. *v=0;
  1719. break;
  1720. case PIX_FMT_YUV411P:
  1721. *h=2;
  1722. *v=0;
  1723. break;
  1724. default:
  1725. *h=0;
  1726. *v=0;
  1727. break;
  1728. }
  1729. }
  1730. static uint16_t roundToInt16(int64_t f){
  1731. int r= (f + (1<<15))>>16;
  1732. if (r<-0x7FFF) return 0x8000;
  1733. else if (r> 0x7FFF) return 0x7FFF;
  1734. else return r;
  1735. }
  1736. /**
  1737. * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
  1738. * @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
  1739. * @return -1 if not supported
  1740. */
  1741. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  1742. int64_t crv = inv_table[0];
  1743. int64_t cbu = inv_table[1];
  1744. int64_t cgu = -inv_table[2];
  1745. int64_t cgv = -inv_table[3];
  1746. int64_t cy = 1<<16;
  1747. int64_t oy = 0;
  1748. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  1749. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  1750. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  1751. c->brightness= brightness;
  1752. c->contrast = contrast;
  1753. c->saturation= saturation;
  1754. c->srcRange = srcRange;
  1755. c->dstRange = dstRange;
  1756. c->uOffset= 0x0400040004000400LL;
  1757. c->vOffset= 0x0400040004000400LL;
  1758. if (!srcRange){
  1759. cy= (cy*255) / 219;
  1760. oy= 16<<16;
  1761. }else{
  1762. crv= (crv*224) / 255;
  1763. cbu= (cbu*224) / 255;
  1764. cgu= (cgu*224) / 255;
  1765. cgv= (cgv*224) / 255;
  1766. }
  1767. cy = (cy *contrast )>>16;
  1768. crv= (crv*contrast * saturation)>>32;
  1769. cbu= (cbu*contrast * saturation)>>32;
  1770. cgu= (cgu*contrast * saturation)>>32;
  1771. cgv= (cgv*contrast * saturation)>>32;
  1772. oy -= 256*brightness;
  1773. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  1774. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  1775. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  1776. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  1777. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  1778. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  1779. yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  1780. //FIXME factorize
  1781. #ifdef COMPILE_ALTIVEC
  1782. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  1783. yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
  1784. #endif
  1785. return 0;
  1786. }
  1787. /**
  1788. * @return -1 if not supported
  1789. */
  1790. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  1791. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  1792. *inv_table = c->srcColorspaceTable;
  1793. *table = c->dstColorspaceTable;
  1794. *srcRange = c->srcRange;
  1795. *dstRange = c->dstRange;
  1796. *brightness= c->brightness;
  1797. *contrast = c->contrast;
  1798. *saturation= c->saturation;
  1799. return 0;
  1800. }
  1801. static int handle_jpeg(int *format)
  1802. {
  1803. switch (*format) {
  1804. case PIX_FMT_YUVJ420P:
  1805. *format = PIX_FMT_YUV420P;
  1806. return 1;
  1807. case PIX_FMT_YUVJ422P:
  1808. *format = PIX_FMT_YUV422P;
  1809. return 1;
  1810. case PIX_FMT_YUVJ444P:
  1811. *format = PIX_FMT_YUV444P;
  1812. return 1;
  1813. case PIX_FMT_YUVJ440P:
  1814. *format = PIX_FMT_YUV440P;
  1815. return 1;
  1816. default:
  1817. return 0;
  1818. }
  1819. }
  1820. SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
  1821. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
  1822. SwsContext *c;
  1823. int i;
  1824. int usesVFilter, usesHFilter;
  1825. int unscaled, needsDither;
  1826. int srcRange, dstRange;
  1827. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  1828. #if defined(ARCH_X86)
  1829. if (flags & SWS_CPU_CAPS_MMX)
  1830. asm volatile("emms\n\t"::: "memory");
  1831. #endif
  1832. #if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
