You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

8087 lines
311KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file h264.c
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "dsputil.h"
  27. #include "avcodec.h"
  28. #include "mpegvideo.h"
  29. #include "h264.h"
  30. #include "h264data.h"
  31. #include "h264_parser.h"
  32. #include "golomb.h"
  33. #include "rectangle.h"
  34. #include "cabac.h"
  35. //#undef NDEBUG
  36. #include <assert.h>
  37. /**
  38. * Value of Picture.reference when Picture is not a reference picture, but
  39. * is held for delayed output.
  40. */
  41. #define DELAYED_PIC_REF 4
  42. static VLC coeff_token_vlc[4];
  43. static VLC chroma_dc_coeff_token_vlc;
  44. static VLC total_zeros_vlc[15];
  45. static VLC chroma_dc_total_zeros_vlc[3];
  46. static VLC run_vlc[6];
  47. static VLC run7_vlc;
  48. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  49. static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  50. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  51. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  52. static av_always_inline uint32_t pack16to32(int a, int b){
  53. #ifdef WORDS_BIGENDIAN
  54. return (b&0xFFFF) + (a<<16);
  55. #else
  56. return (a&0xFFFF) + (b<<16);
  57. #endif
  58. }
  59. const uint8_t ff_rem6[52]={
  60. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  61. };
  62. const uint8_t ff_div6[52]={
  63. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
  64. };
  65. static void fill_caches(H264Context *h, int mb_type, int for_deblock){
  66. MpegEncContext * const s = &h->s;
  67. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  68. int topleft_xy, top_xy, topright_xy, left_xy[2];
  69. int topleft_type, top_type, topright_type, left_type[2];
  70. int left_block[8];
  71. int topleft_partition= -1;
  72. int i;
  73. top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
  74. //FIXME deblocking could skip the intra and nnz parts.
  75. if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
  76. return;
  77. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  78. * stuff, I can't imagine that these complex rules are worth it. */
  79. topleft_xy = top_xy - 1;
  80. topright_xy= top_xy + 1;
  81. left_xy[1] = left_xy[0] = mb_xy-1;
  82. left_block[0]= 0;
  83. left_block[1]= 1;
  84. left_block[2]= 2;
  85. left_block[3]= 3;
  86. left_block[4]= 7;
  87. left_block[5]= 10;
  88. left_block[6]= 8;
  89. left_block[7]= 11;
  90. if(FRAME_MBAFF){
  91. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  92. const int top_pair_xy = pair_xy - s->mb_stride;
  93. const int topleft_pair_xy = top_pair_xy - 1;
  94. const int topright_pair_xy = top_pair_xy + 1;
  95. const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
  96. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  97. const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
  98. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  99. const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
  100. const int bottom = (s->mb_y & 1);
  101. tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
  102. if (bottom
  103. ? !curr_mb_frame_flag // bottom macroblock
  104. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  105. ) {
  106. top_xy -= s->mb_stride;
  107. }
  108. if (bottom
  109. ? !curr_mb_frame_flag // bottom macroblock
  110. : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
  111. ) {
  112. topleft_xy -= s->mb_stride;
  113. } else if(bottom && curr_mb_frame_flag && !left_mb_frame_flag) {
  114. topleft_xy += s->mb_stride;
  115. // take topleft mv from the middle of the mb, as opposed to all other modes which use the bottom-right partition
  116. topleft_partition = 0;
  117. }
  118. if (bottom
  119. ? !curr_mb_frame_flag // bottom macroblock
  120. : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
  121. ) {
  122. topright_xy -= s->mb_stride;
  123. }
  124. if (left_mb_frame_flag != curr_mb_frame_flag) {
  125. left_xy[1] = left_xy[0] = pair_xy - 1;
  126. if (curr_mb_frame_flag) {
  127. if (bottom) {
  128. left_block[0]= 2;
  129. left_block[1]= 2;
  130. left_block[2]= 3;
  131. left_block[3]= 3;
  132. left_block[4]= 8;
  133. left_block[5]= 11;
  134. left_block[6]= 8;
  135. left_block[7]= 11;
  136. } else {
  137. left_block[0]= 0;
  138. left_block[1]= 0;
  139. left_block[2]= 1;
  140. left_block[3]= 1;
  141. left_block[4]= 7;
  142. left_block[5]= 10;
  143. left_block[6]= 7;
  144. left_block[7]= 10;
  145. }
  146. } else {
  147. left_xy[1] += s->mb_stride;
  148. //left_block[0]= 0;
  149. left_block[1]= 2;
  150. left_block[2]= 0;
  151. left_block[3]= 2;
  152. //left_block[4]= 7;
  153. left_block[5]= 10;
  154. left_block[6]= 7;
  155. left_block[7]= 10;
  156. }
  157. }
  158. }
  159. h->top_mb_xy = top_xy;
  160. h->left_mb_xy[0] = left_xy[0];
  161. h->left_mb_xy[1] = left_xy[1];
  162. if(for_deblock){
  163. topleft_type = 0;
  164. topright_type = 0;
  165. top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
  166. left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
  167. left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
  168. if(FRAME_MBAFF && !IS_INTRA(mb_type)){
  169. int list;
  170. int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
  171. for(i=0; i<16; i++)
  172. h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
  173. for(list=0; list<h->list_count; list++){
  174. if(USES_LIST(mb_type,list)){
  175. uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
  176. uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
  177. int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
  178. for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
  179. dst[0] = src[0];
  180. dst[1] = src[1];
  181. dst[2] = src[2];
  182. dst[3] = src[3];
  183. }
  184. *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
  185. *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
  186. ref += h->b8_stride;
  187. *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
  188. *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
  189. }else{
  190. fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
  191. fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
  192. }
  193. }
  194. }
  195. }else{
  196. topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
  197. top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  198. topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
  199. left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  200. left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  201. }
  202. if(IS_INTRA(mb_type)){
  203. h->topleft_samples_available=
  204. h->top_samples_available=
  205. h->left_samples_available= 0xFFFF;
  206. h->topright_samples_available= 0xEEEA;
  207. if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
  208. h->topleft_samples_available= 0xB3FF;
  209. h->top_samples_available= 0x33FF;
  210. h->topright_samples_available= 0x26EA;
  211. }
  212. for(i=0; i<2; i++){
  213. if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
  214. h->topleft_samples_available&= 0xDF5F;
  215. h->left_samples_available&= 0x5F5F;
  216. }
  217. }
  218. if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
  219. h->topleft_samples_available&= 0x7FFF;
  220. if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
  221. h->topright_samples_available&= 0xFBFF;
  222. if(IS_INTRA4x4(mb_type)){
  223. if(IS_INTRA4x4(top_type)){
  224. h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
  225. h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
  226. h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
  227. h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
  228. }else{
  229. int pred;
  230. if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
  231. pred= -1;
  232. else{
  233. pred= 2;
  234. }
  235. h->intra4x4_pred_mode_cache[4+8*0]=
  236. h->intra4x4_pred_mode_cache[5+8*0]=
  237. h->intra4x4_pred_mode_cache[6+8*0]=
  238. h->intra4x4_pred_mode_cache[7+8*0]= pred;
  239. }
  240. for(i=0; i<2; i++){
  241. if(IS_INTRA4x4(left_type[i])){
  242. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
  243. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
  244. }else{
  245. int pred;
  246. if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
  247. pred= -1;
  248. else{
  249. pred= 2;
  250. }
  251. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  252. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
  253. }
  254. }
  255. }
  256. }
  257. /*
  258. 0 . T T. T T T T
  259. 1 L . .L . . . .
  260. 2 L . .L . . . .
  261. 3 . T TL . . . .
  262. 4 L . .L . . . .
  263. 5 L . .. . . . .
  264. */
  265. //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
  266. if(top_type){
  267. h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
  268. h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
  269. h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
  270. h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
  271. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
  272. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
  273. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
  274. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
  275. }else{
  276. h->non_zero_count_cache[4+8*0]=
  277. h->non_zero_count_cache[5+8*0]=
  278. h->non_zero_count_cache[6+8*0]=
  279. h->non_zero_count_cache[7+8*0]=
  280. h->non_zero_count_cache[1+8*0]=
  281. h->non_zero_count_cache[2+8*0]=
  282. h->non_zero_count_cache[1+8*3]=
  283. h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  284. }
  285. for (i=0; i<2; i++) {
  286. if(left_type[i]){
  287. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
  288. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
  289. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
  290. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
  291. }else{
  292. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  293. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  294. h->non_zero_count_cache[0+8*1 + 8*i]=
  295. h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  296. }
  297. }
  298. if( h->pps.cabac ) {
  299. // top_cbp
  300. if(top_type) {
  301. h->top_cbp = h->cbp_table[top_xy];
  302. } else if(IS_INTRA(mb_type)) {
  303. h->top_cbp = 0x1C0;
  304. } else {
  305. h->top_cbp = 0;
  306. }
  307. // left_cbp
  308. if (left_type[0]) {
  309. h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
  310. } else if(IS_INTRA(mb_type)) {
  311. h->left_cbp = 0x1C0;
  312. } else {
  313. h->left_cbp = 0;
  314. }
  315. if (left_type[0]) {
  316. h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
  317. }
  318. if (left_type[1]) {
  319. h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
  320. }
  321. }
  322. #if 1
  323. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  324. int list;
  325. for(list=0; list<h->list_count; list++){
  326. if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
  327. /*if(!h->mv_cache_clean[list]){
  328. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  329. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  330. h->mv_cache_clean[list]= 1;
  331. }*/
  332. continue;
  333. }
  334. h->mv_cache_clean[list]= 0;
  335. if(USES_LIST(top_type, list)){
  336. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  337. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  338. *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
  339. *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
  340. *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
  341. *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
  342. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  343. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
  344. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  345. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
  346. }else{
  347. *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
  348. *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
  349. *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
  350. *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
  351. *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
  352. }
  353. for(i=0; i<2; i++){
  354. int cache_idx = scan8[0] - 1 + i*2*8;
  355. if(USES_LIST(left_type[i], list)){
  356. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  357. const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
  358. *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
  359. *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
  360. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
  361. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
  362. }else{
  363. *(uint32_t*)h->mv_cache [list][cache_idx ]=
  364. *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
  365. h->ref_cache[list][cache_idx ]=
  366. h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  367. }
  368. }
  369. if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
  370. continue;
  371. if(USES_LIST(topleft_type, list)){
  372. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
  373. const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
  374. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  375. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  376. }else{
  377. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
  378. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  379. }
  380. if(USES_LIST(topright_type, list)){
  381. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  382. const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
  383. *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  384. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  385. }else{
  386. *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
  387. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  388. }
  389. if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
  390. continue;
  391. h->ref_cache[list][scan8[5 ]+1] =
  392. h->ref_cache[list][scan8[7 ]+1] =
  393. h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
  394. h->ref_cache[list][scan8[4 ]] =
  395. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  396. *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
  397. *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
  398. *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  399. *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
  400. *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
  401. if( h->pps.cabac ) {
  402. /* XXX beurk, Load mvd */
  403. if(USES_LIST(top_type, list)){
  404. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  405. *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
  406. *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
  407. *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
  408. *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
  409. }else{
  410. *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
  411. *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
  412. *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
  413. *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
  414. }
  415. if(USES_LIST(left_type[0], list)){
  416. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  417. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
  418. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
  419. }else{
  420. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
  421. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
  422. }
  423. if(USES_LIST(left_type[1], list)){
  424. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  425. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
  426. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
  427. }else{
  428. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
  429. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
  430. }
  431. *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
  432. *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
  433. *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  434. *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
  435. *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
  436. if(h->slice_type == FF_B_TYPE){
  437. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
  438. if(IS_DIRECT(top_type)){
  439. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
  440. }else if(IS_8X8(top_type)){
  441. int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
  442. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
  443. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
  444. }else{
  445. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
  446. }
  447. if(IS_DIRECT(left_type[0]))
  448. h->direct_cache[scan8[0] - 1 + 0*8]= 1;
  449. else if(IS_8X8(left_type[0]))
  450. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
  451. else
  452. h->direct_cache[scan8[0] - 1 + 0*8]= 0;
  453. if(IS_DIRECT(left_type[1]))
  454. h->direct_cache[scan8[0] - 1 + 2*8]= 1;
  455. else if(IS_8X8(left_type[1]))
  456. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
  457. else
  458. h->direct_cache[scan8[0] - 1 + 2*8]= 0;
  459. }
  460. }
  461. if(FRAME_MBAFF){
  462. #define MAP_MVS\
  463. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  464. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  465. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  466. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  467. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  468. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  469. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  470. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  471. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  472. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  473. if(MB_FIELD){
  474. #define MAP_F2F(idx, mb_type)\
  475. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  476. h->ref_cache[list][idx] <<= 1;\
  477. h->mv_cache[list][idx][1] /= 2;\
  478. h->mvd_cache[list][idx][1] /= 2;\
  479. }
  480. MAP_MVS
  481. #undef MAP_F2F
  482. }else{
  483. #define MAP_F2F(idx, mb_type)\
  484. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  485. h->ref_cache[list][idx] >>= 1;\
  486. h->mv_cache[list][idx][1] <<= 1;\
  487. h->mvd_cache[list][idx][1] <<= 1;\
  488. }
  489. MAP_MVS
  490. #undef MAP_F2F
  491. }
  492. }
  493. }
  494. }
  495. #endif
  496. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  497. }
  498. static inline void write_back_intra_pred_mode(H264Context *h){
  499. MpegEncContext * const s = &h->s;
  500. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  501. h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
  502. h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
  503. h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
  504. h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
  505. h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
  506. h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
  507. h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
  508. }
  509. /**
  510. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  511. */
  512. static inline int check_intra4x4_pred_mode(H264Context *h){
  513. MpegEncContext * const s = &h->s;
  514. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  515. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  516. int i;
  517. if(!(h->top_samples_available&0x8000)){
  518. for(i=0; i<4; i++){
  519. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  520. if(status<0){
  521. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  522. return -1;
  523. } else if(status){
  524. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  525. }
  526. }
  527. }
  528. if(!(h->left_samples_available&0x8000)){
  529. for(i=0; i<4; i++){
  530. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  531. if(status<0){
  532. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  533. return -1;
  534. } else if(status){
  535. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  536. }
  537. }
  538. }
  539. return 0;
  540. } //FIXME cleanup like next
  541. /**
  542. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  543. */
  544. static inline int check_intra_pred_mode(H264Context *h, int mode){
  545. MpegEncContext * const s = &h->s;
  546. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  547. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  548. if(mode > 6U) {
  549. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  550. return -1;
  551. }
  552. if(!(h->top_samples_available&0x8000)){
  553. mode= top[ mode ];
  554. if(mode<0){
  555. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  556. return -1;
  557. }
  558. }
  559. if(!(h->left_samples_available&0x8000)){
  560. mode= left[ mode ];
  561. if(mode<0){
  562. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  563. return -1;
  564. }
  565. }
  566. return mode;
  567. }
  568. /**
  569. * gets the predicted intra4x4 prediction mode.
  570. */
  571. static inline int pred_intra_mode(H264Context *h, int n){
  572. const int index8= scan8[n];
  573. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  574. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  575. const int min= FFMIN(left, top);
  576. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  577. if(min<0) return DC_PRED;
  578. else return min;
  579. }
  580. static inline void write_back_non_zero_count(H264Context *h){
  581. MpegEncContext * const s = &h->s;
  582. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  583. h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
  584. h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
  585. h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
  586. h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
  587. h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
  588. h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
  589. h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
  590. h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
  591. h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
  592. h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
  593. h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
  594. h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
  595. h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
  596. if(FRAME_MBAFF){
  597. // store all luma nnzs, for deblocking
  598. int v = 0, i;
  599. for(i=0; i<16; i++)
  600. v += (!!h->non_zero_count_cache[scan8[i]]) << i;
  601. *(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
  602. }
  603. }
  604. /**
  605. * gets the predicted number of non zero coefficients.
  606. * @param n block index
  607. */
  608. static inline int pred_non_zero_count(H264Context *h, int n){
  609. const int index8= scan8[n];
  610. const int left= h->non_zero_count_cache[index8 - 1];
  611. const int top = h->non_zero_count_cache[index8 - 8];
  612. int i= left + top;
  613. if(i<64) i= (i+1)>>1;
  614. tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
  615. return i&31;
  616. }
  617. static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
  618. const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
  619. MpegEncContext *s = &h->s;
  620. /* there is no consistent mapping of mvs to neighboring locations that will
  621. * make mbaff happy, so we can't move all this logic to fill_caches */
  622. if(FRAME_MBAFF){
  623. const uint32_t *mb_types = s->current_picture_ptr->mb_type;
  624. const int16_t *mv;
  625. *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
  626. *C = h->mv_cache[list][scan8[0]-2];
  627. if(!MB_FIELD
  628. && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
  629. int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
  630. if(IS_INTERLACED(mb_types[topright_xy])){
  631. #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
  632. const int x4 = X4, y4 = Y4;\
  633. const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
  634. if(!USES_LIST(mb_type,list))\
  635. return LIST_NOT_USED;\
  636. mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
  637. h->mv_cache[list][scan8[0]-2][0] = mv[0];\
  638. h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
  639. return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
  640. SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
  641. }
  642. }
  643. if(topright_ref == PART_NOT_AVAILABLE
  644. && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
  645. && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
  646. if(!MB_FIELD
  647. && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
  648. SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
  649. }
  650. if(MB_FIELD
  651. && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
  652. && i >= scan8[0]+8){
  653. // leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
  654. SET_DIAG_MV(/2, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
  655. }
  656. }
  657. #undef SET_DIAG_MV
  658. }
  659. if(topright_ref != PART_NOT_AVAILABLE){
  660. *C= h->mv_cache[list][ i - 8 + part_width ];
  661. return topright_ref;
  662. }else{
  663. tprintf(s->avctx, "topright MV not available\n");
  664. *C= h->mv_cache[list][ i - 8 - 1 ];
  665. return h->ref_cache[list][ i - 8 - 1 ];
  666. }
  667. }
  668. /**
  669. * gets the predicted MV.
  670. * @param n the block index
  671. * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
  672. * @param mx the x component of the predicted motion vector
  673. * @param my the y component of the predicted motion vector
  674. */
  675. static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
  676. const int index8= scan8[n];
  677. const int top_ref= h->ref_cache[list][ index8 - 8 ];
  678. const int left_ref= h->ref_cache[list][ index8 - 1 ];
  679. const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
  680. const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
  681. const int16_t * C;
  682. int diagonal_ref, match_count;
  683. assert(part_width==1 || part_width==2 || part_width==4);
  684. /* mv_cache
  685. B . . A T T T T
  686. U . . L . . , .
  687. U . . L . . . .
  688. U . . L . . , .
  689. . . . L . . . .