  1833. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
  1834. #ifdef HAVE_MMX2
  1835. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  1836. #elif defined (HAVE_3DNOW)
  1837. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  1838. #elif defined (HAVE_MMX)
  1839. flags |= SWS_CPU_CAPS_MMX;
  1840. #elif defined (HAVE_ALTIVEC)
  1841. flags |= SWS_CPU_CAPS_ALTIVEC;
  1842. #elif defined (ARCH_BFIN)
  1843. flags |= SWS_CPU_CAPS_BFIN;
  1844. #endif
  1845. #endif /* RUNTIME_CPUDETECT */
  1846. if (clip_table[512] != 255) globalInit();
  1847. if (!rgb15to16) sws_rgb2rgb_init(flags);
  1848. unscaled = (srcW == dstW && srcH == dstH);
  1849. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  1850. && (fmt_depth(dstFormat))<24
  1851. && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  1852. srcRange = handle_jpeg(&srcFormat);
  1853. dstRange = handle_jpeg(&dstFormat);
  1854. if (!isSupportedIn(srcFormat))
  1855. {
  1856. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
  1857. return NULL;
  1858. }
  1859. if (!isSupportedOut(dstFormat))
  1860. {
  1861. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
  1862. return NULL;
  1863. }
  1864. /* sanity check */
  1865. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  1866. {
  1867. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  1868. srcW, srcH, dstW, dstH);
  1869. return NULL;
  1870. }
  1871. if(srcW > VOFW || dstW > VOFW){
  1872. av_log(NULL, AV_LOG_ERROR, "swScaler: Compile time max width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
  1873. return NULL;
  1874. }
  1875. if (!dstFilter) dstFilter= &dummyFilter;
  1876. if (!srcFilter) srcFilter= &dummyFilter;
  1877. c= av_mallocz(sizeof(SwsContext));
  1878. c->av_class = &sws_context_class;
  1879. c->srcW= srcW;
  1880. c->srcH= srcH;
  1881. c->dstW= dstW;
  1882. c->dstH= dstH;
  1883. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  1884. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  1885. c->flags= flags;
  1886. c->dstFormat= dstFormat;
  1887. c->srcFormat= srcFormat;
  1888. c->vRounder= 4* 0x0001000100010001ULL;
  1889. usesHFilter= usesVFilter= 0;
  1890. if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
  1891. if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
  1892. if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
  1893. if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
  1894. if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
  1895. if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
  1896. if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
  1897. if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
  1898. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  1899. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  1900. // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
  1901. if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  1902. // drop some chroma lines if the user wants it
  1903. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  1904. c->chrSrcVSubSample+= c->vChrDrop;
  1905. // drop every 2. pixel for chroma calculation unless user wants full chroma
  1906. if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
  1907. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  1908. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  1909. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE)
  1910. c->chrSrcHSubSample=1;
  1911. if (param){
  1912. c->param[0] = param[0];
  1913. c->param[1] = param[1];
  1914. }else{
  1915. c->param[0] =
  1916. c->param[1] = SWS_PARAM_DEFAULT;
  1917. }
  1918. c->chrIntHSubSample= c->chrDstHSubSample;
  1919. c->chrIntVSubSample= c->chrSrcVSubSample;
  1920. // Note the -((-x)>>y) is so that we always round toward +inf.
  1921. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  1922. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  1923. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  1924. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  1925. sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  1926. /* unscaled special Cases */
  1927. if (unscaled && !usesHFilter && !usesVFilter)
  1928. {
  1929. /* yv12_to_nv12 */
  1930. if (srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
  1931. {
  1932. c->swScale= PlanarToNV12Wrapper;
  1933. }
  1934. #ifdef CONFIG_GPL
  1935. /* yuv2bgr */
  1936. if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
  1937. {
  1938. c->swScale= yuv2rgb_get_func_ptr(c);
  1939. }
  1940. #endif
  1941. if (srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P)
  1942. {
  1943. c->swScale= yvu9toyv12Wrapper;
  1944. }
  1945. /* bgr24toYV12 */
  1946. if (srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
  1947. c->swScale= bgr24toyv12Wrapper;
  1948. /* rgb/bgr -> rgb/bgr (no dither needed forms) */
  1949. if ( (isBGR(srcFormat) || isRGB(srcFormat))
  1950. && (isBGR(dstFormat) || isRGB(dstFormat))
  1951. && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
  1952. && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
  1953. && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
  1954. && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
  1955. && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
  1956. && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
  1957. && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
  1958. && !needsDither)
  1959. c->swScale= rgb2rgbWrapper;
  1960. /* LQ converters if -sws 0 or -sws 4*/
  1961. if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  1962. /* rgb/bgr -> rgb/bgr (dither needed forms) */
  1963. if ( (isBGR(srcFormat) || isRGB(srcFormat))
  1964. && (isBGR(dstFormat) || isRGB(dstFormat))
  1965. && needsDither)
  1966. c->swScale= rgb2rgbWrapper;
  1967. /* yv12_to_yuy2 */
  1968. if (srcFormat == PIX_FMT_YUV420P &&
  1969. (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
  1970. {
  1971. if (dstFormat == PIX_FMT_YUYV422)
  1972. c->swScale= PlanarToYuy2Wrapper;
  1973. else
  1974. c->swScale= PlanarToUyvyWrapper;
  1975. }
  1976. }
  1977. #ifdef COMPILE_ALTIVEC
  1978. if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
  1979. ((srcFormat == PIX_FMT_YUV420P &&
  1980. (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
  1981. // unscaled YV12 -> packed YUV, we want speed
  1982. if (dstFormat == PIX_FMT_YUYV422)
  1983. c->swScale= yv12toyuy2_unscaled_altivec;
  1984. else
  1985. c->swScale= yv12touyvy_unscaled_altivec;
  1986. }
  1987. #endif
  1988. /* simple copy */
  1989. if ( srcFormat == dstFormat
  1990. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  1991. || (isPlanarYUV(dstFormat) && isGray(srcFormat)))
  1992. {
  1993. c->swScale= simpleCopy;
  1994. }
  1995. /* gray16{le,be} conversions */
  1996. if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
  1997. {
  1998. c->swScale= gray16togray;
  1999. }
  2000. if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
  2001. {
  2002. c->swScale= graytogray16;
  2003. }
  2004. if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
  2005. {
  2006. c->swScale= gray16swap;
  2007. }
  2008. #ifdef ARCH_BFIN
  2009. if (flags & SWS_CPU_CAPS_BFIN)
  2010. ff_bfin_get_unscaled_swscale (c);
  2011. #endif
  2012. if (c->swScale){
  2013. if (flags&SWS_PRINT_INFO)
  2014. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  2015. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2016. return c;
  2017. }
  2018. }
  2019. if (flags & SWS_CPU_CAPS_MMX2)
  2020. {
  2021. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  2022. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  2023. {
  2024. if (flags&SWS_PRINT_INFO)
  2025. av_log(c, AV_LOG_INFO, "output Width is not a multiple of 32 -> no MMX2 scaler\n");
  2026. }
  2027. if (usesHFilter) c->canMMX2BeUsed=0;
  2028. }
  2029. else
  2030. c->canMMX2BeUsed=0;
  2031. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  2032. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  2033. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  2034. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  2035. // n-2 is the last chrominance sample available
  2036. // this is not perfect, but no one should notice the difference, the more correct variant
  2037. // would be like the vertical one, but that would require some special code for the
  2038. // first and last pixel
  2039. if (flags&SWS_FAST_BILINEAR)
  2040. {
  2041. if (c->canMMX2BeUsed)
  2042. {
  2043. c->lumXInc+= 20;
  2044. c->chrXInc+= 20;
  2045. }
  2046. //we don't use the x86asm scaler if mmx is available
  2047. else if (flags & SWS_CPU_CAPS_MMX)
  2048. {
  2049. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  2050. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  2051. }
  2052. }
  2053. /* precalculate horizontal scaler filter coefficients */
  2054. {
  2055. const int filterAlign=
  2056. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  2057. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2058. 1;
  2059. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  2060. srcW , dstW, filterAlign, 1<<14,
  2061. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2062. srcFilter->lumH, dstFilter->lumH, c->param);
  2063. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  2064. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  2065. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2066. srcFilter->chrH, dstFilter->chrH, c->param);
  2067. #define MAX_FUNNY_CODE_SIZE 10000
  2068. #if defined(COMPILE_MMX2)
  2069. // can't downscale !!!