  690. */
  691. diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
  692. match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
  693. tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
  694. if(match_count > 1){ //most common
  695. *mx= mid_pred(A[0], B[0], C[0]);
  696. *my= mid_pred(A[1], B[1], C[1]);
  697. }else if(match_count==1){
  698. if(left_ref==ref){
  699. *mx= A[0];
  700. *my= A[1];
  701. }else if(top_ref==ref){
  702. *mx= B[0];
  703. *my= B[1];
  704. }else{
  705. *mx= C[0];
  706. *my= C[1];
  707. }
  708. }else{
  709. if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
  710. *mx= A[0];
  711. *my= A[1];
  712. }else{
  713. *mx= mid_pred(A[0], B[0], C[0]);
  714. *my= mid_pred(A[1], B[1], C[1]);
  715. }
  716. }
  717. tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
  718. }
  719. /**
  720. * gets the directionally predicted 16x8 MV.
  721. * @param n the block index
  722. * @param mx the x component of the predicted motion vector
  723. * @param my the y component of the predicted motion vector
  724. */
  725. static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  726. if(n==0){
  727. const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
  728. const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
  729. tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
  730. if(top_ref == ref){
  731. *mx= B[0];
  732. *my= B[1];
  733. return;
  734. }
  735. }else{
  736. const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
  737. const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
  738. tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  739. if(left_ref == ref){
  740. *mx= A[0];
  741. *my= A[1];
  742. return;
  743. }
  744. }
  745. //RARE
  746. pred_motion(h, n, 4, list, ref, mx, my);
  747. }
  748. /**
  749. * gets the directionally predicted 8x16 MV.
  750. * @param n the block index
  751. * @param mx the x component of the predicted motion vector
  752. * @param my the y component of the predicted motion vector
  753. */
  754. static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  755. if(n==0){
  756. const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
  757. const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
  758. tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  759. if(left_ref == ref){
  760. *mx= A[0];
  761. *my= A[1];
  762. return;
  763. }
  764. }else{
  765. const int16_t * C;
  766. int diagonal_ref;
  767. diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
  768. tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
  769. if(diagonal_ref == ref){
  770. *mx= C[0];
  771. *my= C[1];
  772. return;
  773. }
  774. }
  775. //RARE
  776. pred_motion(h, n, 2, list, ref, mx, my);
  777. }
  778. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
  779. const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
  780. const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
  781. tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
  782. if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
  783. || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
  784. || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
  785. *mx = *my = 0;
  786. return;
  787. }
  788. pred_motion(h, 0, 4, 0, 0, mx, my);
  789. return;
  790. }
  791. static inline void direct_dist_scale_factor(H264Context * const h){
  792. const int poc = h->s.current_picture_ptr->poc;
  793. const int poc1 = h->ref_list[1][0].poc;
  794. int i;
  795. for(i=0; i<h->ref_count[0]; i++){
  796. int poc0 = h->ref_list[0][i].poc;
  797. int td = av_clip(poc1 - poc0, -128, 127);
  798. if(td == 0 /* FIXME || pic0 is a long-term ref */){
  799. h->dist_scale_factor[i] = 256;
  800. }else{
  801. int tb = av_clip(poc - poc0, -128, 127);
  802. int tx = (16384 + (FFABS(td) >> 1)) / td;
  803. h->dist_scale_factor[i] = av_clip((tb*tx + 32) >> 6, -1024, 1023);
  804. }
  805. }
  806. if(FRAME_MBAFF){
  807. for(i=0; i<h->ref_count[0]; i++){
  808. h->dist_scale_factor_field[2*i] =
  809. h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
  810. }
  811. }
  812. }
  813. static inline void direct_ref_list_init(H264Context * const h){
  814. MpegEncContext * const s = &h->s;
  815. Picture * const ref1 = &h->ref_list[1][0];
  816. Picture * const cur = s->current_picture_ptr;
  817. int list, i, j;
  818. if(cur->pict_type == FF_I_TYPE)
  819. cur->ref_count[0] = 0;
  820. if(cur->pict_type != FF_B_TYPE)
  821. cur->ref_count[1] = 0;
  822. for(list=0; list<2; list++){
  823. cur->ref_count[list] = h->ref_count[list];
  824. for(j=0; j<h->ref_count[list]; j++)
  825. cur->ref_poc[list][j] = h->ref_list[list][j].poc;
  826. }
  827. if(cur->pict_type != FF_B_TYPE || h->direct_spatial_mv_pred)
  828. return;
  829. for(list=0; list<2; list++){
  830. for(i=0; i<ref1->ref_count[list]; i++){
  831. const int poc = ref1->ref_poc[list][i];
  832. h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
  833. for(j=0; j<h->ref_count[list]; j++)
  834. if(h->ref_list[list][j].poc == poc){
  835. h->map_col_to_list0[list][i] = j;
  836. break;
  837. }
  838. }
  839. }
  840. if(FRAME_MBAFF){
  841. for(list=0; list<2; list++){
  842. for(i=0; i<ref1->ref_count[list]; i++){
  843. j = h->map_col_to_list0[list][i];
  844. h->map_col_to_list0_field[list][2*i] = 2*j;
  845. h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
  846. }
  847. }
  848. }
  849. }
  850. static inline void pred_direct_motion(H264Context * const h, int *mb_type){
  851. MpegEncContext * const s = &h->s;
  852. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  853. const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  854. const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  855. const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
  856. const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
  857. const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
  858. const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
  859. const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
  860. const int is_b8x8 = IS_8X8(*mb_type);
  861. unsigned int sub_mb_type;
  862. int i8, i4;
  863. #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
  864. if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
  865. /* FIXME save sub mb types from previous frames (or derive from MVs)
  866. * so we know exactly what block size to use */
  867. sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
  868. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  869. }else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
  870. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  871. *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
  872. }else{
  873. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  874. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  875. }
  876. if(!is_b8x8)
  877. *mb_type |= MB_TYPE_DIRECT2;
  878. if(MB_FIELD)
  879. *mb_type |= MB_TYPE_INTERLACED;
  880. tprintf(s->avctx, "mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
  881. if(h->direct_spatial_mv_pred){
  882. int ref[2];
  883. int mv[2][2];
  884. int list;
  885. /* FIXME interlacing + spatial direct uses wrong colocated block positions */
  886. /* ref = min(neighbors) */
  887. for(list=0; list<2; list++){
  888. int refa = h->ref_cache[list][scan8[0] - 1];
  889. int refb = h->ref_cache[list][scan8[0] - 8];
  890. int refc = h->ref_cache[list][scan8[0] - 8 + 4];
  891. if(refc == -2)
  892. refc = h->ref_cache[list][scan8[0] - 8 - 1];
  893. ref[list] = refa;
  894. if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
  895. ref[list] = refb;
  896. if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
  897. ref[list] = refc;
  898. if(ref[list] < 0)
  899. ref[list] = -1;
  900. }
  901. if(ref[0] < 0 && ref[1] < 0){
  902. ref[0] = ref[1] = 0;
  903. mv[0][0] = mv[0][1] =
  904. mv[1][0] = mv[1][1] = 0;
  905. }else{
  906. for(list=0; list<2; list++){
  907. if(ref[list] >= 0)
  908. pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
  909. else
  910. mv[list][0] = mv[list][1] = 0;
  911. }
  912. }
  913. if(ref[1] < 0){
  914. if(!is_b8x8)
  915. *mb_type &= ~MB_TYPE_L1;
  916. sub_mb_type &= ~MB_TYPE_L1;
  917. }else if(ref[0] < 0){
  918. if(!is_b8x8)
  919. *mb_type &= ~MB_TYPE_L0;
  920. sub_mb_type &= ~MB_TYPE_L0;
  921. }
  922. if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
  923. int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
  924. int mb_types_col[2];
  925. int b8_stride = h->b8_stride;
  926. int b4_stride = h->b_stride;
  927. *mb_type = (*mb_type & ~MB_TYPE_16x16) | MB_TYPE_8x8;
  928. if(IS_INTERLACED(*mb_type)){
  929. mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
  930. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  931. if(s->mb_y&1){
  932. l1ref0 -= 2*b8_stride;
  933. l1ref1 -= 2*b8_stride;
  934. l1mv0 -= 4*b4_stride;
  935. l1mv1 -= 4*b4_stride;
  936. }
  937. b8_stride *= 3;
  938. b4_stride *= 6;
  939. }else{
  940. int cur_poc = s->current_picture_ptr->poc;
  941. int *col_poc = h->ref_list[1]->field_poc;
  942. int col_parity = FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc);
  943. int dy = 2*col_parity - (s->mb_y&1);
  944. mb_types_col[0] =
  945. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy + col_parity*s->mb_stride];
  946. l1ref0 += dy*b8_stride;
  947. l1ref1 += dy*b8_stride;
  948. l1mv0 += 2*dy*b4_stride;
  949. l1mv1 += 2*dy*b4_stride;
  950. b8_stride = 0;
  951. }
  952. for(i8=0; i8<4; i8++){
  953. int x8 = i8&1;
  954. int y8 = i8>>1;
  955. int xy8 = x8+y8*b8_stride;
  956. int xy4 = 3*x8+y8*b4_stride;
  957. int a=0, b=0;
  958. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  959. continue;
  960. h->sub_mb_type[i8] = sub_mb_type;
  961. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  962. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  963. if(!IS_INTRA(mb_types_col[y8])
  964. && ( (l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1)
  965. || (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))){
  966. if(ref[0] > 0)
  967. a= pack16to32(mv[0][0],mv[0][1]);
  968. if(ref[1] > 0)
  969. b= pack16to32(mv[1][0],mv[1][1]);
  970. }else{
  971. a= pack16to32(mv[0][0],mv[0][1]);
  972. b= pack16to32(mv[1][0],mv[1][1]);
  973. }
  974. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, a, 4);
  975. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, b, 4);
  976. }
  977. }else if(IS_16X16(*mb_type)){
  978. int a=0, b=0;
  979. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
  980. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
  981. if(!IS_INTRA(mb_type_col)
  982. && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
  983. || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
  984. && (h->x264_build>33 || !h->x264_build)))){
  985. if(ref[0] > 0)
  986. a= pack16to32(mv[0][0],mv[0][1]);
  987. if(ref[1] > 0)
  988. b= pack16to32(mv[1][0],mv[1][1]);
  989. }else{
  990. a= pack16to32(mv[0][0],mv[0][1]);
  991. b= pack16to32(mv[1][0],mv[1][1]);
  992. }
  993. fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
  994. fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
  995. }else{
  996. for(i8=0; i8<4; i8++){
  997. const int x8 = i8&1;
  998. const int y8 = i8>>1;
  999. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1000. continue;
  1001. h->sub_mb_type[i8] = sub_mb_type;
  1002. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
  1003. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
  1004. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  1005. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  1006. /* col_zero_flag */
  1007. if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
  1008. || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
  1009. && (h->x264_build>33 || !h->x264_build)))){
  1010. const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
  1011. if(IS_SUB_8X8(sub_mb_type)){
  1012. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1013. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1014. if(ref[0] == 0)
  1015. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1016. if(ref[1] == 0)
  1017. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1018. }
  1019. }else
  1020. for(i4=0; i4<4; i4++){
  1021. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1022. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1023. if(ref[0] == 0)
  1024. *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
  1025. if(ref[1] == 0)
  1026. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
  1027. }
  1028. }
  1029. }
  1030. }
  1031. }
  1032. }else{ /* direct temporal mv pred */
  1033. const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
  1034. const int *dist_scale_factor = h->dist_scale_factor;
  1035. if(FRAME_MBAFF){
  1036. if(IS_INTERLACED(*mb_type)){
  1037. map_col_to_list0[0] = h->map_col_to_list0_field[0];
  1038. map_col_to_list0[1] = h->map_col_to_list0_field[1];
  1039. dist_scale_factor = h->dist_scale_factor_field;
  1040. }
  1041. if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
  1042. /* FIXME assumes direct_8x8_inference == 1 */
  1043. const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
  1044. int mb_types_col[2];
  1045. int y_shift;
  1046. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
  1047. | (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
  1048. | (*mb_type & MB_TYPE_INTERLACED);
  1049. sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
  1050. if(IS_INTERLACED(*mb_type)){
  1051. /* frame to field scaling */
  1052. mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
  1053. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  1054. if(s->mb_y&1){
  1055. l1ref0 -= 2*h->b8_stride;
  1056. l1ref1 -= 2*h->b8_stride;
  1057. l1mv0 -= 4*h->b_stride;
  1058. l1mv1 -= 4*h->b_stride;
  1059. }
  1060. y_shift = 0;
  1061. if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
  1062. && (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
  1063. && !is_b8x8)
  1064. *mb_type |= MB_TYPE_16x8;
  1065. else
  1066. *mb_type |= MB_TYPE_8x8;
  1067. }else{
  1068. /* field to frame scaling */
  1069. /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
  1070. * but in MBAFF, top and bottom POC are equal */
  1071. int dy = (s->mb_y&1) ? 1 : 2;
  1072. mb_types_col[0] =
  1073. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  1074. l1ref0 += dy*h->b8_stride;
  1075. l1ref1 += dy*h->b8_stride;
  1076. l1mv0 += 2*dy*h->b_stride;
  1077. l1mv1 += 2*dy*h->b_stride;
  1078. y_shift = 2;
  1079. if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
  1080. && !is_b8x8)
  1081. *mb_type |= MB_TYPE_16x16;
  1082. else
  1083. *mb_type |= MB_TYPE_8x8;
  1084. }
  1085. for(i8=0; i8<4; i8++){
  1086. const int x8 = i8&1;
  1087. const int y8 = i8>>1;
  1088. int ref0, scale;
  1089. const int16_t (*l1mv)[2]= l1mv0;
  1090. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1091. continue;
  1092. h->sub_mb_type[i8] = sub_mb_type;
  1093. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1094. if(IS_INTRA(mb_types_col[y8])){
  1095. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1096. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1097. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1098. continue;
  1099. }
  1100. ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
  1101. if(ref0 >= 0)
  1102. ref0 = map_col_to_list0[0][ref0*2>>y_shift];
  1103. else{
  1104. ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
  1105. l1mv= l1mv1;
  1106. }
  1107. scale = dist_scale_factor[ref0];
  1108. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1109. {
  1110. const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
  1111. int my_col = (mv_col[1]<<y_shift)/2;
  1112. int mx = (scale * mv_col[0] + 128) >> 8;
  1113. int my = (scale * my_col + 128) >> 8;
  1114. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1115. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
  1116. }
  1117. }
  1118. return;
  1119. }
  1120. }
  1121. /* one-to-one mv scaling */
  1122. if(IS_16X16(*mb_type)){
  1123. int ref, mv0, mv1;
  1124. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
  1125. if(IS_INTRA(mb_type_col)){
  1126. ref=mv0=mv1=0;
  1127. }else{
  1128. const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
  1129. : map_col_to_list0[1][l1ref1[0]];
  1130. const int scale = dist_scale_factor[ref0];
  1131. const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
  1132. int mv_l0[2];
  1133. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1134. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1135. ref= ref0;
  1136. mv0= pack16to32(mv_l0[0],mv_l0[1]);
  1137. mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1138. }
  1139. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
  1140. fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
  1141. fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
  1142. }else{
  1143. for(i8=0; i8<4; i8++){
  1144. const int x8 = i8&1;
  1145. const int y8 = i8>>1;
  1146. int ref0, scale;
  1147. const int16_t (*l1mv)[2]= l1mv0;
  1148. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1149. continue;
  1150. h->sub_mb_type[i8] = sub_mb_type;
  1151. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1152. if(IS_INTRA(mb_type_col)){
  1153. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1154. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1155. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1156. continue;
  1157. }
  1158. ref0 = l1ref0[x8 + y8*h->b8_stride];
  1159. if(ref0 >= 0)
  1160. ref0 = map_col_to_list0[0][ref0];
  1161. else{
  1162. ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
  1163. l1mv= l1mv1;
  1164. }
  1165. scale = dist_scale_factor[ref0];
  1166. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1167. if(IS_SUB_8X8(sub_mb_type)){
  1168. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1169. int mx = (scale * mv_col[0] + 128) >> 8;
  1170. int my = (scale * mv_col[1] + 128) >> 8;
  1171. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1172. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
  1173. }else
  1174. for(i4=0; i4<4; i4++){
  1175. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1176. int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
  1177. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1178. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1179. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
  1180. pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1181. }
  1182. }
  1183. }
  1184. }
  1185. }
  1186. static inline void write_back_motion(H264Context *h, int mb_type){
  1187. MpegEncContext * const s = &h->s;
  1188. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1189. const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1190. int list;
  1191. if(!USES_LIST(mb_type, 0))
  1192. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
  1193. for(list=0; list<h->list_count; list++){
  1194. int y;
  1195. if(!USES_LIST(mb_type, list))
  1196. continue;
  1197. for(y=0; y<4; y++){
  1198. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
  1199. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
  1200. }
  1201. if( h->pps.cabac ) {
  1202. if(IS_SKIP(mb_type))
  1203. fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
  1204. else
  1205. for(y=0; y<4; y++){
  1206. *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
  1207. *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
  1208. }
  1209. }
  1210. {
  1211. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1212. ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
  1213. ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
  1214. ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
  1215. ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
  1216. }
  1217. }
  1218. if(h->slice_type == FF_B_TYPE && h->pps.cabac){
  1219. if(IS_8X8(mb_type)){
  1220. uint8_t *direct_table = &h->direct_table[b8_xy];
  1221. direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
  1222. direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
  1223. direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
  1224. }
  1225. }
  1226. }
  1227. /**
  1228. * Decodes a network abstraction layer unit.
  1229. * @param consumed is the number of bytes used as input
  1230. * @param length is the length of the array
  1231. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  1232. * @returns decoded bytes, might be src+1 if no escapes
  1233. */
  1234. static const uint8_t *decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
  1235. int i, si, di;
  1236. uint8_t *dst;
  1237. int bufidx;
  1238. // src[0]&0x80; //forbidden bit
  1239. h->nal_ref_idc= src[0]>>5;
  1240. h->nal_unit_type= src[0]&0x1F;
  1241. src++; length--;
  1242. #if 0
  1243. for(i=0; i<length; i++)
  1244. printf("%2X ", src[i]);
  1245. #endif
  1246. for(i=0; i+1<length; i+=2){
  1247. if(src[i]) continue;
  1248. if(i>0 && src[i-1]==0) i--;
  1249. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  1250. if(src[i+2]!=3){
  1251. /* startcode, so we must be past the end */
  1252. length=i;
  1253. }
  1254. break;
  1255. }
  1256. }
  1257. if(i>=length-1){ //no escaped 0
  1258. *dst_length= length;
  1259. *consumed= length+1; //+1 for the header
  1260. return src;
  1261. }
  1262. bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
  1263. h->rbsp_buffer[bufidx]= av_fast_realloc(h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length);
  1264. dst= h->rbsp_buffer[bufidx];
  1265. if (dst == NULL){
  1266. return NULL;
  1267. }
  1268. //printf("decoding esc\n");
  1269. si=di=0;
  1270. while(si<length){
  1271. //remove escapes (very rare 1:2^22)
  1272. if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
  1273. if(src[si+2]==3){ //escape
  1274. dst[di++]= 0;
  1275. dst[di++]= 0;
  1276. si+=3;
  1277. continue;
  1278. }else //next start code
  1279. break;
  1280. }
  1281. dst[di++]= src[si++];
  1282. }
  1283. *dst_length= di;
  1284. *consumed= si + 1;//+1 for the header
  1285. //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
  1286. return dst;
  1287. }
  1288. /**
  1289. * identifies the exact end of the bitstream
  1290. * @return the length of the trailing, or 0 if damaged
  1291. */
  1292. static int decode_rbsp_trailing(H264Context *h, const uint8_t *src){
  1293. int v= *src;
  1294. int r;
  1295. tprintf(h->s.avctx, "rbsp trailing %X\n", v);
  1296. for(r=1; r<9; r++){
  1297. if(v&1) return r;
  1298. v>>=1;
  1299. }
  1300. return 0;
  1301. }
  1302. /**
  1303. * idct tranforms the 16 dc values and dequantize them.