  2070. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  2071. {
  2072. #ifdef MAP_ANONYMOUS
  2073. c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2074. c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2075. #else
  2076. c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2077. c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2078. #endif
  2079. c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
  2080. c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
  2081. c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
  2082. c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
  2083. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  2084. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  2085. }
  2086. #endif /* defined(COMPILE_MMX2) */
  2087. } // Init Horizontal stuff
  2088. /* precalculate vertical scaler filter coefficients */
  2089. {
  2090. const int filterAlign=
  2091. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  2092. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2093. 1;
  2094. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  2095. srcH , dstH, filterAlign, (1<<12)-4,
  2096. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2097. srcFilter->lumV, dstFilter->lumV, c->param);
  2098. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  2099. c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
  2100. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2101. srcFilter->chrV, dstFilter->chrV, c->param);
  2102. #ifdef HAVE_ALTIVEC
  2103. c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
  2104. c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
  2105. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  2106. int j;
  2107. short *p = (short *)&c->vYCoeffsBank[i];
  2108. for (j=0;j<8;j++)
  2109. p[j] = c->vLumFilter[i];
  2110. }
  2111. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  2112. int j;
  2113. short *p = (short *)&c->vCCoeffsBank[i];
  2114. for (j=0;j<8;j++)
  2115. p[j] = c->vChrFilter[i];
  2116. }
  2117. #endif
  2118. }
  2119. // Calculate Buffer Sizes so that they won't run out while handling these damn slices
  2120. c->vLumBufSize= c->vLumFilterSize;
  2121. c->vChrBufSize= c->vChrFilterSize;
  2122. for (i=0; i<dstH; i++)
  2123. {
  2124. int chrI= i*c->chrDstH / dstH;
  2125. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  2126. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  2127. nextSlice>>= c->chrSrcVSubSample;
  2128. nextSlice<<= c->chrSrcVSubSample;
  2129. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  2130. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  2131. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  2132. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  2133. }
  2134. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  2135. c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2136. c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
  2137. //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
  2138. /* align at 16 bytes for AltiVec */
  2139. for (i=0; i<c->vLumBufSize; i++)
  2140. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2141. for (i=0; i<c->vChrBufSize; i++)
  2142. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
  2143. //try to avoid drawing green stuff between the right end and the stride end
  2144. for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
  2145. assert(2*VOFW == VOF);
  2146. ASSERT(c->chrDstH <= dstH)
  2147. if (flags&SWS_PRINT_INFO)
  2148. {
  2149. #ifdef DITHER1XBPP
  2150. char *dither= " dithered";
  2151. #else
  2152. char *dither= "";
  2153. #endif
  2154. if (flags&SWS_FAST_BILINEAR)
  2155. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  2156. else if (flags&SWS_BILINEAR)
  2157. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  2158. else if (flags&SWS_BICUBIC)
  2159. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  2160. else if (flags&SWS_X)
  2161. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  2162. else if (flags&SWS_POINT)
  2163. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  2164. else if (flags&SWS_AREA)
  2165. av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
  2166. else if (flags&SWS_BICUBLIN)
  2167. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  2168. else if (flags&SWS_GAUSS)
  2169. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  2170. else if (flags&SWS_SINC)
  2171. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  2172. else if (flags&SWS_LANCZOS)
  2173. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  2174. else if (flags&SWS_SPLINE)
  2175. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  2176. else
  2177. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  2178. if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
  2179. av_log(c, AV_LOG_INFO, "from %s to%s %s ",
  2180. sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
  2181. else
  2182. av_log(c, AV_LOG_INFO, "from %s to %s ",
  2183. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2184. if (flags & SWS_CPU_CAPS_MMX2)
  2185. av_log(c, AV_LOG_INFO, "using MMX2\n");
  2186. else if (flags & SWS_CPU_CAPS_3DNOW)
  2187. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  2188. else if (flags & SWS_CPU_CAPS_MMX)
  2189. av_log(c, AV_LOG_INFO, "using MMX\n");
  2190. else if (flags & SWS_CPU_CAPS_ALTIVEC)
  2191. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  2192. else
  2193. av_log(c, AV_LOG_INFO, "using C\n");
  2194. }
  2195. if (flags & SWS_PRINT_INFO)
  2196. {
  2197. if (flags & SWS_CPU_CAPS_MMX)
  2198. {
  2199. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  2200. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  2201. else
  2202. {
  2203. if (c->hLumFilterSize==4)
  2204. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  2205. else if (c->hLumFilterSize==8)
  2206. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  2207. else
  2208. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  2209. if (c->hChrFilterSize==4)
  2210. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  2211. else if (c->hChrFilterSize==8)
  2212. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  2213. else
  2214. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  2215. }
  2216. }
  2217. else
  2218. {
  2219. #if defined(ARCH_X86)
  2220. av_log(c, AV_LOG_VERBOSE, "using X86-Asm scaler for horizontal scaling\n");
  2221. #else
  2222. if (flags & SWS_FAST_BILINEAR)
  2223. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  2224. else
  2225. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  2226. #endif
  2227. }
  2228. if (isPlanarYUV(dstFormat))
  2229. {
  2230. if (c->vLumFilterSize==1)
  2231. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2232. else
  2233. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2234. }
  2235. else
  2236. {
  2237. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  2238. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  2239. " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2240. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  2241. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2242. else
  2243. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2244. }
  2245. if (dstFormat==PIX_FMT_BGR24)
  2246. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 Converter\n",
  2247. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  2248. else if (dstFormat==PIX_FMT_RGB32)
  2249. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2250. else if (dstFormat==PIX_FMT_BGR565)
  2251. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2252. else if (dstFormat==PIX_FMT_BGR555)
  2253. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2254. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  2255. }
  2256. if (flags & SWS_PRINT_INFO)
  2257. {
  2258. av_log(c, AV_LOG_DEBUG, "Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2259. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  2260. av_log(c, AV_LOG_DEBUG, "Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2261. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  2262. }
  2263. c->swScale= getSwsFunc(flags);
  2264. return c;
  2265. }
  2266. /**
  2267. * swscale wrapper, so we don't need to export the SwsContext.
  2268. * assumes planar YUV to be in YUV order instead of YVU
  2269. */
  2270. int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2271. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2272. int i;
  2273. uint8_t* src2[4]= {src[0], src[1], src[2]};
  2274. uint32_t pal[256];
  2275. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  2276. av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
  2277. return 0;
  2278. }
  2279. if (c->sliceDir == 0) {