  1304. * @param qp quantization parameter
  1305. */
  1306. static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1307. #define stride 16
  1308. int i;
  1309. int temp[16]; //FIXME check if this is a good idea
  1310. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1311. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1312. //memset(block, 64, 2*256);
  1313. //return;
  1314. for(i=0; i<4; i++){
  1315. const int offset= y_offset[i];
  1316. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1317. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1318. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1319. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1320. temp[4*i+0]= z0+z3;
  1321. temp[4*i+1]= z1+z2;
  1322. temp[4*i+2]= z1-z2;
  1323. temp[4*i+3]= z0-z3;
  1324. }
  1325. for(i=0; i<4; i++){
  1326. const int offset= x_offset[i];
  1327. const int z0= temp[4*0+i] + temp[4*2+i];
  1328. const int z1= temp[4*0+i] - temp[4*2+i];
  1329. const int z2= temp[4*1+i] - temp[4*3+i];
  1330. const int z3= temp[4*1+i] + temp[4*3+i];
  1331. block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
  1332. block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
  1333. block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
  1334. block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
  1335. }
  1336. }
  1337. #if 0
  1338. /**
  1339. * dct tranforms the 16 dc values.
  1340. * @param qp quantization parameter ??? FIXME
  1341. */
  1342. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  1343. // const int qmul= dequant_coeff[qp][0];
  1344. int i;
  1345. int temp[16]; //FIXME check if this is a good idea
  1346. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1347. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1348. for(i=0; i<4; i++){
  1349. const int offset= y_offset[i];
  1350. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1351. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1352. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1353. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1354. temp[4*i+0]= z0+z3;
  1355. temp[4*i+1]= z1+z2;
  1356. temp[4*i+2]= z1-z2;
  1357. temp[4*i+3]= z0-z3;
  1358. }
  1359. for(i=0; i<4; i++){
  1360. const int offset= x_offset[i];
  1361. const int z0= temp[4*0+i] + temp[4*2+i];
  1362. const int z1= temp[4*0+i] - temp[4*2+i];
  1363. const int z2= temp[4*1+i] - temp[4*3+i];
  1364. const int z3= temp[4*1+i] + temp[4*3+i];
  1365. block[stride*0 +offset]= (z0 + z3)>>1;
  1366. block[stride*2 +offset]= (z1 + z2)>>1;
  1367. block[stride*8 +offset]= (z1 - z2)>>1;
  1368. block[stride*10+offset]= (z0 - z3)>>1;
  1369. }
  1370. }
  1371. #endif
  1372. #undef xStride
  1373. #undef stride
  1374. static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1375. const int stride= 16*2;
  1376. const int xStride= 16;
  1377. int a,b,c,d,e;
  1378. a= block[stride*0 + xStride*0];
  1379. b= block[stride*0 + xStride*1];
  1380. c= block[stride*1 + xStride*0];
  1381. d= block[stride*1 + xStride*1];
  1382. e= a-b;
  1383. a= a+b;
  1384. b= c-d;
  1385. c= c+d;
  1386. block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
  1387. block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
  1388. block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
  1389. block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
  1390. }
  1391. #if 0
  1392. static void chroma_dc_dct_c(DCTELEM *block){
  1393. const int stride= 16*2;
  1394. const int xStride= 16;
  1395. int a,b,c,d,e;
  1396. a= block[stride*0 + xStride*0];
  1397. b= block[stride*0 + xStride*1];
  1398. c= block[stride*1 + xStride*0];
  1399. d= block[stride*1 + xStride*1];
  1400. e= a-b;
  1401. a= a+b;
  1402. b= c-d;
  1403. c= c+d;
  1404. block[stride*0 + xStride*0]= (a+c);
  1405. block[stride*0 + xStride*1]= (e+b);
  1406. block[stride*1 + xStride*0]= (a-c);
  1407. block[stride*1 + xStride*1]= (e-b);
  1408. }
  1409. #endif
  1410. /**
  1411. * gets the chroma qp.
  1412. */
  1413. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  1414. return h->pps.chroma_qp_table[t][qscale & 0xff];
  1415. }
  1416. //FIXME need to check that this does not overflow signed 32 bit for low qp, I am not sure, it's very close
  1417. //FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away)
  1418. static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int separate_dc){
  1419. int i;
  1420. const int * const quant_table= quant_coeff[qscale];
  1421. const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
  1422. const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
  1423. const unsigned int threshold2= (threshold1<<1);
  1424. int last_non_zero;
  1425. if(separate_dc){
  1426. if(qscale<=18){
  1427. //avoid overflows
  1428. const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
  1429. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
  1430. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1431. int level= block[0]*quant_coeff[qscale+18][0];
  1432. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1433. if(level>0){
  1434. level= (dc_bias + level)>>(QUANT_SHIFT-2);
  1435. block[0]= level;
  1436. }else{
  1437. level= (dc_bias - level)>>(QUANT_SHIFT-2);
  1438. block[0]= -level;
  1439. }
  1440. // last_non_zero = i;
  1441. }else{
  1442. block[0]=0;
  1443. }
  1444. }else{
  1445. const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
  1446. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
  1447. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1448. int level= block[0]*quant_table[0];
  1449. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1450. if(level>0){
  1451. level= (dc_bias + level)>>(QUANT_SHIFT+1);
  1452. block[0]= level;
  1453. }else{
  1454. level= (dc_bias - level)>>(QUANT_SHIFT+1);
  1455. block[0]= -level;
  1456. }
  1457. // last_non_zero = i;
  1458. }else{
  1459. block[0]=0;
  1460. }
  1461. }
  1462. last_non_zero= 0;
  1463. i=1;
  1464. }else{
  1465. last_non_zero= -1;
  1466. i=0;
  1467. }
  1468. for(; i<16; i++){
  1469. const int j= scantable[i];
  1470. int level= block[j]*quant_table[j];
  1471. // if( bias+level >= (1<<(QMAT_SHIFT - 3))
  1472. // || bias-level >= (1<<(QMAT_SHIFT - 3))){
  1473. if(((unsigned)(level+threshold1))>threshold2){
  1474. if(level>0){
  1475. level= (bias + level)>>QUANT_SHIFT;
  1476. block[j]= level;
  1477. }else{
  1478. level= (bias - level)>>QUANT_SHIFT;
  1479. block[j]= -level;
  1480. }
  1481. last_non_zero = i;
  1482. }else{
  1483. block[j]=0;
  1484. }
  1485. }
  1486. return last_non_zero;
  1487. }
  1488. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  1489. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1490. int src_x_offset, int src_y_offset,
  1491. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
  1492. MpegEncContext * const s = &h->s;
  1493. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  1494. int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  1495. const int luma_xy= (mx&3) + ((my&3)<<2);
  1496. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
  1497. uint8_t * src_cb, * src_cr;
  1498. int extra_width= h->emu_edge_width;
  1499. int extra_height= h->emu_edge_height;
  1500. int emu=0;
  1501. const int full_mx= mx>>2;
  1502. const int full_my= my>>2;
  1503. const int pic_width = 16*s->mb_width;
  1504. const int pic_height = 16*s->mb_height >> MB_FIELD;
  1505. if(!pic->data[0]) //FIXME this is unacceptable, some senseable error concealment must be done for missing reference frames
  1506. return;
  1507. if(mx&7) extra_width -= 3;
  1508. if(my&7) extra_height -= 3;
  1509. if( full_mx < 0-extra_width
  1510. || full_my < 0-extra_height
  1511. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  1512. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  1513. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  1514. src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
  1515. emu=1;
  1516. }
  1517. qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
  1518. if(!square){
  1519. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
  1520. }
  1521. if(ENABLE_GRAY && s->flags&CODEC_FLAG_GRAY) return;
  1522. if(MB_FIELD){
  1523. // chroma offset when predicting from a field of opposite parity
  1524. my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
  1525. emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
  1526. }
  1527. src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  1528. src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  1529. if(emu){
  1530. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  1531. src_cb= s->edge_emu_buffer;
  1532. }
  1533. chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  1534. if(emu){
  1535. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  1536. src_cr= s->edge_emu_buffer;
  1537. }
  1538. chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  1539. }
  1540. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  1541. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1542. int x_offset, int y_offset,
  1543. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1544. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  1545. int list0, int list1){
  1546. MpegEncContext * const s = &h->s;
  1547. qpel_mc_func *qpix_op= qpix_put;
  1548. h264_chroma_mc_func chroma_op= chroma_put;
  1549. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  1550. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  1551. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  1552. x_offset += 8*s->mb_x;
  1553. y_offset += 8*(s->mb_y >> MB_FIELD);
  1554. if(list0){
  1555. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  1556. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  1557. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1558. qpix_op, chroma_op);
  1559. qpix_op= qpix_avg;
  1560. chroma_op= chroma_avg;
  1561. }
  1562. if(list1){
  1563. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  1564. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  1565. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1566. qpix_op, chroma_op);
  1567. }
  1568. }
  1569. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  1570. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1571. int x_offset, int y_offset,
  1572. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1573. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  1574. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  1575. int list0, int list1){
  1576. MpegEncContext * const s = &h->s;
  1577. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  1578. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  1579. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  1580. x_offset += 8*s->mb_x;
  1581. y_offset += 8*(s->mb_y >> MB_FIELD);
  1582. if(list0 && list1){
  1583. /* don't optimize for luma-only case, since B-frames usually
  1584. * use implicit weights => chroma too. */
  1585. uint8_t *tmp_cb = s->obmc_scratchpad;
  1586. uint8_t *tmp_cr = s->obmc_scratchpad + 8;
  1587. uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
  1588. int refn0 = h->ref_cache[0][ scan8[n] ];
  1589. int refn1 = h->ref_cache[1][ scan8[n] ];
  1590. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  1591. dest_y, dest_cb, dest_cr,
  1592. x_offset, y_offset, qpix_put, chroma_put);
  1593. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  1594. tmp_y, tmp_cb, tmp_cr,
  1595. x_offset, y_offset, qpix_put, chroma_put);
  1596. if(h->use_weight == 2){
  1597. int weight0 = h->implicit_weight[refn0][refn1];
  1598. int weight1 = 64 - weight0;
  1599. luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
  1600. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
  1601. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
  1602. }else{
  1603. luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
  1604. h->luma_weight[0][refn0], h->luma_weight[1][refn1],
  1605. h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
  1606. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1607. h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
  1608. h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
  1609. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1610. h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
  1611. h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
  1612. }
  1613. }else{
  1614. int list = list1 ? 1 : 0;
  1615. int refn = h->ref_cache[list][ scan8[n] ];
  1616. Picture *ref= &h->ref_list[list][refn];
  1617. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  1618. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1619. qpix_put, chroma_put);
  1620. luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
  1621. h->luma_weight[list][refn], h->luma_offset[list][refn]);
  1622. if(h->use_weight_chroma){
  1623. chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1624. h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
  1625. chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1626. h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
  1627. }
  1628. }
  1629. }
  1630. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  1631. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1632. int x_offset, int y_offset,
  1633. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1634. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  1635. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  1636. int list0, int list1){
  1637. if((h->use_weight==2 && list0 && list1
  1638. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
  1639. || h->use_weight==1)
  1640. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  1641. x_offset, y_offset, qpix_put, chroma_put,
  1642. weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
  1643. else
  1644. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  1645. x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
  1646. }
  1647. static inline void prefetch_motion(H264Context *h, int list){
  1648. /* fetch pixels for estimated mv 4 macroblocks ahead
  1649. * optimized for 64byte cache lines */
  1650. MpegEncContext * const s = &h->s;
  1651. const int refn = h->ref_cache[list][scan8[0]];
  1652. if(refn >= 0){
  1653. const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
  1654. const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
  1655. uint8_t **src= h->ref_list[list][refn].data;
  1656. int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
  1657. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  1658. off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
  1659. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  1660. }
  1661. }
  1662. static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1663. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  1664. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  1665. h264_weight_func *weight_op, h264_biweight_func *weight_avg){
  1666. MpegEncContext * const s = &h->s;
  1667. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  1668. const int mb_type= s->current_picture.mb_type[mb_xy];
  1669. assert(IS_INTER(mb_type));
  1670. prefetch_motion(h, 0);
  1671. if(IS_16X16(mb_type)){
  1672. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  1673. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  1674. &weight_op[0], &weight_avg[0],
  1675. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1676. }else if(IS_16X8(mb_type)){
  1677. mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
  1678. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  1679. &weight_op[1], &weight_avg[1],
  1680. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1681. mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
  1682. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  1683. &weight_op[1], &weight_avg[1],
  1684. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  1685. }else if(IS_8X16(mb_type)){
  1686. mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
  1687. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1688. &weight_op[2], &weight_avg[2],
  1689. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1690. mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
  1691. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1692. &weight_op[2], &weight_avg[2],
  1693. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  1694. }else{
  1695. int i;
  1696. assert(IS_8X8(mb_type));
  1697. for(i=0; i<4; i++){
  1698. const int sub_mb_type= h->sub_mb_type[i];
  1699. const int n= 4*i;
  1700. int x_offset= (i&1)<<2;
  1701. int y_offset= (i&2)<<1;
  1702. if(IS_SUB_8X8(sub_mb_type)){
  1703. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1704. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1705. &weight_op[3], &weight_avg[3],
  1706. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1707. }else if(IS_SUB_8X4(sub_mb_type)){
  1708. mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1709. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  1710. &weight_op[4], &weight_avg[4],
  1711. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1712. mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  1713. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  1714. &weight_op[4], &weight_avg[4],
  1715. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1716. }else if(IS_SUB_4X8(sub_mb_type)){
  1717. mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1718. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1719. &weight_op[5], &weight_avg[5],
  1720. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1721. mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  1722. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1723. &weight_op[5], &weight_avg[5],
  1724. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1725. }else{
  1726. int j;
  1727. assert(IS_SUB_4X4(sub_mb_type));
  1728. for(j=0; j<4; j++){
  1729. int sub_x_offset= x_offset + 2*(j&1);
  1730. int sub_y_offset= y_offset + (j&2);
  1731. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  1732. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1733. &weight_op[6], &weight_avg[6],
  1734. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1735. }
  1736. }
  1737. }
  1738. }
  1739. prefetch_motion(h, 1);
  1740. }
  1741. static av_cold void decode_init_vlc(void){
  1742. static int done = 0;
  1743. if (!done) {
  1744. int i;
  1745. done = 1;
  1746. init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
  1747. &chroma_dc_coeff_token_len [0], 1, 1,
  1748. &chroma_dc_coeff_token_bits[0], 1, 1, 1);
  1749. for(i=0; i<4; i++){
  1750. init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
  1751. &coeff_token_len [i][0], 1, 1,
  1752. &coeff_token_bits[i][0], 1, 1, 1);
  1753. }
  1754. for(i=0; i<3; i++){
  1755. init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
  1756. &chroma_dc_total_zeros_len [i][0], 1, 1,
  1757. &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
  1758. }
  1759. for(i=0; i<15; i++){
  1760. init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
  1761. &total_zeros_len [i][0], 1, 1,
  1762. &total_zeros_bits[i][0], 1, 1, 1);
  1763. }
  1764. for(i=0; i<6; i++){
  1765. init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
  1766. &run_len [i][0], 1, 1,
  1767. &run_bits[i][0], 1, 1, 1);
  1768. }
  1769. init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
  1770. &run_len [6][0], 1, 1,
  1771. &run_bits[6][0], 1, 1, 1);
  1772. }
  1773. }
  1774. static void free_tables(H264Context *h){
  1775. int i;
  1776. H264Context *hx;
  1777. av_freep(&h->intra4x4_pred_mode);
  1778. av_freep(&h->chroma_pred_mode_table);
  1779. av_freep(&h->cbp_table);
  1780. av_freep(&h->mvd_table[0]);
  1781. av_freep(&h->mvd_table[1]);
  1782. av_freep(&h->direct_table);
  1783. av_freep(&h->non_zero_count);
  1784. av_freep(&h->slice_table_base);
  1785. h->slice_table= NULL;
  1786. av_freep(&h->mb2b_xy);
  1787. av_freep(&h->mb2b8_xy);
  1788. for(i = 0; i < MAX_SPS_COUNT; i++)
  1789. av_freep(h->sps_buffers + i);
  1790. for(i = 0; i < MAX_PPS_COUNT; i++)
  1791. av_freep(h->pps_buffers + i);
  1792. for(i = 0; i < h->s.avctx->thread_count; i++) {
  1793. hx = h->thread_context[i];
  1794. if(!hx) continue;
  1795. av_freep(&hx->top_borders[1]);
  1796. av_freep(&hx->top_borders[0]);
  1797. av_freep(&hx->s.obmc_scratchpad);
  1798. }
  1799. }
  1800. static void init_dequant8_coeff_table(H264Context *h){
  1801. int i,q,x;
  1802. const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
  1803. h->dequant8_coeff[0] = h->dequant8_buffer[0];
  1804. h->dequant8_coeff[1] = h->dequant8_buffer[1];
  1805. for(i=0; i<2; i++ ){
  1806. if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
  1807. h->dequant8_coeff[1] = h->dequant8_buffer[0];
  1808. break;
  1809. }
  1810. for(q=0; q<52; q++){
  1811. int shift = ff_div6[q];
  1812. int idx = ff_rem6[q];
  1813. for(x=0; x<64; x++)
  1814. h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
  1815. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  1816. h->pps.scaling_matrix8[i][x]) << shift;
  1817. }
  1818. }
  1819. }
  1820. static void init_dequant4_coeff_table(H264Context *h){
  1821. int i,j,q,x;
  1822. const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
  1823. for(i=0; i<6; i++ ){
  1824. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  1825. for(j=0; j<i; j++){
  1826. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  1827. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  1828. break;
  1829. }
  1830. }
  1831. if(j<i)
  1832. continue;
  1833. for(q=0; q<52; q++){
  1834. int shift = ff_div6[q] + 2;
  1835. int idx = ff_rem6[q];
  1836. for(x=0; x<16; x++)
  1837. h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
  1838. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  1839. h->pps.scaling_matrix4[i][x]) << shift;
  1840. }
  1841. }
  1842. }
  1843. static void init_dequant_tables(H264Context *h){
  1844. int i,x;
  1845. init_dequant4_coeff_table(h);
  1846. if(h->pps.transform_8x8_mode)
  1847. init_dequant8_coeff_table(h);
  1848. if(h->sps.transform_bypass){
  1849. for(i=0; i<6; i++)
  1850. for(x=0; x<16; x++)
  1851. h->dequant4_coeff[i][0][x] = 1<<6;
  1852. if(h->pps.transform_8x8_mode)
  1853. for(i=0; i<2; i++)
  1854. for(x=0; x<64; x++)
  1855. h->dequant8_coeff[i][0][x] = 1<<6;
  1856. }
  1857. }
  1858. /**
  1859. * allocates tables.