  2280. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  2281. }
  2282. if (c->srcFormat == PIX_FMT_PAL8){
  2283. for (i=0; i<256; i++){
  2284. int p= ((uint32_t*)(src[1]))[i];
  2285. int r= (p>>16)&0xFF;
  2286. int g= (p>> 8)&0xFF;
  2287. int b= p &0xFF;
  2288. int y= av_clip_uint8(((RY*r + GY*g + BY*b)>>RGB2YUV_SHIFT) + 16 );
  2289. int u= av_clip_uint8(((RU*r + GU*g + BU*b)>>RGB2YUV_SHIFT) + 128);
  2290. int v= av_clip_uint8(((RV*r + GV*g + BV*b)>>RGB2YUV_SHIFT) + 128);
  2291. pal[i]= y + (u<<8) + (v<<16);
  2292. }
  2293. src2[1]= pal;
  2294. }
  2295. // copy strides, so they can safely be modified
  2296. if (c->sliceDir == 1) {
  2297. // slices go from top to bottom
  2298. int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2]};
  2299. int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2]};
  2300. return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
  2301. } else {
  2302. // slices go from bottom to top => we flip the image internally
  2303. uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
  2304. dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
  2305. dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
  2306. int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2]};
  2307. int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2]};
  2308. src2[0] += (srcSliceH-1)*srcStride[0];
  2309. if (c->srcFormat != PIX_FMT_PAL8)
  2310. src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
  2311. src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
  2312. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
  2313. }
  2314. }
  2315. /**
  2316. * swscale wrapper, so we don't need to export the SwsContext
  2317. */
  2318. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2319. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2320. return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  2321. }
  2322. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  2323. float lumaSharpen, float chromaSharpen,
  2324. float chromaHShift, float chromaVShift,
  2325. int verbose)
  2326. {
  2327. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  2328. if (lumaGBlur!=0.0){
  2329. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  2330. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  2331. }else{
  2332. filter->lumH= sws_getIdentityVec();
  2333. filter->lumV= sws_getIdentityVec();
  2334. }
  2335. if (chromaGBlur!=0.0){
  2336. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  2337. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  2338. }else{
  2339. filter->chrH= sws_getIdentityVec();
  2340. filter->chrV= sws_getIdentityVec();
  2341. }
  2342. if (chromaSharpen!=0.0){
  2343. SwsVector *id= sws_getIdentityVec();
  2344. sws_scaleVec(filter->chrH, -chromaSharpen);
  2345. sws_scaleVec(filter->chrV, -chromaSharpen);
  2346. sws_addVec(filter->chrH, id);
  2347. sws_addVec(filter->chrV, id);
  2348. sws_freeVec(id);
  2349. }
  2350. if (lumaSharpen!=0.0){
  2351. SwsVector *id= sws_getIdentityVec();
  2352. sws_scaleVec(filter->lumH, -lumaSharpen);
  2353. sws_scaleVec(filter->lumV, -lumaSharpen);
  2354. sws_addVec(filter->lumH, id);
  2355. sws_addVec(filter->lumV, id);
  2356. sws_freeVec(id);
  2357. }
  2358. if (chromaHShift != 0.0)
  2359. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  2360. if (chromaVShift != 0.0)
  2361. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  2362. sws_normalizeVec(filter->chrH, 1.0);
  2363. sws_normalizeVec(filter->chrV, 1.0);
  2364. sws_normalizeVec(filter->lumH, 1.0);
  2365. sws_normalizeVec(filter->lumV, 1.0);
  2366. if (verbose) sws_printVec(filter->chrH);
  2367. if (verbose) sws_printVec(filter->lumH);
  2368. return filter;
  2369. }
  2370. /**
  2371. * returns a normalized gaussian curve used to filter stuff
  2372. * quality=3 is high quality, lowwer is lowwer quality
  2373. */
  2374. SwsVector *sws_getGaussianVec(double variance, double quality){
  2375. const int length= (int)(variance*quality + 0.5) | 1;
  2376. int i;
  2377. double *coeff= av_malloc(length*sizeof(double));
  2378. double middle= (length-1)*0.5;
  2379. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2380. vec->coeff= coeff;
  2381. vec->length= length;
  2382. for (i=0; i<length; i++)
  2383. {
  2384. double dist= i-middle;
  2385. coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