  1860. * needs width/height
  1861. */
  1862. static int alloc_tables(H264Context *h){
  1863. MpegEncContext * const s = &h->s;
  1864. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  1865. int x,y;
  1866. CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
  1867. CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
  1868. CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
  1869. CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
  1870. CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
  1871. CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
  1872. CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
  1873. CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
  1874. memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t));
  1875. h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
  1876. CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
  1877. CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
  1878. for(y=0; y<s->mb_height; y++){
  1879. for(x=0; x<s->mb_width; x++){
  1880. const int mb_xy= x + y*s->mb_stride;
  1881. const int b_xy = 4*x + 4*y*h->b_stride;
  1882. const int b8_xy= 2*x + 2*y*h->b8_stride;
  1883. h->mb2b_xy [mb_xy]= b_xy;
  1884. h->mb2b8_xy[mb_xy]= b8_xy;
  1885. }
  1886. }
  1887. s->obmc_scratchpad = NULL;
  1888. if(!h->dequant4_coeff[0])
  1889. init_dequant_tables(h);
  1890. return 0;
  1891. fail:
  1892. free_tables(h);
  1893. return -1;
  1894. }
  1895. /**
  1896. * Mimic alloc_tables(), but for every context thread.
  1897. */
  1898. static void clone_tables(H264Context *dst, H264Context *src){
  1899. dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
  1900. dst->non_zero_count = src->non_zero_count;
  1901. dst->slice_table = src->slice_table;
  1902. dst->cbp_table = src->cbp_table;
  1903. dst->mb2b_xy = src->mb2b_xy;
  1904. dst->mb2b8_xy = src->mb2b8_xy;
  1905. dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
  1906. dst->mvd_table[0] = src->mvd_table[0];
  1907. dst->mvd_table[1] = src->mvd_table[1];
  1908. dst->direct_table = src->direct_table;
  1909. dst->s.obmc_scratchpad = NULL;
  1910. ff_h264_pred_init(&dst->hpc, src->s.codec_id);
  1911. }
  1912. /**
  1913. * Init context
  1914. * Allocate buffers which are not shared amongst multiple threads.
  1915. */
  1916. static int context_init(H264Context *h){
  1917. CHECKED_ALLOCZ(h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
  1918. CHECKED_ALLOCZ(h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
  1919. return 0;
  1920. fail:
  1921. return -1; // free_tables will clean up for us
  1922. }
  1923. static av_cold void common_init(H264Context *h){
  1924. MpegEncContext * const s = &h->s;
  1925. s->width = s->avctx->width;
  1926. s->height = s->avctx->height;
  1927. s->codec_id= s->avctx->codec->id;
  1928. ff_h264_pred_init(&h->hpc, s->codec_id);
  1929. h->dequant_coeff_pps= -1;
  1930. s->unrestricted_mv=1;
  1931. s->decode=1; //FIXME
  1932. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  1933. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  1934. }
  1935. static av_cold int decode_init(AVCodecContext *avctx){
  1936. H264Context *h= avctx->priv_data;
  1937. MpegEncContext * const s = &h->s;
  1938. MPV_decode_defaults(s);
  1939. s->avctx = avctx;
  1940. common_init(h);
  1941. s->out_format = FMT_H264;
  1942. s->workaround_bugs= avctx->workaround_bugs;
  1943. // set defaults
  1944. // s->decode_mb= ff_h263_decode_mb;
  1945. s->quarter_sample = 1;
  1946. s->low_delay= 1;
  1947. avctx->pix_fmt= PIX_FMT_YUV420P;
  1948. decode_init_vlc();
  1949. if(avctx->extradata_size > 0 && avctx->extradata &&
  1950. *(char *)avctx->extradata == 1){
  1951. h->is_avc = 1;
  1952. h->got_avcC = 0;
  1953. } else {
  1954. h->is_avc = 0;
  1955. }
  1956. h->thread_context[0] = h;
  1957. return 0;
  1958. }
  1959. static int frame_start(H264Context *h){
  1960. MpegEncContext * const s = &h->s;
  1961. int i;
  1962. if(MPV_frame_start(s, s->avctx) < 0)
  1963. return -1;
  1964. ff_er_frame_start(s);
  1965. /*
  1966. * MPV_frame_start uses pict_type to derive key_frame.
  1967. * This is incorrect for H.264; IDR markings must be used.
  1968. * Zero here; IDR markings per slice in frame or fields are OR'd in later.
  1969. * See decode_nal_units().
  1970. */
  1971. s->current_picture_ptr->key_frame= 0;
  1972. assert(s->linesize && s->uvlinesize);
  1973. for(i=0; i<16; i++){
  1974. h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  1975. h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  1976. }
  1977. for(i=0; i<4; i++){
  1978. h->block_offset[16+i]=
  1979. h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1980. h->block_offset[24+16+i]=
  1981. h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1982. }
  1983. /* can't be in alloc_tables because linesize isn't known there.
  1984. * FIXME: redo bipred weight to not require extra buffer? */
  1985. for(i = 0; i < s->avctx->thread_count; i++)
  1986. if(!h->thread_context[i]->s.obmc_scratchpad)
  1987. h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
  1988. /* some macroblocks will be accessed before they're available */
  1989. if(FRAME_MBAFF || s->avctx->thread_count > 1)
  1990. memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t));
  1991. // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
  1992. return 0;
  1993. }
  1994. static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
  1995. MpegEncContext * const s = &h->s;
  1996. int i;
  1997. src_y -= linesize;
  1998. src_cb -= uvlinesize;
  1999. src_cr -= uvlinesize;
  2000. // There are two lines saved, the line above the the top macroblock of a pair,
  2001. // and the line above the bottom macroblock
  2002. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2003. for(i=1; i<17; i++){
  2004. h->left_border[i]= src_y[15+i* linesize];
  2005. }
  2006. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
  2007. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
  2008. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2009. h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
  2010. h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
  2011. for(i=1; i<9; i++){
  2012. h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
  2013. h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
  2014. }
  2015. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
  2016. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
  2017. }
  2018. }
  2019. static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
  2020. MpegEncContext * const s = &h->s;
  2021. int temp8, i;
  2022. uint64_t temp64;
  2023. int deblock_left;
  2024. int deblock_top;
  2025. int mb_xy;
  2026. if(h->deblocking_filter == 2) {
  2027. mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  2028. deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
  2029. deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
  2030. } else {
  2031. deblock_left = (s->mb_x > 0);
  2032. deblock_top = (s->mb_y > 0);
  2033. }
  2034. src_y -= linesize + 1;
  2035. src_cb -= uvlinesize + 1;
  2036. src_cr -= uvlinesize + 1;
  2037. #define XCHG(a,b,t,xchg)\
  2038. t= a;\
  2039. if(xchg)\
  2040. a= b;\
  2041. b= t;
  2042. if(deblock_left){
  2043. for(i = !deblock_top; i<17; i++){
  2044. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2045. }
  2046. }
  2047. if(deblock_top){
  2048. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2049. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2050. if(s->mb_x+1 < s->mb_width){
  2051. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  2052. }
  2053. }
  2054. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2055. if(deblock_left){
  2056. for(i = !deblock_top; i<9; i++){
  2057. XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
  2058. XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
  2059. }
  2060. }
  2061. if(deblock_top){
  2062. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2063. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2064. }
  2065. }
  2066. }
  2067. static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
  2068. MpegEncContext * const s = &h->s;
  2069. int i;
  2070. src_y -= 2 * linesize;
  2071. src_cb -= 2 * uvlinesize;
  2072. src_cr -= 2 * uvlinesize;
  2073. // There are two lines saved, the line above the the top macroblock of a pair,
  2074. // and the line above the bottom macroblock
  2075. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2076. h->left_border[1]= h->top_borders[1][s->mb_x][15];
  2077. for(i=2; i<34; i++){
  2078. h->left_border[i]= src_y[15+i* linesize];
  2079. }
  2080. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
  2081. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
  2082. *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
  2083. *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
  2084. if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2085. h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
  2086. h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
  2087. h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
  2088. h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
  2089. for(i=2; i<18; i++){
  2090. h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
  2091. h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
  2092. }
  2093. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
  2094. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
  2095. *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
  2096. *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
  2097. }
  2098. }
  2099. static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
  2100. MpegEncContext * const s = &h->s;
  2101. int temp8, i;
  2102. uint64_t temp64;
  2103. int deblock_left = (s->mb_x > 0);
  2104. int deblock_top = (s->mb_y > 1);
  2105. tprintf(s->avctx, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
  2106. src_y -= 2 * linesize + 1;
  2107. src_cb -= 2 * uvlinesize + 1;
  2108. src_cr -= 2 * uvlinesize + 1;
  2109. #define XCHG(a,b,t,xchg)\
  2110. t= a;\
  2111. if(xchg)\
  2112. a= b;\
  2113. b= t;
  2114. if(deblock_left){
  2115. for(i = (!deblock_top)<<1; i<34; i++){
  2116. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2117. }
  2118. }
  2119. if(deblock_top){
  2120. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2121. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2122. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
  2123. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
  2124. if(s->mb_x+1 < s->mb_width){
  2125. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  2126. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1);
  2127. }
  2128. }
  2129. if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2130. if(deblock_left){
  2131. for(i = (!deblock_top) << 1; i<18; i++){
  2132. XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
  2133. XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
  2134. }
  2135. }
  2136. if(deblock_top){
  2137. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2138. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2139. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
  2140. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
  2141. }
  2142. }
  2143. }
  2144. static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
  2145. MpegEncContext * const s = &h->s;
  2146. const int mb_x= s->mb_x;
  2147. const int mb_y= s->mb_y;
  2148. const int mb_xy= mb_x + mb_y*s->mb_stride;
  2149. const int mb_type= s->current_picture.mb_type[mb_xy];
  2150. uint8_t *dest_y, *dest_cb, *dest_cr;
  2151. int linesize, uvlinesize /*dct_offset*/;
  2152. int i;
  2153. int *block_offset = &h->block_offset[0];
  2154. const unsigned int bottom = mb_y & 1;
  2155. const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass), is_h264 = (simple || s->codec_id == CODEC_ID_H264);
  2156. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  2157. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  2158. dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  2159. dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2160. dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2161. s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  2162. s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
  2163. if (!simple && MB_FIELD) {
  2164. linesize = h->mb_linesize = s->linesize * 2;
  2165. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  2166. block_offset = &h->block_offset[24];
  2167. if(mb_y&1){ //FIXME move out of this func?
  2168. dest_y -= s->linesize*15;
  2169. dest_cb-= s->uvlinesize*7;
  2170. dest_cr-= s->uvlinesize*7;
  2171. }
  2172. if(FRAME_MBAFF) {
  2173. int list;
  2174. for(list=0; list<h->list_count; list++){
  2175. if(!USES_LIST(mb_type, list))
  2176. continue;
  2177. if(IS_16X16(mb_type)){
  2178. int8_t *ref = &h->ref_cache[list][scan8[0]];
  2179. fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
  2180. }else{
  2181. for(i=0; i<16; i+=4){
  2182. //FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
  2183. int ref = h->ref_cache[list][scan8[i]];
  2184. if(ref >= 0)
  2185. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
  2186. }
  2187. }
  2188. }
  2189. }
  2190. } else {
  2191. linesize = h->mb_linesize = s->linesize;
  2192. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  2193. // dct_offset = s->linesize * 16;
  2194. }
  2195. if(transform_bypass){
  2196. idct_dc_add =
  2197. idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  2198. }else if(IS_8x8DCT(mb_type)){
  2199. idct_dc_add = s->dsp.h264_idct8_dc_add;
  2200. idct_add = s->dsp.h264_idct8_add;
  2201. }else{
  2202. idct_dc_add = s->dsp.h264_idct_dc_add;
  2203. idct_add = s->dsp.h264_idct_add;
  2204. }
  2205. if(!simple && FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type)
  2206. && (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){
  2207. int mbt_y = mb_y&~1;
  2208. uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16;
  2209. uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
  2210. uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
  2211. xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1);
  2212. }
  2213. if (!simple && IS_INTRA_PCM(mb_type)) {
  2214. unsigned int x, y;
  2215. // The pixels are stored in h->mb array in the same order as levels,
  2216. // copy them in output in the correct order.
  2217. for(i=0; i<16; i++) {
  2218. for (y=0; y<4; y++) {
  2219. for (x=0; x<4; x++) {
  2220. *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
  2221. }
  2222. }
  2223. }
  2224. for(i=16; i<16+4; i++) {
  2225. for (y=0; y<4; y++) {
  2226. for (x=0; x<4; x++) {
  2227. *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2228. }
  2229. }
  2230. }
  2231. for(i=20; i<20+4; i++) {
  2232. for (y=0; y<4; y++) {
  2233. for (x=0; x<4; x++) {
  2234. *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2235. }
  2236. }
  2237. }
  2238. } else {
  2239. if(IS_INTRA(mb_type)){
  2240. if(h->deblocking_filter && (simple || !FRAME_MBAFF))
  2241. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
  2242. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2243. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  2244. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  2245. }
  2246. if(IS_INTRA4x4(mb_type)){
  2247. if(simple || !s->encoding){
  2248. if(IS_8x8DCT(mb_type)){
  2249. for(i=0; i<16; i+=4){
  2250. uint8_t * const ptr= dest_y + block_offset[i];
  2251. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  2252. const int nnz = h->non_zero_count_cache[ scan8[i] ];
  2253. h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  2254. (h->topright_samples_available<<i)&0x4000, linesize);
  2255. if(nnz){
  2256. if(nnz == 1 && h->mb[i*16])
  2257. idct_dc_add(ptr, h->mb + i*16, linesize);
  2258. else
  2259. idct_add(ptr, h->mb + i*16, linesize);
  2260. }
  2261. }
  2262. }else
  2263. for(i=0; i<16; i++){
  2264. uint8_t * const ptr= dest_y + block_offset[i];
  2265. uint8_t *topright;
  2266. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  2267. int nnz, tr;
  2268. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  2269. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  2270. assert(mb_y || linesize <= block_offset[i]);
  2271. if(!topright_avail){
  2272. tr= ptr[3 - linesize]*0x01010101;
  2273. topright= (uint8_t*) &tr;
  2274. }else
  2275. topright= ptr + 4 - linesize;
  2276. }else
  2277. topright= NULL;
  2278. h->hpc.pred4x4[ dir ](ptr, topright, linesize);
  2279. nnz = h->non_zero_count_cache[ scan8[i] ];
  2280. if(nnz){
  2281. if(is_h264){
  2282. if(nnz == 1 && h->mb[i*16])
  2283. idct_dc_add(ptr, h->mb + i*16, linesize);
  2284. else
  2285. idct_add(ptr, h->mb + i*16, linesize);
  2286. }else
  2287. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
  2288. }
  2289. }
  2290. }
  2291. }else{
  2292. h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  2293. if(is_h264){
  2294. if(!transform_bypass)
  2295. h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
  2296. }else
  2297. svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
  2298. }
  2299. if(h->deblocking_filter && (simple || !FRAME_MBAFF))
  2300. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
  2301. }else if(is_h264){
  2302. hl_motion(h, dest_y, dest_cb, dest_cr,
  2303. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  2304. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  2305. s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
  2306. }
  2307. if(!IS_INTRA4x4(mb_type)){
  2308. if(is_h264){
  2309. if(IS_INTRA16x16(mb_type)){
  2310. for(i=0; i<16; i++){
  2311. if(h->non_zero_count_cache[ scan8[i] ])
  2312. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2313. else if(h->mb[i*16])
  2314. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2315. }
  2316. }else{
  2317. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  2318. for(i=0; i<16; i+=di){
  2319. int nnz = h->non_zero_count_cache[ scan8[i] ];
  2320. if(nnz){
  2321. if(nnz==1 && h->mb[i*16])
  2322. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2323. else
  2324. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2325. }
  2326. }
  2327. }
  2328. }else{
  2329. for(i=0; i<16; i++){
  2330. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
  2331. uint8_t * const ptr= dest_y + block_offset[i];
  2332. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  2333. }
  2334. }
  2335. }
  2336. }
  2337. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2338. uint8_t *dest[2] = {dest_cb, dest_cr};
  2339. if(transform_bypass){
  2340. idct_add = idct_dc_add = s->dsp.add_pixels4;
  2341. }else{
  2342. idct_add = s->dsp.h264_idct_add;
  2343. idct_dc_add = s->dsp.h264_idct_dc_add;
  2344. chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
  2345. chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
  2346. }
  2347. if(is_h264){
  2348. for(i=16; i<16+8; i++){
  2349. if(h->non_zero_count_cache[ scan8[i] ])
  2350. idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  2351. else if(h->mb[i*16])
  2352. idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  2353. }
  2354. }else{
  2355. for(i=16; i<16+8; i++){
  2356. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  2357. uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
  2358. svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
  2359. }
  2360. }
  2361. }
  2362. }
  2363. }
  2364. if(h->deblocking_filter) {
  2365. if (!simple && FRAME_MBAFF) {
  2366. //FIXME try deblocking one mb at a time?
  2367. // the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border
  2368. const int mb_y = s->mb_y - 1;
  2369. uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
  2370. const int mb_xy= mb_x + mb_y*s->mb_stride;
  2371. const int mb_type_top = s->current_picture.mb_type[mb_xy];
  2372. const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
  2373. if (!bottom) return;
  2374. pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  2375. pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2376. pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2377. if(IS_INTRA(mb_type_top | mb_type_bottom))
  2378. xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
  2379. backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
  2380. // deblock a pair
  2381. // top
  2382. s->mb_y--;
  2383. tprintf(h->s.avctx, "call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
  2384. fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2385. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
  2386. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
  2387. filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
  2388. // bottom
  2389. s->mb_y++;
  2390. tprintf(h->s.avctx, "call mbaff filter_mb\n");
  2391. fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2392. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
  2393. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
  2394. filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  2395. } else {
  2396. tprintf(h->s.avctx, "call filter_mb\n");
  2397. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
  2398. fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2399. filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  2400. }
  2401. }
  2402. }
  2403. /**
  2404. * Process a macroblock; this case avoids checks for expensive uncommon cases.
  2405. */
  2406. static void hl_decode_mb_simple(H264Context *h){
  2407. hl_decode_mb_internal(h, 1);
  2408. }
  2409. /**
  2410. * Process a macroblock; this handles edge cases, such as interlacing.
  2411. */
  2412. static void av_noinline hl_decode_mb_complex(H264Context *h){
  2413. hl_decode_mb_internal(h, 0);
  2414. }
  2415. static void hl_decode_mb(H264Context *h){
  2416. MpegEncContext * const s = &h->s;
  2417. const int mb_x= s->mb_x;
  2418. const int mb_y= s->mb_y;
  2419. const int mb_xy= mb_x + mb_y*s->mb_stride;
  2420. const int mb_type= s->current_picture.mb_type[mb_xy];
  2421. int is_complex = FRAME_MBAFF || MB_FIELD || IS_INTRA_PCM(mb_type) || s->codec_id != CODEC_ID_H264 || (ENABLE_GRAY && (s->flags&CODEC_FLAG_GRAY)) || s->encoding;
  2422. if(!s->decode)
  2423. return;
  2424. if (is_complex)
  2425. hl_decode_mb_complex(h);
  2426. else hl_decode_mb_simple(h);
  2427. }
  2428. static void pic_as_field(Picture *pic, const int parity){
  2429. int i;
  2430. for (i = 0; i < 4; ++i) {
  2431. if (parity == PICT_BOTTOM_FIELD)
  2432. pic->data[i] += pic->linesize[i];
  2433. pic->reference = parity;
  2434. pic->linesize[i] *= 2;
  2435. }
  2436. }
  2437. static int split_field_copy(Picture *dest, Picture *src,
  2438. int parity, int id_add){
  2439. int match = !!(src->reference & parity);
  2440. if (match) {
  2441. *dest = *src;
  2442. pic_as_field(dest, parity);
  2443. dest->pic_id *= 2;
  2444. dest->pic_id += id_add;
  2445. }
  2446. return match;
  2447. }
  2448. /**
  2449. * Split one reference list into field parts, interleaving by parity
  2450. * as per H.264 spec section 8.2.4.2.5. Output fields have their data pointers
  2451. * set to look at the actual start of data for that field.
  2452. *
  2453. * @param dest output list
  2454. * @param dest_len maximum number of fields to put in dest
  2455. * @param src the source reference list containing fields and/or field pairs
  2456. * (aka short_ref/long_ref, or
  2457. * refFrameListXShortTerm/refFrameListLongTerm in spec-speak)
  2458. * @param src_len number of Picture's in source (pairs and unmatched fields)
  2459. * @param parity the parity of the picture being decoded/needing
  2460. * these ref pics (PICT_{TOP,BOTTOM}_FIELD)
  2461. * @return number of fields placed in dest
  2462. */
  2463. static int split_field_half_ref_list(Picture *dest, int dest_len,
  2464. Picture *src, int src_len, int parity){
  2465. int same_parity = 1;
  2466. int same_i = 0;
  2467. int opp_i = 0;
  2468. int out_i;
  2469. int field_output;
  2470. for (out_i = 0; out_i < dest_len; out_i += field_output) {
  2471. if (same_parity && same_i < src_len) {
  2472. field_output = split_field_copy(dest + out_i, src + same_i,
  2473. parity, 1);
  2474. same_parity = !field_output;
  2475. same_i++;
  2476. } else if (opp_i < src_len) {
  2477. field_output = split_field_copy(dest + out_i, src + opp_i,
  2478. PICT_FRAME - parity, 0);
  2479. same_parity = field_output;
  2480. opp_i++;
  2481. } else {
  2482. break;
  2483. }
  2484. }
  2485. return out_i;
  2486. }
  2487. /**
  2488. * Split the reference frame list into a reference field list.
  2489. * This implements H.264 spec 8.2.4.2.5 for a combined input list.
  2490. * The input list contains both reference field pairs and
  2491. * unmatched reference fields; it is ordered as spec describes
  2492. * RefPicListX for frames in 8.2.4.2.1 and 8.2.4.2.3, except that
  2493. * unmatched field pairs are also present. Conceptually this is equivalent
  2494. * to concatenation of refFrameListXShortTerm with refFrameListLongTerm.
  2495. *
  2496. * @param dest output reference list where ordered fields are to be placed
  2497. * @param dest_len max number of fields to place at dest
  2498. * @param src source reference list, as described above
  2499. * @param src_len number of pictures (pairs and unmatched fields) in src
  2500. * @param parity parity of field being currently decoded
  2501. * (one of PICT_{TOP,BOTTOM}_FIELD)
  2502. * @param long_i index into src array that holds first long reference picture,
  2503. * or src_len if no long refs present.
  2504. */
  2505. static int split_field_ref_list(Picture *dest, int dest_len,
  2506. Picture *src, int src_len,
  2507. int parity, int long_i){
  2508. int i = split_field_half_ref_list(dest, dest_len, src, long_i, parity);
  2509. dest += i;
  2510. dest_len -= i;
  2511. i += split_field_half_ref_list(dest, dest_len, src + long_i,
  2512. src_len - long_i, parity);
  2513. return i;
  2514. }
  2515. /**
  2516. * fills the default_ref_list.
  2517. */
  2518. static int fill_default_ref_list(H264Context *h){
  2519. MpegEncContext * const s = &h->s;
  2520. int i;
  2521. int smallest_poc_greater_than_current = -1;
  2522. int structure_sel;
  2523. Picture sorted_short_ref[32];
  2524. Picture field_entry_list[2][32];
  2525. Picture *frame_list[2];
  2526. if (FIELD_PICTURE) {
  2527. structure_sel = PICT_FRAME;
  2528. frame_list[0] = field_entry_list[0];
  2529. frame_list[1] = field_entry_list[1];
  2530. } else {
  2531. structure_sel = 0;
  2532. frame_list[0] = h->default_ref_list[0];
  2533. frame_list[1] = h->default_ref_list[1];
  2534. }
  2535. if(h->slice_type==FF_B_TYPE){
  2536. int list;
  2537. int len[2];
  2538. int short_len[2];
  2539. int out_i;
  2540. int limit= INT_MIN;
  2541. /* sort frame according to poc in B slice */
  2542. for(out_i=0; out_i<h->short_ref_count; out_i++){
  2543. int best_i=INT_MIN;
  2544. int best_poc=INT_MAX;
  2545. for(i=0; i<h->short_ref_count; i++){
  2546. const int poc= h->short_ref[i]->poc;
  2547. if(poc > limit && poc < best_poc){
  2548. best_poc= poc;
  2549. best_i= i;
  2550. }
  2551. }
  2552. assert(best_i != INT_MIN);
  2553. limit= best_poc;
  2554. sorted_short_ref[out_i]= *h->short_ref[best_i];
  2555. tprintf(h->s.avctx, "sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
  2556. if (-1 == smallest_poc_greater_than_current) {
  2557. if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
  2558. smallest_poc_greater_than_current = out_i;
  2559. }
  2560. }
  2561. }
  2562. tprintf(h->s.avctx, "current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
  2563. // find the largest poc
  2564. for(list=0; list<2; list++){
  2565. int index = 0;
  2566. int j= -99;
  2567. int step= list ? -1 : 1;
  2568. for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
  2569. int sel;
  2570. while(j<0 || j>= h->short_ref_count){
  2571. if(j != -99 && step == (list ? -1 : 1))
  2572. return -1;
  2573. step = -step;
  2574. j= smallest_poc_greater_than_current + (step>>1);
  2575. }
  2576. sel = sorted_short_ref[j].reference | structure_sel;
  2577. if(sel != PICT_FRAME) continue;
  2578. frame_list[list][index ]= sorted_short_ref[j];
  2579. frame_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
  2580. }
  2581. short_len[list] = index;
  2582. for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
  2583. int sel;
  2584. if(h->long_ref[i] == NULL) continue;
  2585. sel = h->long_ref[i]->reference | structure_sel;
  2586. if(sel != PICT_FRAME) continue;
  2587. frame_list[ list ][index ]= *h->long_ref[i];
  2588. frame_list[ list ][index++].pic_id= i;
  2589. }
  2590. len[list] = index;
  2591. }
  2592. for(list=0; list<2; list++){
  2593. if (FIELD_PICTURE)
  2594. len[list] = split_field_ref_list(h->default_ref_list[list],
  2595. h->ref_count[list],
  2596. frame_list[list],
  2597. len[list],
  2598. s->picture_structure,
  2599. short_len[list]);
  2600. // swap the two first elements of L1 when L0 and L1 are identical
  2601. if(list && len[0] > 1 && len[0] == len[1])
  2602. for(i=0; h->default_ref_list[0][i].data[0] == h->default_ref_list[1][i].data[0]; i++)
  2603. if(i == len[0]){
  2604. FFSWAP(Picture, h->default_ref_list[1][0], h->default_ref_list[1][1]);
  2605. break;
  2606. }
  2607. if(len[list] < h->ref_count[ list ])
  2608. memset(&h->default_ref_list[list][len[list]], 0, sizeof(Picture)*(h->ref_count[ list ] - len[list]));
  2609. }
  2610. }else{
  2611. int index=0;
  2612. int short_len;
  2613. for(i=0; i<h->short_ref_count; i++){
  2614. int sel;
  2615. sel = h->short_ref[i]->reference | structure_sel;
  2616. if(sel != PICT_FRAME) continue;
  2617. frame_list[0][index ]= *h->short_ref[i];
  2618. frame_list[0][index++].pic_id= h->short_ref[i]->frame_num;
  2619. }
  2620. short_len = index;
  2621. for(i = 0; i < 16; i++){
  2622. int sel;
  2623. if(h->long_ref[i] == NULL) continue;
  2624. sel = h->long_ref[i]->reference | structure_sel;
  2625. if(sel != PICT_FRAME) continue;
  2626. frame_list[0][index ]= *h->long_ref[i];
  2627. frame_list[0][index++].pic_id= i;
  2628. }
  2629. if (FIELD_PICTURE)
  2630. index = split_field_ref_list(h->default_ref_list[0],
  2631. h->ref_count[0], frame_list[0],
  2632. index, s->picture_structure,
  2633. short_len);
  2634. if(index < h->ref_count[0])
  2635. memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
  2636. }
  2637. #ifdef TRACE
  2638. for (i=0; i<h->ref_count[0]; i++) {
  2639. tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
  2640. }
  2641. if(h->slice_type==FF_B_TYPE){
  2642. for (i=0; i<h->ref_count[1]; i++) {
  2643. tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[1][i].data[0]);
  2644. }
  2645. }
  2646. #endif
  2647. return 0;
  2648. }
  2649. static void print_short_term(H264Context *h);
  2650. static void print_long_term(H264Context *h);
  2651. /**
  2652. * Extract structure information about the picture described by pic_num in
  2653. * the current decoding context (frame or field). Note that pic_num is
  2654. * picture number without wrapping (so, 0<=pic_num<max_pic_num).
  2655. * @param pic_num picture number for which to extract structure information
  2656. * @param structure one of PICT_XXX describing structure of picture
  2657. * with pic_num
  2658. * @return frame number (short term) or long term index of picture
  2659. * described by pic_num
  2660. */
  2661. static int pic_num_extract(H264Context *h, int pic_num, int *structure){
  2662. MpegEncContext * const s = &h->s;
  2663. *structure = s->picture_structure;
  2664. if(FIELD_PICTURE){
  2665. if (!(pic_num & 1))
  2666. /* opposite field */
  2667. *structure ^= PICT_FRAME;
  2668. pic_num >>= 1;
  2669. }
  2670. return pic_num;
  2671. }
  2672. static int decode_ref_pic_list_reordering(H264Context *h){
  2673. MpegEncContext * const s = &h->s;
  2674. int list, index, pic_structure;
  2675. print_short_term(h);
  2676. print_long_term(h);
  2677. if(h->slice_type==FF_I_TYPE || h->slice_type==FF_SI_TYPE) return 0; //FIXME move before func
  2678. for(list=0; list<h->list_count; list++){
  2679. memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
  2680. if(get_bits1(&s->gb)){
  2681. int pred= h->curr_pic_num;
  2682. for(index=0; ; index++){
  2683. unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
  2684. unsigned int pic_id;
  2685. int i;
  2686. Picture *ref = NULL;
  2687. if(reordering_of_pic_nums_idc==3)
  2688. break;
  2689. if(index >= h->ref_count[list]){
  2690. av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
  2691. return -1;
  2692. }
  2693. if(reordering_of_pic_nums_idc<3){
  2694. if(reordering_of_pic_nums_idc<2){
  2695. const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
  2696. int frame_num;
  2697. if(abs_diff_pic_num > h->max_pic_num){
  2698. av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
  2699. return -1;
  2700. }
  2701. if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
  2702. else pred+= abs_diff_pic_num;
  2703. pred &= h->max_pic_num - 1;
  2704. frame_num = pic_num_extract(h, pred, &pic_structure);
  2705. for(i= h->short_ref_count-1; i>=0; i--){
  2706. ref = h->short_ref[i];
  2707. assert(ref->reference);
  2708. assert(!ref->long_ref);
  2709. if(ref->data[0] != NULL &&
  2710. ref->frame_num == frame_num &&
  2711. (ref->reference & pic_structure) &&
  2712. ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer
  2713. break;
  2714. }
  2715. if(i>=0)
  2716. ref->pic_id= pred;
  2717. }else{
  2718. int long_idx;
  2719. pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
  2720. long_idx= pic_num_extract(h, pic_id, &pic_structure);
  2721. if(long_idx>31){
  2722. av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
  2723. return -1;
  2724. }
  2725. ref = h->long_ref[long_idx];
  2726. assert(!(ref && !ref->reference));
  2727. if(ref && (ref->reference & pic_structure)){
  2728. ref->pic_id= pic_id;
  2729. assert(ref->long_ref);
  2730. i=0;
  2731. }else{
  2732. i=-1;
  2733. }
  2734. }
  2735. if (i < 0) {
  2736. av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
  2737. memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
  2738. } else {
  2739. for(i=index; i+1<h->ref_count[list]; i++){
  2740. if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
  2741. break;
  2742. }
  2743. for(; i > index; i--){
  2744. h->ref_list[list][i]= h->ref_list[list][i-1];
  2745. }
  2746. h->ref_list[list][index]= *ref;
  2747. if (FIELD_PICTURE){
  2748. pic_as_field(&h->ref_list[list][index], pic_structure);
  2749. }
  2750. }
  2751. }else{
  2752. av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
  2753. return -1;
  2754. }
  2755. }
  2756. }
  2757. }
  2758. for(list=0; list<h->list_count; list++){
  2759. for(index= 0; index < h->ref_count[list]; index++){
  2760. if(!h->ref_list[list][index].data[0])
  2761. h->ref_list[list][index]= s->current_picture;
  2762. }
  2763. }
  2764. if(h->slice_type==FF_B_TYPE && !h->direct_spatial_mv_pred)
  2765. direct_dist_scale_factor(h);
  2766. direct_ref_list_init(h);
  2767. return 0;
  2768. }
  2769. static void fill_mbaff_ref_list(H264Context *h){
  2770. int list, i, j;
  2771. for(list=0; list<2; list++){ //FIXME try list_count
  2772. for(i=0; i<h->ref_count[list]; i++){
  2773. Picture *frame = &h->ref_list[list][i];
  2774. Picture *field = &h->ref_list[list][16+2*i];
  2775. field[0] = *frame;
  2776. for(j=0; j<3; j++)
  2777. field[0].linesize[j] <<= 1;
  2778. field[0].reference = PICT_TOP_FIELD;
  2779. field[1] = field[0];
  2780. for(j=0; j<3; j++)
  2781. field[1].data[j] += frame->linesize[j];
  2782. field[1].reference = PICT_BOTTOM_FIELD;
  2783. h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i];
  2784. h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i];
  2785. for(j=0; j<2; j++){
  2786. h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j];
  2787. h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j];
  2788. }
  2789. }
  2790. }
  2791. for(j=0; j<h->ref_count[1]; j++){
  2792. for(i=0; i<h->ref_count[0]; i++)
  2793. h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i];
  2794. memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight));
  2795. memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight));
  2796. }
  2797. }
  2798. static int pred_weight_table(H264Context *h){
  2799. MpegEncContext * const s = &h->s;
  2800. int list, i;
  2801. int luma_def, chroma_def;
  2802. h->use_weight= 0;
  2803. h->use_weight_chroma= 0;
  2804. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  2805. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  2806. luma_def = 1<<h->luma_log2_weight_denom;
  2807. chroma_def = 1<<h->chroma_log2_weight_denom;
  2808. for(list=0; list<2; list++){
  2809. for(i=0; i<h->ref_count[list]; i++){
  2810. int luma_weight_flag, chroma_weight_flag;
  2811. luma_weight_flag= get_bits1(&s->gb);
  2812. if(luma_weight_flag){
  2813. h->luma_weight[list][i]= get_se_golomb(&s->gb);
  2814. h->luma_offset[list][i]= get_se_golomb(&s->gb);
  2815. if( h->luma_weight[list][i] != luma_def
  2816. || h->luma_offset[list][i] != 0)
  2817. h->use_weight= 1;
  2818. }else{
  2819. h->luma_weight[list][i]= luma_def;
  2820. h->luma_offset[list][i]= 0;
  2821. }
  2822. chroma_weight_flag= get_bits1(&s->gb);
  2823. if(chroma_weight_flag){
  2824. int j;
  2825. for(j=0; j<2; j++){
  2826. h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
  2827. h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
  2828. if( h->chroma_weight[list][i][j] != chroma_def
  2829. || h->chroma_offset[list][i][j] != 0)
  2830. h->use_weight_chroma= 1;
  2831. }
  2832. }else{
  2833. int j;
  2834. for(j=0; j<2; j++){
  2835. h->chroma_weight[list][i][j]= chroma_def;
  2836. h->chroma_offset[list][i][j]= 0;
  2837. }
  2838. }
  2839. }
  2840. if(h->slice_type != FF_B_TYPE) break;
  2841. }
  2842. h->use_weight= h->use_weight || h->use_weight_chroma;
  2843. return 0;
  2844. }
  2845. static void implicit_weight_table(H264Context *h){
  2846. MpegEncContext * const s = &h->s;
  2847. int ref0, ref1;
  2848. int cur_poc = s->current_picture_ptr->poc;
  2849. if( h->ref_count[0] == 1 && h->ref_count[1] == 1
  2850. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  2851. h->use_weight= 0;
  2852. h->use_weight_chroma= 0;
  2853. return;
  2854. }
  2855. h->use_weight= 2;
  2856. h->use_weight_chroma= 2;
  2857. h->luma_log2_weight_denom= 5;
  2858. h->chroma_log2_weight_denom= 5;
  2859. for(ref0=0; ref0 < h->ref_count[0]; ref0++){
  2860. int poc0 = h->ref_list[0][ref0].poc;
  2861. for(ref1=0; ref1 < h->ref_count[1]; ref1++){
  2862. int poc1 = h->ref_list[1][ref1].poc;
  2863. int td = av_clip(poc1 - poc0, -128, 127);
  2864. if(td){
  2865. int tb = av_clip(cur_poc - poc0, -128, 127);
  2866. int tx = (16384 + (FFABS(td) >> 1)) / td;
  2867. int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
  2868. if(dist_scale_factor < -64 || dist_scale_factor > 128)
  2869. h->implicit_weight[ref0][ref1] = 32;
  2870. else
  2871. h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
  2872. }else
  2873. h->implicit_weight[ref0][ref1] = 32;
  2874. }
  2875. }
  2876. }
  2877. /**
  2878. * Mark a picture as no longer needed for reference. The refmask
  2879. * argument allows unreferencing of individual fields or the whole frame.