  2386. }
  2387. sws_normalizeVec(vec, 1.0);
  2388. return vec;
  2389. }
  2390. SwsVector *sws_getConstVec(double c, int length){
  2391. int i;
  2392. double *coeff= av_malloc(length*sizeof(double));
  2393. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2394. vec->coeff= coeff;
  2395. vec->length= length;
  2396. for (i=0; i<length; i++)
  2397. coeff[i]= c;
  2398. return vec;
  2399. }
  2400. SwsVector *sws_getIdentityVec(void){
  2401. return sws_getConstVec(1.0, 1);
  2402. }
  2403. double sws_dcVec(SwsVector *a){
  2404. int i;
  2405. double sum=0;
  2406. for (i=0; i<a->length; i++)
  2407. sum+= a->coeff[i];
  2408. return sum;
  2409. }
  2410. void sws_scaleVec(SwsVector *a, double scalar){
  2411. int i;
  2412. for (i=0; i<a->length; i++)
  2413. a->coeff[i]*= scalar;
  2414. }
  2415. void sws_normalizeVec(SwsVector *a, double height){
  2416. sws_scaleVec(a, height/sws_dcVec(a));
  2417. }
  2418. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2419. int length= a->length + b->length - 1;
  2420. double *coeff= av_malloc(length*sizeof(double));
  2421. int i, j;
  2422. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2423. vec->coeff= coeff;
  2424. vec->length= length;
  2425. for (i=0; i<length; i++) coeff[i]= 0.0;
  2426. for (i=0; i<a->length; i++)
  2427. {
  2428. for (j=0; j<b->length; j++)
  2429. {
  2430. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  2431. }
  2432. }
  2433. return vec;
  2434. }
  2435. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  2436. int length= FFMAX(a->length, b->length);
  2437. double *coeff= av_malloc(length*sizeof(double));
  2438. int i;
  2439. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2440. vec->coeff= coeff;
  2441. vec->length= length;
  2442. for (i=0; i<length; i++) coeff[i]= 0.0;
  2443. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2444. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  2445. return vec;
  2446. }
  2447. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  2448. int length= FFMAX(a->length, b->length);
  2449. double *coeff= av_malloc(length*sizeof(double));
  2450. int i;
  2451. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2452. vec->coeff= coeff;
  2453. vec->length= length;
  2454. for (i=0; i<length; i++) coeff[i]= 0.0;
  2455. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2456. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  2457. return vec;
  2458. }
  2459. /* shift left / or right if "shift" is negative */
  2460. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  2461. int length= a->length + FFABS(shift)*2;
  2462. double *coeff= av_malloc(length*sizeof(double));
  2463. int i;
  2464. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2465. vec->coeff= coeff;
  2466. vec->length= length;
  2467. for (i=0; i<length; i++) coeff[i]= 0.0;
  2468. for (i=0; i<a->length; i++)
  2469. {
  2470. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  2471. }
  2472. return vec;
  2473. }
  2474. void sws_shiftVec(SwsVector *a, int shift){
  2475. SwsVector *shifted= sws_getShiftedVec(a, shift);
  2476. av_free(a->coeff);
  2477. a->coeff= shifted->coeff;
  2478. a->length= shifted->length;
  2479. av_free(shifted);
  2480. }
  2481. void sws_addVec(SwsVector *a, SwsVector *b){
  2482. SwsVector *sum= sws_sumVec(a, b);
  2483. av_free(a->coeff);
  2484. a->coeff= sum->coeff;
  2485. a->length= sum->length;
  2486. av_free(sum);
  2487. }
  2488. void sws_subVec(SwsVector *a, SwsVector *b){
  2489. SwsVector *diff= sws_diffVec(a, b);
  2490. av_free(a->coeff);
  2491. a->coeff= diff->coeff;
  2492. a->length= diff->length;
  2493. av_free(diff);
  2494. }
  2495. void sws_convVec(SwsVector *a, SwsVector *b){
  2496. SwsVector *conv= sws_getConvVec(a, b);
  2497. av_free(a->coeff);
  2498. a->coeff= conv->coeff;
  2499. a->length= conv->length;
  2500. av_free(conv);
  2501. }
  2502. SwsVector *sws_cloneVec(SwsVector *a){
  2503. double *coeff= av_malloc(a->length*sizeof(double));
  2504. int i;
  2505. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2506. vec->coeff= coeff;
  2507. vec->length= a->length;
  2508. for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  2509. return vec;
  2510. }
  2511. void sws_printVec(SwsVector *a){
  2512. int i;
  2513. double max=0;
  2514. double min=0;
  2515. double range;
  2516. for (i=0; i<a->length; i++)