  2880. * If the picture becomes entirely unreferenced, but is being held for
  2881. * display purposes, it is marked as such.
  2882. * @param refmask mask of fields to unreference; the mask is bitwise
  2883. * anded with the reference marking of pic
  2884. * @return non-zero if pic becomes entirely unreferenced (except possibly
  2885. * for display purposes) zero if one of the fields remains in
  2886. * reference
  2887. */
  2888. static inline int unreference_pic(H264Context *h, Picture *pic, int refmask){
  2889. int i;
  2890. if (pic->reference &= refmask) {
  2891. return 0;
  2892. } else {
  2893. if(pic == h->delayed_output_pic)
  2894. pic->reference=DELAYED_PIC_REF;
  2895. else{
  2896. for(i = 0; h->delayed_pic[i]; i++)
  2897. if(pic == h->delayed_pic[i]){
  2898. pic->reference=DELAYED_PIC_REF;
  2899. break;
  2900. }
  2901. }
  2902. return 1;
  2903. }
  2904. }
  2905. /**
  2906. * instantaneous decoder refresh.
  2907. */
  2908. static void idr(H264Context *h){
  2909. int i;
  2910. for(i=0; i<16; i++){
  2911. if (h->long_ref[i] != NULL) {
  2912. unreference_pic(h, h->long_ref[i], 0);
  2913. h->long_ref[i]= NULL;
  2914. }
  2915. }
  2916. h->long_ref_count=0;
  2917. for(i=0; i<h->short_ref_count; i++){
  2918. unreference_pic(h, h->short_ref[i], 0);
  2919. h->short_ref[i]= NULL;
  2920. }
  2921. h->short_ref_count=0;
  2922. }
  2923. /* forget old pics after a seek */
  2924. static void flush_dpb(AVCodecContext *avctx){
  2925. H264Context *h= avctx->priv_data;
  2926. int i;
  2927. for(i=0; i<16; i++) {
  2928. if(h->delayed_pic[i])
  2929. h->delayed_pic[i]->reference= 0;
  2930. h->delayed_pic[i]= NULL;
  2931. }
  2932. if(h->delayed_output_pic)
  2933. h->delayed_output_pic->reference= 0;
  2934. h->delayed_output_pic= NULL;
  2935. idr(h);
  2936. if(h->s.current_picture_ptr)
  2937. h->s.current_picture_ptr->reference= 0;
  2938. h->s.first_field= 0;
  2939. ff_mpeg_flush(avctx);
  2940. }
  2941. /**
  2942. * Find a Picture in the short term reference list by frame number.
  2943. * @param frame_num frame number to search for
  2944. * @param idx the index into h->short_ref where returned picture is found
  2945. * undefined if no picture found.
  2946. * @return pointer to the found picture, or NULL if no pic with the provided
  2947. * frame number is found
  2948. */
  2949. static Picture * find_short(H264Context *h, int frame_num, int *idx){
  2950. MpegEncContext * const s = &h->s;
  2951. int i;
  2952. for(i=0; i<h->short_ref_count; i++){
  2953. Picture *pic= h->short_ref[i];
  2954. if(s->avctx->debug&FF_DEBUG_MMCO)
  2955. av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
  2956. if(pic->frame_num == frame_num) {
  2957. *idx = i;
  2958. return pic;
  2959. }
  2960. }
  2961. return NULL;
  2962. }
  2963. /**
  2964. * Remove a picture from the short term reference list by its index in
  2965. * that list. This does no checking on the provided index; it is assumed
  2966. * to be valid. Other list entries are shifted down.
  2967. * @param i index into h->short_ref of picture to remove.
  2968. */
  2969. static void remove_short_at_index(H264Context *h, int i){
  2970. assert(i > 0 && i < h->short_ref_count);
  2971. h->short_ref[i]= NULL;
  2972. if (--h->short_ref_count)
  2973. memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i)*sizeof(Picture*));
  2974. }
  2975. /**
  2976. *
  2977. * @return the removed picture or NULL if an error occurs
  2978. */
  2979. static Picture * remove_short(H264Context *h, int frame_num){
  2980. MpegEncContext * const s = &h->s;
  2981. Picture *pic;
  2982. int i;
  2983. if(s->avctx->debug&FF_DEBUG_MMCO)
  2984. av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
  2985. pic = find_short(h, frame_num, &i);
  2986. if (pic)
  2987. remove_short_at_index(h, i);
  2988. return pic;
  2989. }
  2990. /**
  2991. * Remove a picture from the long term reference list by its index in
  2992. * that list. This does no checking on the provided index; it is assumed
  2993. * to be valid. The removed entry is set to NULL. Other entries are unaffected.
  2994. * @param i index into h->long_ref of picture to remove.
  2995. */
  2996. static void remove_long_at_index(H264Context *h, int i){
  2997. h->long_ref[i]= NULL;
  2998. h->long_ref_count--;
  2999. }
  3000. /**
  3001. *
  3002. * @return the removed picture or NULL if an error occurs
  3003. */
  3004. static Picture * remove_long(H264Context *h, int i){
  3005. Picture *pic;
  3006. pic= h->long_ref[i];
  3007. if (pic)
  3008. remove_long_at_index(h, i);
  3009. return pic;
  3010. }
  3011. /**
  3012. * print short term list
  3013. */
  3014. static void print_short_term(H264Context *h) {
  3015. uint32_t i;
  3016. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3017. av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
  3018. for(i=0; i<h->short_ref_count; i++){
  3019. Picture *pic= h->short_ref[i];
  3020. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3021. }
  3022. }
  3023. }
  3024. /**
  3025. * print long term list
  3026. */
  3027. static void print_long_term(H264Context *h) {
  3028. uint32_t i;
  3029. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3030. av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
  3031. for(i = 0; i < 16; i++){
  3032. Picture *pic= h->long_ref[i];
  3033. if (pic) {
  3034. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3035. }
  3036. }
  3037. }
  3038. }
  3039. /**
  3040. * Executes the reference picture marking (memory management control operations).
  3041. */
  3042. static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
  3043. MpegEncContext * const s = &h->s;
  3044. int i, j;
  3045. int current_ref_assigned=0;
  3046. Picture *pic;
  3047. if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
  3048. av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
  3049. for(i=0; i<mmco_count; i++){
  3050. int structure, frame_num, unref_pic;
  3051. if(s->avctx->debug&FF_DEBUG_MMCO)
  3052. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_pic_num, h->mmco[i].long_arg);
  3053. switch(mmco[i].opcode){
  3054. case MMCO_SHORT2UNUSED:
  3055. if(s->avctx->debug&FF_DEBUG_MMCO)
  3056. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short %d count %d\n", h->mmco[i].short_pic_num, h->short_ref_count);
  3057. frame_num = pic_num_extract(h, mmco[i].short_pic_num, &structure);
  3058. pic = find_short(h, frame_num, &j);
  3059. if (pic) {
  3060. if (unreference_pic(h, pic, structure ^ PICT_FRAME))
  3061. remove_short_at_index(h, j);
  3062. } else if(s->avctx->debug&FF_DEBUG_MMCO)
  3063. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short failure\n");
  3064. break;
  3065. case MMCO_SHORT2LONG:
  3066. if (FIELD_PICTURE && mmco[i].long_arg < h->long_ref_count &&
  3067. h->long_ref[mmco[i].long_arg]->frame_num ==
  3068. mmco[i].short_pic_num / 2) {
  3069. /* do nothing, we've already moved this field pair. */
  3070. } else {
  3071. int frame_num = mmco[i].short_pic_num >> FIELD_PICTURE;
  3072. pic= remove_long(h, mmco[i].long_arg);
  3073. if(pic) unreference_pic(h, pic, 0);
  3074. h->long_ref[ mmco[i].long_arg ]= remove_short(h, frame_num);
  3075. if (h->long_ref[ mmco[i].long_arg ]){
  3076. h->long_ref[ mmco[i].long_arg ]->long_ref=1;
  3077. h->long_ref_count++;
  3078. }
  3079. }
  3080. break;
  3081. case MMCO_LONG2UNUSED:
  3082. j = pic_num_extract(h, mmco[i].long_arg, &structure);
  3083. pic = h->long_ref[j];
  3084. if (pic) {
  3085. if (unreference_pic(h, pic, structure ^ PICT_FRAME))
  3086. remove_long_at_index(h, j);
  3087. } else if(s->avctx->debug&FF_DEBUG_MMCO)
  3088. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref long failure\n");
  3089. break;
  3090. case MMCO_LONG:
  3091. unref_pic = 1;
  3092. if (FIELD_PICTURE && !s->first_field) {
  3093. if (h->long_ref[mmco[i].long_arg] == s->current_picture_ptr) {
  3094. /* Just mark second field as referenced */
  3095. unref_pic = 0;
  3096. } else if (s->current_picture_ptr->reference) {
  3097. /* First field in pair is in short term list or
  3098. * at a different long term index.
  3099. * This is not allowed; see 7.4.3, notes 2 and 3.
  3100. * Report the problem and keep the pair where it is,
  3101. * and mark this field valid.
  3102. */
  3103. av_log(h->s.avctx, AV_LOG_ERROR,
  3104. "illegal long term reference assignment for second "
  3105. "field in complementary field pair (first field is "
  3106. "short term or has non-matching long index)\n");
  3107. unref_pic = 0;
  3108. }
  3109. }
  3110. if (unref_pic) {
  3111. pic= remove_long(h, mmco[i].long_arg);
  3112. if(pic) unreference_pic(h, pic, 0);
  3113. h->long_ref[ mmco[i].long_arg ]= s->current_picture_ptr;
  3114. h->long_ref[ mmco[i].long_arg ]->long_ref=1;
  3115. h->long_ref_count++;
  3116. }
  3117. s->current_picture_ptr->reference |= s->picture_structure;
  3118. current_ref_assigned=1;
  3119. break;
  3120. case MMCO_SET_MAX_LONG:
  3121. assert(mmco[i].long_arg <= 16);
  3122. // just remove the long term which index is greater than new max
  3123. for(j = mmco[i].long_arg; j<16; j++){
  3124. pic = remove_long(h, j);
  3125. if (pic) unreference_pic(h, pic, 0);
  3126. }
  3127. break;
  3128. case MMCO_RESET:
  3129. while(h->short_ref_count){
  3130. pic= remove_short(h, h->short_ref[0]->frame_num);
  3131. if(pic) unreference_pic(h, pic, 0);
  3132. }
  3133. for(j = 0; j < 16; j++) {
  3134. pic= remove_long(h, j);
  3135. if(pic) unreference_pic(h, pic, 0);
  3136. }
  3137. break;
  3138. default: assert(0);
  3139. }
  3140. }
  3141. if (!current_ref_assigned && FIELD_PICTURE &&
  3142. !s->first_field && s->current_picture_ptr->reference) {
  3143. /* Second field of complementary field pair; the first field of
  3144. * which is already referenced. If short referenced, it
  3145. * should be first entry in short_ref. If not, it must exist
  3146. * in long_ref; trying to put it on the short list here is an
  3147. * error in the encoded bit stream (ref: 7.4.3, NOTE 2 and 3).
  3148. */
  3149. if (h->short_ref_count && h->short_ref[0] == s->current_picture_ptr) {
  3150. /* Just mark the second field valid */
  3151. s->current_picture_ptr->reference = PICT_FRAME;
  3152. } else if (s->current_picture_ptr->long_ref) {
  3153. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term reference "
  3154. "assignment for second field "
  3155. "in complementary field pair "
  3156. "(first field is long term)\n");
  3157. } else {
  3158. /*
  3159. * First field in reference, but not in any sensible place on our
  3160. * reference lists. This shouldn't happen unless reference
  3161. * handling somewhere else is wrong.
  3162. */
  3163. assert(0);
  3164. }
  3165. current_ref_assigned = 1;
  3166. }
  3167. if(!current_ref_assigned){
  3168. pic= remove_short(h, s->current_picture_ptr->frame_num);
  3169. if(pic){
  3170. unreference_pic(h, pic, 0);
  3171. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
  3172. }
  3173. if(h->short_ref_count)
  3174. memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
  3175. h->short_ref[0]= s->current_picture_ptr;
  3176. h->short_ref[0]->long_ref=0;
  3177. h->short_ref_count++;
  3178. s->current_picture_ptr->reference |= s->picture_structure;
  3179. }
  3180. if (h->long_ref_count + h->short_ref_count > h->sps.ref_frame_count){
  3181. /* We have too many reference frames, probably due to corrupted
  3182. * stream. Need to discard one frame. Prevents overrun of the
  3183. * short_ref and long_ref buffers.
  3184. */
  3185. av_log(h->s.avctx, AV_LOG_ERROR,
  3186. "number of reference frames exceeds max (probably "
  3187. "corrupt input), discarding one\n");
  3188. if (h->long_ref_count) {
  3189. for (i = 0; i < 16; ++i)
  3190. if (h->long_ref[i])
  3191. break;
  3192. assert(i < 16);
  3193. pic = h->long_ref[i];
  3194. remove_long_at_index(h, i);
  3195. } else {
  3196. pic = h->short_ref[h->short_ref_count - 1];
  3197. remove_short_at_index(h, h->short_ref_count - 1);
  3198. }
  3199. unreference_pic(h, pic, 0);
  3200. }
  3201. print_short_term(h);
  3202. print_long_term(h);
  3203. return 0;
  3204. }
  3205. static int decode_ref_pic_marking(H264Context *h, GetBitContext *gb){
  3206. MpegEncContext * const s = &h->s;
  3207. int i;
  3208. if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
  3209. s->broken_link= get_bits1(gb) -1;
  3210. h->mmco[0].long_arg= get_bits1(gb) - 1; // current_long_term_idx
  3211. if(h->mmco[0].long_arg == -1)
  3212. h->mmco_index= 0;
  3213. else{
  3214. h->mmco[0].opcode= MMCO_LONG;
  3215. h->mmco_index= 1;
  3216. }
  3217. }else{
  3218. if(get_bits1(gb)){ // adaptive_ref_pic_marking_mode_flag
  3219. for(i= 0; i<MAX_MMCO_COUNT; i++) {
  3220. MMCOOpcode opcode= get_ue_golomb(gb);
  3221. h->mmco[i].opcode= opcode;
  3222. if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
  3223. h->mmco[i].short_pic_num= (h->curr_pic_num - get_ue_golomb(gb) - 1) & (h->max_pic_num - 1);
  3224. /* if(h->mmco[i].short_pic_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_pic_num ] == NULL){
  3225. av_log(s->avctx, AV_LOG_ERROR, "illegal short ref in memory management control operation %d\n", mmco);
  3226. return -1;
  3227. }*/
  3228. }
  3229. if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
  3230. unsigned int long_arg= get_ue_golomb(gb);
  3231. if(long_arg >= 32 || (long_arg >= 16 && !(opcode == MMCO_LONG2UNUSED && FIELD_PICTURE))){
  3232. av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
  3233. return -1;
  3234. }
  3235. h->mmco[i].long_arg= long_arg;
  3236. }
  3237. if(opcode > (unsigned)MMCO_LONG){
  3238. av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
  3239. return -1;
  3240. }
  3241. if(opcode == MMCO_END)
  3242. break;
  3243. }
  3244. h->mmco_index= i;
  3245. }else{
  3246. assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
  3247. if(h->short_ref_count && h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count &&
  3248. !(FIELD_PICTURE && !s->first_field && s->current_picture_ptr->reference)) {
  3249. h->mmco[0].opcode= MMCO_SHORT2UNUSED;
  3250. h->mmco[0].short_pic_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
  3251. h->mmco_index= 1;
  3252. if (FIELD_PICTURE) {
  3253. h->mmco[0].short_pic_num *= 2;
  3254. h->mmco[1].opcode= MMCO_SHORT2UNUSED;
  3255. h->mmco[1].short_pic_num= h->mmco[0].short_pic_num + 1;
  3256. h->mmco_index= 2;
  3257. }
  3258. }else
  3259. h->mmco_index= 0;
  3260. }
  3261. }
  3262. return 0;
  3263. }
  3264. static int init_poc(H264Context *h){
  3265. MpegEncContext * const s = &h->s;
  3266. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  3267. int field_poc[2];
  3268. if(h->nal_unit_type == NAL_IDR_SLICE){
  3269. h->frame_num_offset= 0;
  3270. }else{
  3271. if(h->frame_num < h->prev_frame_num)
  3272. h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
  3273. else
  3274. h->frame_num_offset= h->prev_frame_num_offset;
  3275. }
  3276. if(h->sps.poc_type==0){
  3277. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  3278. if(h->nal_unit_type == NAL_IDR_SLICE){
  3279. h->prev_poc_msb=
  3280. h->prev_poc_lsb= 0;
  3281. }
  3282. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  3283. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  3284. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  3285. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  3286. else
  3287. h->poc_msb = h->prev_poc_msb;
  3288. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  3289. field_poc[0] =
  3290. field_poc[1] = h->poc_msb + h->poc_lsb;
  3291. if(s->picture_structure == PICT_FRAME)
  3292. field_poc[1] += h->delta_poc_bottom;
  3293. }else if(h->sps.poc_type==1){
  3294. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  3295. int i;
  3296. if(h->sps.poc_cycle_length != 0)
  3297. abs_frame_num = h->frame_num_offset + h->frame_num;
  3298. else
  3299. abs_frame_num = 0;
  3300. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  3301. abs_frame_num--;
  3302. expected_delta_per_poc_cycle = 0;
  3303. for(i=0; i < h->sps.poc_cycle_length; i++)
  3304. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  3305. if(abs_frame_num > 0){
  3306. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  3307. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  3308. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  3309. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  3310. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  3311. } else
  3312. expectedpoc = 0;
  3313. if(h->nal_ref_idc == 0)
  3314. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  3315. field_poc[0] = expectedpoc + h->delta_poc[0];
  3316. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  3317. if(s->picture_structure == PICT_FRAME)
  3318. field_poc[1] += h->delta_poc[1];
  3319. }else{
  3320. int poc;
  3321. if(h->nal_unit_type == NAL_IDR_SLICE){
  3322. poc= 0;
  3323. }else{
  3324. if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
  3325. else poc= 2*(h->frame_num_offset + h->frame_num) - 1;
  3326. }
  3327. field_poc[0]= poc;
  3328. field_poc[1]= poc;
  3329. }
  3330. if(s->picture_structure != PICT_BOTTOM_FIELD) {
  3331. s->current_picture_ptr->field_poc[0]= field_poc[0];
  3332. s->current_picture_ptr->poc = field_poc[0];
  3333. }
  3334. if(s->picture_structure != PICT_TOP_FIELD) {
  3335. s->current_picture_ptr->field_poc[1]= field_poc[1];
  3336. s->current_picture_ptr->poc = field_poc[1];
  3337. }
  3338. if(!FIELD_PICTURE || !s->first_field) {
  3339. Picture *cur = s->current_picture_ptr;
  3340. cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
  3341. }
  3342. return 0;
  3343. }
  3344. /**
  3345. * initialize scan tables
  3346. */
  3347. static void init_scan_tables(H264Context *h){
  3348. MpegEncContext * const s = &h->s;
  3349. int i;
  3350. if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
  3351. memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
  3352. memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
  3353. }else{
  3354. for(i=0; i<16; i++){
  3355. #define T(x) (x>>2) | ((x<<2) & 0xF)
  3356. h->zigzag_scan[i] = T(zigzag_scan[i]);
  3357. h-> field_scan[i] = T( field_scan[i]);
  3358. #undef T
  3359. }
  3360. }
  3361. if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
  3362. memcpy(h->zigzag_scan8x8, zigzag_scan8x8, 64*sizeof(uint8_t));
  3363. memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
  3364. memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
  3365. memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
  3366. }else{
  3367. for(i=0; i<64; i++){
  3368. #define T(x) (x>>3) | ((x&7)<<3)
  3369. h->zigzag_scan8x8[i] = T(zigzag_scan8x8[i]);
  3370. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  3371. h->field_scan8x8[i] = T(field_scan8x8[i]);
  3372. h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
  3373. #undef T
  3374. }
  3375. }
  3376. if(h->sps.transform_bypass){ //FIXME same ugly
  3377. h->zigzag_scan_q0 = zigzag_scan;
  3378. h->zigzag_scan8x8_q0 = zigzag_scan8x8;
  3379. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  3380. h->field_scan_q0 = field_scan;
  3381. h->field_scan8x8_q0 = field_scan8x8;
  3382. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  3383. }else{
  3384. h->zigzag_scan_q0 = h->zigzag_scan;
  3385. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  3386. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  3387. h->field_scan_q0 = h->field_scan;
  3388. h->field_scan8x8_q0 = h->field_scan8x8;
  3389. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  3390. }
  3391. }
  3392. /**
  3393. * Replicates H264 "master" context to thread contexts.
  3394. */
  3395. static void clone_slice(H264Context *dst, H264Context *src)
  3396. {
  3397. memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
  3398. dst->s.current_picture_ptr = src->s.current_picture_ptr;
  3399. dst->s.current_picture = src->s.current_picture;
  3400. dst->s.linesize = src->s.linesize;
  3401. dst->s.uvlinesize = src->s.uvlinesize;
  3402. dst->s.first_field = src->s.first_field;
  3403. dst->prev_poc_msb = src->prev_poc_msb;
  3404. dst->prev_poc_lsb = src->prev_poc_lsb;
  3405. dst->prev_frame_num_offset = src->prev_frame_num_offset;
  3406. dst->prev_frame_num = src->prev_frame_num;
  3407. dst->short_ref_count = src->short_ref_count;
  3408. memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
  3409. memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
  3410. memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
  3411. memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
  3412. memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
  3413. memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
  3414. }
  3415. /**
  3416. * decodes a slice header.
  3417. * this will allso call MPV_common_init() and frame_start() as needed
  3418. *
  3419. * @param h h264context
  3420. * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
  3421. *
  3422. * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
  3423. */
  3424. static int decode_slice_header(H264Context *h, H264Context *h0){
  3425. MpegEncContext * const s = &h->s;
  3426. MpegEncContext * const s0 = &h0->s;
  3427. unsigned int first_mb_in_slice;
  3428. unsigned int pps_id;
  3429. int num_ref_idx_active_override_flag;
  3430. static const uint8_t slice_type_map[5]= {FF_P_TYPE, FF_B_TYPE, FF_I_TYPE, FF_SP_TYPE, FF_SI_TYPE};
  3431. unsigned int slice_type, tmp, i;
  3432. int default_ref_list_done = 0;
  3433. int last_pic_structure;
  3434. s->dropable= h->nal_ref_idc == 0;
  3435. if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){
  3436. s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
  3437. s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
  3438. }else{
  3439. s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
  3440. s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
  3441. }
  3442. first_mb_in_slice= get_ue_golomb(&s->gb);
  3443. if((s->flags2 & CODEC_FLAG2_CHUNKS) && first_mb_in_slice == 0){
  3444. h0->current_slice = 0;
  3445. if (!s0->first_field)
  3446. s->current_picture_ptr= NULL;
  3447. }
  3448. slice_type= get_ue_golomb(&s->gb);
  3449. if(slice_type > 9){
  3450. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  3451. return -1;
  3452. }
  3453. if(slice_type > 4){
  3454. slice_type -= 5;
  3455. h->slice_type_fixed=1;
  3456. }else
  3457. h->slice_type_fixed=0;
  3458. slice_type= slice_type_map[ slice_type ];
  3459. if (slice_type == FF_I_TYPE
  3460. || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
  3461. default_ref_list_done = 1;
  3462. }
  3463. h->slice_type= slice_type;
  3464. s->pict_type= h->slice_type; // to make a few old func happy, it's wrong though
  3465. if (s->pict_type == FF_B_TYPE && s0->last_picture_ptr == NULL) {
  3466. av_log(h->s.avctx, AV_LOG_ERROR,
  3467. "B picture before any references, skipping\n");
  3468. return -1;
  3469. }
  3470. pps_id= get_ue_golomb(&s->gb);
  3471. if(pps_id>=MAX_PPS_COUNT){
  3472. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  3473. return -1;
  3474. }
  3475. if(!h0->pps_buffers[pps_id]) {
  3476. av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
  3477. return -1;
  3478. }
  3479. h->pps= *h0->pps_buffers[pps_id];
  3480. if(!h0->sps_buffers[h->pps.sps_id]) {
  3481. av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
  3482. return -1;
  3483. }
  3484. h->sps = *h0->sps_buffers[h->pps.sps_id];
  3485. if(h == h0 && h->dequant_coeff_pps != pps_id){
  3486. h->dequant_coeff_pps = pps_id;
  3487. init_dequant_tables(h);
  3488. }
  3489. s->mb_width= h->sps.mb_width;
  3490. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  3491. h->b_stride= s->mb_width*4;
  3492. h->b8_stride= s->mb_width*2;
  3493. s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
  3494. if(h->sps.frame_mbs_only_flag)
  3495. s->height= 16*s->mb_height - 2*(h->sps.crop_top + h->sps.crop_bottom);
  3496. else
  3497. s->height= 16*s->mb_height - 4*(h->sps.crop_top + h->sps.crop_bottom); //FIXME recheck
  3498. if (s->context_initialized
  3499. && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
  3500. if(h != h0)
  3501. return -1; // width / height changed during parallelized decoding
  3502. free_tables(h);
  3503. MPV_common_end(s);
  3504. }
  3505. if (!s->context_initialized) {
  3506. if(h != h0)
  3507. return -1; // we cant (re-)initialize context during parallel decoding
  3508. if (MPV_common_init(s) < 0)
  3509. return -1;
  3510. s->first_field = 0;
  3511. init_scan_tables(h);
  3512. alloc_tables(h);
  3513. for(i = 1; i < s->avctx->thread_count; i++) {
  3514. H264Context *c;
  3515. c = h->thread_context[i] = av_malloc(sizeof(H264Context));
  3516. memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
  3517. memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
  3518. c->sps = h->sps;
  3519. c->pps = h->pps;
  3520. init_scan_tables(c);
  3521. clone_tables(c, h);
  3522. }
  3523. for(i = 0; i < s->avctx->thread_count; i++)
  3524. if(context_init(h->thread_context[i]) < 0)
  3525. return -1;
  3526. s->avctx->width = s->width;
  3527. s->avctx->height = s->height;
  3528. s->avctx->sample_aspect_ratio= h->sps.sar;
  3529. if(!s->avctx->sample_aspect_ratio.den)
  3530. s->avctx->sample_aspect_ratio.den = 1;
  3531. if(h->sps.timing_info_present_flag){
  3532. s->avctx->time_base= (AVRational){h->sps.num_units_in_tick * 2, h->sps.time_scale};
  3533. if(h->x264_build > 0 && h->x264_build < 44)
  3534. s->avctx->time_base.den *= 2;
  3535. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  3536. s->avctx->time_base.num, s->avctx->time_base.den, 1<<30);
  3537. }
  3538. }
  3539. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  3540. h->mb_mbaff = 0;
  3541. h->mb_aff_frame = 0;
  3542. last_pic_structure = s0->picture_structure;
  3543. if(h->sps.frame_mbs_only_flag){
  3544. s->picture_structure= PICT_FRAME;
  3545. }else{
  3546. if(get_bits1(&s->gb)) { //field_pic_flag
  3547. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  3548. } else {
  3549. s->picture_structure= PICT_FRAME;
  3550. h->mb_aff_frame = h->sps.mb_aff;
  3551. }
  3552. }
  3553. if(h0->current_slice == 0){
  3554. /* See if we have a decoded first field looking for a pair... */
  3555. if (s0->first_field) {
  3556. assert(s0->current_picture_ptr);
  3557. assert(s0->current_picture_ptr->data[0]);
  3558. assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF);
  3559. /* figure out if we have a complementary field pair */
  3560. if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
  3561. /*
  3562. * Previous field is unmatched. Don't display it, but let it
  3563. * remain for reference if marked as such.
  3564. */
  3565. s0->current_picture_ptr = NULL;
  3566. s0->first_field = FIELD_PICTURE;
  3567. } else {
  3568. if (h->nal_ref_idc &&
  3569. s0->current_picture_ptr->reference &&
  3570. s0->current_picture_ptr->frame_num != h->frame_num) {
  3571. /*
  3572. * This and previous field were reference, but had
  3573. * different frame_nums. Consider this field first in
  3574. * pair. Throw away previous field except for reference
  3575. * purposes.
  3576. */
  3577. s0->first_field = 1;
  3578. s0->current_picture_ptr = NULL;
  3579. } else {
  3580. /* Second field in complementary pair */
  3581. s0->first_field = 0;
  3582. }
  3583. }
  3584. } else {
  3585. /* Frame or first field in a potentially complementary pair */
  3586. assert(!s0->current_picture_ptr);
  3587. s0->first_field = FIELD_PICTURE;
  3588. }
  3589. if((!FIELD_PICTURE || s0->first_field) && frame_start(h) < 0) {
  3590. s0->first_field = 0;
  3591. return -1;
  3592. }
  3593. }
  3594. if(h != h0)
  3595. clone_slice(h, h0);
  3596. s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
  3597. assert(s->mb_num == s->mb_width * s->mb_height);
  3598. if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
  3599. first_mb_in_slice >= s->mb_num){
  3600. av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  3601. return -1;
  3602. }
  3603. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  3604. s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
  3605. if (s->picture_structure == PICT_BOTTOM_FIELD)
  3606. s->resync_mb_y = s->mb_y = s->mb_y + 1;
  3607. assert(s->mb_y < s->mb_height);
  3608. if(s->picture_structure==PICT_FRAME){
  3609. h->curr_pic_num= h->frame_num;
  3610. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  3611. }else{
  3612. h->curr_pic_num= 2*h->frame_num + 1;
  3613. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  3614. }
  3615. if(h->nal_unit_type == NAL_IDR_SLICE){
  3616. get_ue_golomb(&s->gb); /* idr_pic_id */
  3617. }
  3618. if(h->sps.poc_type==0){
  3619. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  3620. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  3621. h->delta_poc_bottom= get_se_golomb(&s->gb);
  3622. }
  3623. }
  3624. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  3625. h->delta_poc[0]= get_se_golomb(&s->gb);
  3626. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  3627. h->delta_poc[1]= get_se_golomb(&s->gb);
  3628. }
  3629. init_poc(h);
  3630. if(h->pps.redundant_pic_cnt_present){
  3631. h->redundant_pic_count= get_ue_golomb(&s->gb);
  3632. }
  3633. //set defaults, might be overriden a few line later
  3634. h->ref_count[0]= h->pps.ref_count[0];
  3635. h->ref_count[1]= h->pps.ref_count[1];
  3636. if(h->slice_type == FF_P_TYPE || h->slice_type == FF_SP_TYPE || h->slice_type == FF_B_TYPE){
  3637. if(h->slice_type == FF_B_TYPE){
  3638. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  3639. }
  3640. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  3641. if(num_ref_idx_active_override_flag){
  3642. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  3643. if(h->slice_type==FF_B_TYPE)
  3644. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  3645. if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
  3646. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  3647. h->ref_count[0]= h->ref_count[1]= 1;
  3648. return -1;
  3649. }
  3650. }
  3651. if(h->slice_type == FF_B_TYPE)
  3652. h->list_count= 2;
  3653. else
  3654. h->list_count= 1;
  3655. }else
  3656. h->list_count= 0;
  3657. if(!default_ref_list_done){
  3658. fill_default_ref_list(h);
  3659. }
  3660. if(decode_ref_pic_list_reordering(h) < 0)
  3661. return -1;
  3662. if( (h->pps.weighted_pred && (h->slice_type == FF_P_TYPE || h->slice_type == FF_SP_TYPE ))
  3663. || (h->pps.weighted_bipred_idc==1 && h->slice_type==FF_B_TYPE ) )
  3664. pred_weight_table(h);
  3665. else if(h->pps.weighted_bipred_idc==2 && h->slice_type==FF_B_TYPE)
  3666. implicit_weight_table(h);
  3667. else
  3668. h->use_weight = 0;
  3669. if(h->nal_ref_idc)
  3670. decode_ref_pic_marking(h0, &s->gb);
  3671. if(FRAME_MBAFF)
  3672. fill_mbaff_ref_list(h);
  3673. if( h->slice_type != FF_I_TYPE && h->slice_type != FF_SI_TYPE && h->pps.cabac ){
  3674. tmp = get_ue_golomb(&s->gb);
  3675. if(tmp > 2){
  3676. av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
  3677. return -1;
  3678. }
  3679. h->cabac_init_idc= tmp;
  3680. }
  3681. h->last_qscale_diff = 0;
  3682. tmp = h->pps.init_qp + get_se_golomb(&s->gb);
  3683. if(tmp>51){
  3684. av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  3685. return -1;
  3686. }
  3687. s->qscale= tmp;
  3688. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  3689. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  3690. //FIXME qscale / qp ... stuff
  3691. if(h->slice_type == FF_SP_TYPE){
  3692. get_bits1(&s->gb); /* sp_for_switch_flag */
  3693. }
  3694. if(h->slice_type==FF_SP_TYPE || h->slice_type == FF_SI_TYPE){
  3695. get_se_golomb(&s->gb); /* slice_qs_delta */
  3696. }
  3697. h->deblocking_filter = 1;
  3698. h->slice_alpha_c0_offset = 0;
  3699. h->slice_beta_offset = 0;
  3700. if( h->pps.deblocking_filter_parameters_present ) {
  3701. tmp= get_ue_golomb(&s->gb);
  3702. if(tmp > 2){
  3703. av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
  3704. return -1;
  3705. }
  3706. h->deblocking_filter= tmp;
  3707. if(h->deblocking_filter < 2)
  3708. h->deblocking_filter^= 1; // 1<->0
  3709. if( h->deblocking_filter ) {
  3710. h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
  3711. h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
  3712. }
  3713. }
  3714. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  3715. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type != FF_I_TYPE)
  3716. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type == FF_B_TYPE)
  3717. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  3718. h->deblocking_filter= 0;
  3719. if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
  3720. if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
  3721. /* Cheat slightly for speed:
  3722. Do not bother to deblock across slices. */
  3723. h->deblocking_filter = 2;
  3724. } else {
  3725. h0->max_contexts = 1;
  3726. if(!h0->single_decode_warning) {
  3727. av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
  3728. h0->single_decode_warning = 1;
  3729. }
  3730. if(h != h0)
  3731. return 1; // deblocking switched inside frame
  3732. }
  3733. }
  3734. #if 0 //FMO
  3735. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  3736. slice_group_change_cycle= get_bits(&s->gb, ?);
  3737. #endif
  3738. h0->last_slice_type = slice_type;
  3739. h->slice_num = ++h0->current_slice;
  3740. h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  3741. h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
  3742. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  3743. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s\n",
  3744. h->slice_num,
  3745. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  3746. first_mb_in_slice,
  3747. av_get_pict_type_char(h->slice_type),
  3748. pps_id, h->frame_num,
  3749. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  3750. h->ref_count[0], h->ref_count[1],
  3751. s->qscale,
  3752. h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2,
  3753. h->use_weight,
  3754. h->use_weight==1 && h->use_weight_chroma ? "c" : ""
  3755. );
  3756. }
  3757. return 0;
  3758. }
  3759. /**
  3760. *
  3761. */
  3762. static inline int get_level_prefix(GetBitContext *gb){
  3763. unsigned int buf;
  3764. int log;
  3765. OPEN_READER(re, gb);
  3766. UPDATE_CACHE(re, gb);
  3767. buf=GET_CACHE(re, gb);
  3768. log= 32 - av_log2(buf);
  3769. #ifdef TRACE
  3770. print_bin(buf>>(32-log), log);
  3771. av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
  3772. #endif
  3773. LAST_SKIP_BITS(re, gb, log);
  3774. CLOSE_READER(re, gb);
  3775. return log-1;
  3776. }
  3777. static inline int get_dct8x8_allowed(H264Context *h){
  3778. int i;
  3779. for(i=0; i<4; i++){
  3780. if(!IS_SUB_8X8(h->sub_mb_type[i])
  3781. || (!h->sps.direct_8x8_inference_flag && IS_DIRECT(h->sub_mb_type[i])))
  3782. return 0;
  3783. }
  3784. return 1;
  3785. }
  3786. /**
  3787. * decodes a residual block.
  3788. * @param n block index
  3789. * @param scantable scantable
  3790. * @param max_coeff number of coefficients in the block
  3791. * @return <0 if an error occurred
  3792. */
  3793. static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){
  3794. MpegEncContext * const s = &h->s;
  3795. static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
  3796. int level[16];
  3797. int zeros_left, coeff_num, coeff_token, total_coeff, i, j, trailing_ones, run_before;
  3798. //FIXME put trailing_onex into the context
  3799. if(n == CHROMA_DC_BLOCK_INDEX){
  3800. coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
  3801. total_coeff= coeff_token>>2;
  3802. }else{
  3803. if(n == LUMA_DC_BLOCK_INDEX){
  3804. total_coeff= pred_non_zero_count(h, 0);
  3805. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  3806. total_coeff= coeff_token>>2;
  3807. }else{
  3808. total_coeff= pred_non_zero_count(h, n);
  3809. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  3810. total_coeff= coeff_token>>2;
  3811. h->non_zero_count_cache[ scan8[n] ]= total_coeff;
  3812. }
  3813. }
  3814. //FIXME set last_non_zero?