  2517. if (a->coeff[i]>max) max= a->coeff[i];
  2518. for (i=0; i<a->length; i++)
  2519. if (a->coeff[i]<min) min= a->coeff[i];
  2520. range= max - min;
  2521. for (i=0; i<a->length; i++)
  2522. {
  2523. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  2524. av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
  2525. for (;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
  2526. av_log(NULL, AV_LOG_DEBUG, "|\n");
  2527. }
  2528. }
  2529. void sws_freeVec(SwsVector *a){
  2530. if (!a) return;
  2531. av_free(a->coeff);
  2532. a->coeff=NULL;
  2533. a->length=0;
  2534. av_free(a);
  2535. }
  2536. void sws_freeFilter(SwsFilter *filter){
  2537. if (!filter) return;
  2538. if (filter->lumH) sws_freeVec(filter->lumH);
  2539. if (filter->lumV) sws_freeVec(filter->lumV);
  2540. if (filter->chrH) sws_freeVec(filter->chrH);
  2541. if (filter->chrV) sws_freeVec(filter->chrV);
  2542. av_free(filter);
  2543. }
  2544. void sws_freeContext(SwsContext *c){
  2545. int i;
  2546. if (!c) return;
  2547. if (c->lumPixBuf)
  2548. {
  2549. for (i=0; i<c->vLumBufSize; i++)
  2550. {
  2551. av_free(c->lumPixBuf[i]);
  2552. c->lumPixBuf[i]=NULL;
  2553. }
  2554. av_free(c->lumPixBuf);
  2555. c->lumPixBuf=NULL;
  2556. }
  2557. if (c->chrPixBuf)
  2558. {
  2559. for (i=0; i<c->vChrBufSize; i++)
  2560. {
  2561. av_free(c->chrPixBuf[i]);
  2562. c->chrPixBuf[i]=NULL;
  2563. }
  2564. av_free(c->chrPixBuf);
  2565. c->chrPixBuf=NULL;
  2566. }
  2567. av_free(c->vLumFilter);
  2568. c->vLumFilter = NULL;
  2569. av_free(c->vChrFilter);
  2570. c->vChrFilter = NULL;
  2571. av_free(c->hLumFilter);
  2572. c->hLumFilter = NULL;
  2573. av_free(c->hChrFilter);
  2574. c->hChrFilter = NULL;
  2575. #ifdef HAVE_ALTIVEC
  2576. av_free(c->vYCoeffsBank);
  2577. c->vYCoeffsBank = NULL;
  2578. av_free(c->vCCoeffsBank);
  2579. c->vCCoeffsBank = NULL;
  2580. #endif
  2581. av_free(c->vLumFilterPos);
  2582. c->vLumFilterPos = NULL;
  2583. av_free(c->vChrFilterPos);
  2584. c->vChrFilterPos = NULL;
  2585. av_free(c->hLumFilterPos);
  2586. c->hLumFilterPos = NULL;
  2587. av_free(c->hChrFilterPos);
  2588. c->hChrFilterPos = NULL;
  2589. #if defined(ARCH_X86) && defined(CONFIG_GPL)
  2590. #ifdef MAP_ANONYMOUS
  2591. if (c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
  2592. if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
  2593. #else
  2594. av_free(c->funnyYCode);
  2595. av_free(c->funnyUVCode);
  2596. #endif
  2597. c->funnyYCode=NULL;
  2598. c->funnyUVCode=NULL;
  2599. #endif /* defined(ARCH_X86) */
  2600. av_free(c->lumMmx2Filter);
  2601. c->lumMmx2Filter=NULL;
  2602. av_free(c->chrMmx2Filter);
  2603. c->chrMmx2Filter=NULL;
  2604. av_free(c->lumMmx2FilterPos);
  2605. c->lumMmx2FilterPos=NULL;
  2606. av_free(c->chrMmx2FilterPos);
  2607. c->chrMmx2FilterPos=NULL;
  2608. av_free(c->yuvTable);
  2609. c->yuvTable=NULL;
  2610. av_free(c);
  2611. }
  2612. /**
  2613. * Checks if context is valid or reallocs a new one instead.
  2614. * If context is NULL, just calls sws_getContext() to get a new one.
  2615. * Otherwise, checks if the parameters are the same already saved in context.
  2616. * If that is the case, returns the current context.
  2617. * Otherwise, frees context and gets a new one.
  2618. *
  2619. * Be warned that srcFilter, dstFilter are not checked, they are
  2620. * asumed to remain valid.
  2621. */
  2622. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  2623. int srcW, int srcH, int srcFormat,
  2624. int dstW, int dstH, int dstFormat, int flags,
  2625. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
  2626. {
  2627. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  2628. if (!param)
  2629. param = default_param;
  2630. if (context) {
  2631. if (context->srcW != srcW || context->srcH != srcH ||
  2632. context->srcFormat != srcFormat ||
  2633. context->dstW != dstW || context->dstH != dstH ||
  2634. context->dstFormat != dstFormat || context->flags != flags ||
  2635. context->param[0] != param[0] || context->param[1] != param[1])
  2636. {
  2637. sws_freeContext(context);
  2638. context = NULL;
  2639. }
  2640. }
  2641. if (!context) {
  2642. return sws_getContext(srcW, srcH, srcFormat,
  2643. dstW, dstH, dstFormat, flags,
  2644. srcFilter, dstFilter, param);
  2645. }
  2646. return context;
  2647. }