  3815. if(total_coeff==0)
  3816. return 0;
  3817. if(total_coeff > (unsigned)max_coeff) {
  3818. av_log(h->s.avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", s->mb_x, s->mb_y, total_coeff);
  3819. return -1;
  3820. }
  3821. trailing_ones= coeff_token&3;
  3822. tprintf(h->s.avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
  3823. assert(total_coeff<=16);
  3824. for(i=0; i<trailing_ones; i++){
  3825. level[i]= 1 - 2*get_bits1(gb);
  3826. }
  3827. if(i<total_coeff) {
  3828. int level_code, mask;
  3829. int suffix_length = total_coeff > 10 && trailing_ones < 3;
  3830. int prefix= get_level_prefix(gb);
  3831. //first coefficient has suffix_length equal to 0 or 1
  3832. if(prefix<14){ //FIXME try to build a large unified VLC table for all this
  3833. if(suffix_length)
  3834. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  3835. else
  3836. level_code= (prefix<<suffix_length); //part
  3837. }else if(prefix==14){
  3838. if(suffix_length)
  3839. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  3840. else
  3841. level_code= prefix + get_bits(gb, 4); //part
  3842. }else if(prefix==15){
  3843. level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
  3844. if(suffix_length==0) level_code+=15; //FIXME doesn't make (much)sense
  3845. }else{
  3846. av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
  3847. return -1;
  3848. }
  3849. if(trailing_ones < 3) level_code += 2;
  3850. suffix_length = 1;
  3851. if(level_code > 5)
  3852. suffix_length++;
  3853. mask= -(level_code&1);
  3854. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  3855. i++;
  3856. //remaining coefficients have suffix_length > 0
  3857. for(;i<total_coeff;i++) {
  3858. static const int suffix_limit[7] = {0,5,11,23,47,95,INT_MAX };
  3859. prefix = get_level_prefix(gb);
  3860. if(prefix<15){
  3861. level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
  3862. }else if(prefix==15){
  3863. level_code = (prefix<<suffix_length) + get_bits(gb, 12);
  3864. }else{
  3865. av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
  3866. return -1;
  3867. }
  3868. mask= -(level_code&1);
  3869. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  3870. if(level_code > suffix_limit[suffix_length])
  3871. suffix_length++;
  3872. }
  3873. }
  3874. if(total_coeff == max_coeff)
  3875. zeros_left=0;
  3876. else{
  3877. if(n == CHROMA_DC_BLOCK_INDEX)
  3878. zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
  3879. else
  3880. zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
  3881. }
  3882. coeff_num = zeros_left + total_coeff - 1;
  3883. j = scantable[coeff_num];
  3884. if(n > 24){
  3885. block[j] = level[0];
  3886. for(i=1;i<total_coeff;i++) {
  3887. if(zeros_left <= 0)
  3888. run_before = 0;
  3889. else if(zeros_left < 7){
  3890. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  3891. }else{
  3892. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  3893. }
  3894. zeros_left -= run_before;
  3895. coeff_num -= 1 + run_before;
  3896. j= scantable[ coeff_num ];
  3897. block[j]= level[i];
  3898. }
  3899. }else{
  3900. block[j] = (level[0] * qmul[j] + 32)>>6;
  3901. for(i=1;i<total_coeff;i++) {
  3902. if(zeros_left <= 0)
  3903. run_before = 0;
  3904. else if(zeros_left < 7){
  3905. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  3906. }else{
  3907. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  3908. }
  3909. zeros_left -= run_before;
  3910. coeff_num -= 1 + run_before;
  3911. j= scantable[ coeff_num ];
  3912. block[j]= (level[i] * qmul[j] + 32)>>6;
  3913. }
  3914. }
  3915. if(zeros_left<0){
  3916. av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
  3917. return -1;
  3918. }
  3919. return 0;
  3920. }
  3921. static void predict_field_decoding_flag(H264Context *h){
  3922. MpegEncContext * const s = &h->s;
  3923. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  3924. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  3925. ? s->current_picture.mb_type[mb_xy-1]
  3926. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  3927. ? s->current_picture.mb_type[mb_xy-s->mb_stride]
  3928. : 0;
  3929. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  3930. }
  3931. /**
  3932. * decodes a P_SKIP or B_SKIP macroblock
  3933. */
  3934. static void decode_mb_skip(H264Context *h){
  3935. MpegEncContext * const s = &h->s;
  3936. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  3937. int mb_type=0;
  3938. memset(h->non_zero_count[mb_xy], 0, 16);
  3939. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  3940. if(MB_FIELD)
  3941. mb_type|= MB_TYPE_INTERLACED;
  3942. if( h->slice_type == FF_B_TYPE )
  3943. {
  3944. // just for fill_caches. pred_direct_motion will set the real mb_type
  3945. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  3946. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  3947. pred_direct_motion(h, &mb_type);
  3948. mb_type|= MB_TYPE_SKIP;
  3949. }
  3950. else
  3951. {
  3952. int mx, my;
  3953. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  3954. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  3955. pred_pskip_motion(h, &mx, &my);
  3956. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  3957. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  3958. }
  3959. write_back_motion(h, mb_type);
  3960. s->current_picture.mb_type[mb_xy]= mb_type;
  3961. s->current_picture.qscale_table[mb_xy]= s->qscale;
  3962. h->slice_table[ mb_xy ]= h->slice_num;
  3963. h->prev_mb_skipped= 1;
  3964. }
  3965. /**
  3966. * decodes a macroblock
  3967. * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  3968. */
  3969. static int decode_mb_cavlc(H264Context *h){
  3970. MpegEncContext * const s = &h->s;
  3971. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  3972. int partition_count;
  3973. unsigned int mb_type, cbp;
  3974. int dct8x8_allowed= h->pps.transform_8x8_mode;
  3975. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?
  3976. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  3977. cbp = 0; /* avoid warning. FIXME: find a solution without slowing
  3978. down the code */
  3979. if(h->slice_type != FF_I_TYPE && h->slice_type != FF_SI_TYPE){
  3980. if(s->mb_skip_run==-1)
  3981. s->mb_skip_run= get_ue_golomb(&s->gb);
  3982. if (s->mb_skip_run--) {
  3983. if(FRAME_MBAFF && (s->mb_y&1) == 0){
  3984. if(s->mb_skip_run==0)
  3985. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  3986. else
  3987. predict_field_decoding_flag(h);
  3988. }
  3989. decode_mb_skip(h);
  3990. return 0;
  3991. }
  3992. }
  3993. if(FRAME_MBAFF){
  3994. if( (s->mb_y&1) == 0 )
  3995. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  3996. }else
  3997. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  3998. h->prev_mb_skipped= 0;
  3999. mb_type= get_ue_golomb(&s->gb);
  4000. if(h->slice_type == FF_B_TYPE){
  4001. if(mb_type < 23){
  4002. partition_count= b_mb_type_info[mb_type].partition_count;
  4003. mb_type= b_mb_type_info[mb_type].type;
  4004. }else{
  4005. mb_type -= 23;
  4006. goto decode_intra_mb;
  4007. }
  4008. }else if(h->slice_type == FF_P_TYPE /*|| h->slice_type == FF_SP_TYPE */){
  4009. if(mb_type < 5){
  4010. partition_count= p_mb_type_info[mb_type].partition_count;
  4011. mb_type= p_mb_type_info[mb_type].type;
  4012. }else{
  4013. mb_type -= 5;
  4014. goto decode_intra_mb;
  4015. }
  4016. }else{
  4017. assert(h->slice_type == FF_I_TYPE);
  4018. decode_intra_mb:
  4019. if(mb_type > 25){
  4020. av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
  4021. return -1;
  4022. }
  4023. partition_count=0;
  4024. cbp= i_mb_type_info[mb_type].cbp;
  4025. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  4026. mb_type= i_mb_type_info[mb_type].type;
  4027. }
  4028. if(MB_FIELD)
  4029. mb_type |= MB_TYPE_INTERLACED;
  4030. h->slice_table[ mb_xy ]= h->slice_num;
  4031. if(IS_INTRA_PCM(mb_type)){
  4032. unsigned int x, y;
  4033. // We assume these blocks are very rare so we do not optimize it.
  4034. align_get_bits(&s->gb);
  4035. // The pixels are stored in the same order as levels in h->mb array.
  4036. for(y=0; y<16; y++){
  4037. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  4038. for(x=0; x<16; x++){
  4039. tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4040. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= get_bits(&s->gb, 8);
  4041. }
  4042. }
  4043. for(y=0; y<8; y++){
  4044. const int index= 256 + 4*(y&3) + 32*(y>>2);
  4045. for(x=0; x<8; x++){
  4046. tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4047. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4048. }
  4049. }
  4050. for(y=0; y<8; y++){
  4051. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  4052. for(x=0; x<8; x++){
  4053. tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4054. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4055. }
  4056. }
  4057. // In deblocking, the quantizer is 0
  4058. s->current_picture.qscale_table[mb_xy]= 0;
  4059. h->chroma_qp[0] = get_chroma_qp(h, 0, 0);
  4060. h->chroma_qp[1] = get_chroma_qp(h, 1, 0);
  4061. // All coeffs are present
  4062. memset(h->non_zero_count[mb_xy], 16, 16);
  4063. s->current_picture.mb_type[mb_xy]= mb_type;
  4064. return 0;
  4065. }
  4066. if(MB_MBAFF){
  4067. h->ref_count[0] <<= 1;
  4068. h->ref_count[1] <<= 1;
  4069. }
  4070. fill_caches(h, mb_type, 0);
  4071. //mb_pred
  4072. if(IS_INTRA(mb_type)){
  4073. int pred_mode;
  4074. // init_top_left_availability(h);
  4075. if(IS_INTRA4x4(mb_type)){
  4076. int i;
  4077. int di = 1;
  4078. if(dct8x8_allowed && get_bits1(&s->gb)){
  4079. mb_type |= MB_TYPE_8x8DCT;
  4080. di = 4;
  4081. }
  4082. // fill_intra4x4_pred_table(h);
  4083. for(i=0; i<16; i+=di){
  4084. int mode= pred_intra_mode(h, i);
  4085. if(!get_bits1(&s->gb)){
  4086. const int rem_mode= get_bits(&s->gb, 3);
  4087. mode = rem_mode + (rem_mode >= mode);
  4088. }
  4089. if(di==4)
  4090. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  4091. else
  4092. h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
  4093. }
  4094. write_back_intra_pred_mode(h);
  4095. if( check_intra4x4_pred_mode(h) < 0)
  4096. return -1;
  4097. }else{
  4098. h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
  4099. if(h->intra16x16_pred_mode < 0)
  4100. return -1;
  4101. }
  4102. pred_mode= check_intra_pred_mode(h, get_ue_golomb(&s->gb));
  4103. if(pred_mode < 0)
  4104. return -1;
  4105. h->chroma_pred_mode= pred_mode;
  4106. }else if(partition_count==4){
  4107. int i, j, sub_partition_count[4], list, ref[2][4];
  4108. if(h->slice_type == FF_B_TYPE){
  4109. for(i=0; i<4; i++){
  4110. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4111. if(h->sub_mb_type[i] >=13){
  4112. av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4113. return -1;
  4114. }
  4115. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4116. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4117. }
  4118. if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
  4119. || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) {
  4120. pred_direct_motion(h, &mb_type);
  4121. h->ref_cache[0][scan8[4]] =
  4122. h->ref_cache[1][scan8[4]] =
  4123. h->ref_cache[0][scan8[12]] =
  4124. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  4125. }
  4126. }else{
  4127. assert(h->slice_type == FF_P_TYPE || h->slice_type == FF_SP_TYPE); //FIXME SP correct ?
  4128. for(i=0; i<4; i++){
  4129. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4130. if(h->sub_mb_type[i] >=4){
  4131. av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4132. return -1;
  4133. }
  4134. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4135. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4136. }
  4137. }
  4138. for(list=0; list<h->list_count; list++){
  4139. int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
  4140. for(i=0; i<4; i++){
  4141. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  4142. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4143. unsigned int tmp = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
  4144. if(tmp>=ref_count){
  4145. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
  4146. return -1;
  4147. }
  4148. ref[list][i]= tmp;
  4149. }else{
  4150. //FIXME
  4151. ref[list][i] = -1;
  4152. }
  4153. }
  4154. }
  4155. if(dct8x8_allowed)
  4156. dct8x8_allowed = get_dct8x8_allowed(h);
  4157. for(list=0; list<h->list_count; list++){
  4158. for(i=0; i<4; i++){
  4159. if(IS_DIRECT(h->sub_mb_type[i])) {
  4160. h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ];
  4161. continue;
  4162. }
  4163. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
  4164. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  4165. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4166. const int sub_mb_type= h->sub_mb_type[i];
  4167. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  4168. for(j=0; j<sub_partition_count[i]; j++){
  4169. int mx, my;
  4170. const int index= 4*i + block_width*j;
  4171. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  4172. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
  4173. mx += get_se_golomb(&s->gb);
  4174. my += get_se_golomb(&s->gb);
  4175. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4176. if(IS_SUB_8X8(sub_mb_type)){
  4177. mv_cache[ 1 ][0]=
  4178. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  4179. mv_cache[ 1 ][1]=
  4180. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  4181. }else if(IS_SUB_8X4(sub_mb_type)){
  4182. mv_cache[ 1 ][0]= mx;
  4183. mv_cache[ 1 ][1]= my;
  4184. }else if(IS_SUB_4X8(sub_mb_type)){
  4185. mv_cache[ 8 ][0]= mx;
  4186. mv_cache[ 8 ][1]= my;
  4187. }
  4188. mv_cache[ 0 ][0]= mx;
  4189. mv_cache[ 0 ][1]= my;
  4190. }
  4191. }else{
  4192. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  4193. p[0] = p[1]=
  4194. p[8] = p[9]= 0;
  4195. }
  4196. }
  4197. }
  4198. }else if(IS_DIRECT(mb_type)){
  4199. pred_direct_motion(h, &mb_type);
  4200. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  4201. }else{
  4202. int list, mx, my, i;
  4203. //FIXME we should set ref_idx_l? to 0 if we use that later ...
  4204. if(IS_16X16(mb_type)){
  4205. for(list=0; list<h->list_count; list++){
  4206. unsigned int val;
  4207. if(IS_DIR(mb_type, 0, list)){
  4208. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4209. if(val >= h->ref_count[list]){
  4210. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4211. return -1;
  4212. }
  4213. }else
  4214. val= LIST_NOT_USED&0xFF;
  4215. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
  4216. }
  4217. for(list=0; list<h->list_count; list++){
  4218. unsigned int val;
  4219. if(IS_DIR(mb_type, 0, list)){
  4220. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
  4221. mx += get_se_golomb(&s->gb);
  4222. my += get_se_golomb(&s->gb);
  4223. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4224. val= pack16to32(mx,my);
  4225. }else
  4226. val=0;
  4227. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, val, 4);
  4228. }
  4229. }
  4230. else if(IS_16X8(mb_type)){
  4231. for(list=0; list<h->list_count; list++){
  4232. for(i=0; i<2; i++){
  4233. unsigned int val;
  4234. if(IS_DIR(mb_type, i, list)){
  4235. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4236. if(val >= h->ref_count[list]){
  4237. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4238. return -1;
  4239. }
  4240. }else
  4241. val= LIST_NOT_USED&0xFF;
  4242. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
  4243. }
  4244. }
  4245. for(list=0; list<h->list_count; list++){
  4246. for(i=0; i<2; i++){
  4247. unsigned int val;
  4248. if(IS_DIR(mb_type, i, list)){
  4249. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
  4250. mx += get_se_golomb(&s->gb);
  4251. my += get_se_golomb(&s->gb);
  4252. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4253. val= pack16to32(mx,my);
  4254. }else
  4255. val=0;
  4256. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
  4257. }
  4258. }
  4259. }else{
  4260. assert(IS_8X16(mb_type));
  4261. for(list=0; list<h->list_count; list++){
  4262. for(i=0; i<2; i++){
  4263. unsigned int val;
  4264. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  4265. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4266. if(val >= h->ref_count[list]){
  4267. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4268. return -1;
  4269. }
  4270. }else
  4271. val= LIST_NOT_USED&0xFF;
  4272. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
  4273. }
  4274. }
  4275. for(list=0; list<h->list_count; list++){
  4276. for(i=0; i<2; i++){
  4277. unsigned int val;
  4278. if(IS_DIR(mb_type, i, list)){
  4279. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
  4280. mx += get_se_golomb(&s->gb);
  4281. my += get_se_golomb(&s->gb);
  4282. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4283. val= pack16to32(mx,my);
  4284. }else
  4285. val=0;
  4286. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
  4287. }
  4288. }
  4289. }
  4290. }
  4291. if(IS_INTER(mb_type))
  4292. write_back_motion(h, mb_type);
  4293. if(!IS_INTRA16x16(mb_type)){
  4294. cbp= get_ue_golomb(&s->gb);
  4295. if(cbp > 47){
  4296. av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, s->mb_x, s->mb_y);
  4297. return -1;
  4298. }
  4299. if(IS_INTRA4x4(mb_type))
  4300. cbp= golomb_to_intra4x4_cbp[cbp];
  4301. else
  4302. cbp= golomb_to_inter_cbp[cbp];
  4303. }
  4304. h->cbp = cbp;
  4305. if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
  4306. if(get_bits1(&s->gb))
  4307. mb_type |= MB_TYPE_8x8DCT;
  4308. }
  4309. s->current_picture.mb_type[mb_xy]= mb_type;
  4310. if(cbp || IS_INTRA16x16(mb_type)){
  4311. int i8x8, i4x4, chroma_idx;
  4312. int dquant;
  4313. GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
  4314. const uint8_t *scan, *scan8x8, *dc_scan;
  4315. // fill_non_zero_count_cache(h);
  4316. if(IS_INTERLACED(mb_type)){
  4317. scan8x8= s->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
  4318. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  4319. dc_scan= luma_dc_field_scan;
  4320. }else{
  4321. scan8x8= s->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
  4322. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  4323. dc_scan= luma_dc_zigzag_scan;
  4324. }
  4325. dquant= get_se_golomb(&s->gb);
  4326. if( dquant > 25 || dquant < -26 ){
  4327. av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
  4328. return -1;
  4329. }
  4330. s->qscale += dquant;
  4331. if(((unsigned)s->qscale) > 51){
  4332. if(s->qscale<0) s->qscale+= 52;
  4333. else s->qscale-= 52;
  4334. }
  4335. h->chroma_qp[0]= get_chroma_qp(h, 0, s->qscale);
  4336. h->chroma_qp[1]= get_chroma_qp(h, 1, s->qscale);
  4337. if(IS_INTRA16x16(mb_type)){
  4338. if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, h->dequant4_coeff[0][s->qscale], 16) < 0){
  4339. return -1; //FIXME continue if partitioned and other return -1 too
  4340. }
  4341. assert((cbp&15) == 0 || (cbp&15) == 15);
  4342. if(cbp&15){
  4343. for(i8x8=0; i8x8<4; i8x8++){
  4344. for(i4x4=0; i4x4<4; i4x4++){
  4345. const int index= i4x4 + 4*i8x8;
  4346. if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ){
  4347. return -1;
  4348. }
  4349. }
  4350. }
  4351. }else{
  4352. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  4353. }
  4354. }else{
  4355. for(i8x8=0; i8x8<4; i8x8++){
  4356. if(cbp & (1<<i8x8)){
  4357. if(IS_8x8DCT(mb_type)){
  4358. DCTELEM *buf = &h->mb[64*i8x8];
  4359. uint8_t *nnz;
  4360. for(i4x4=0; i4x4<4; i4x4++){
  4361. if( decode_residual(h, gb, buf, i4x4+4*i8x8, scan8x8+16*i4x4,
  4362. h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 16) <0 )
  4363. return -1;
  4364. }
  4365. nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4366. nnz[0] += nnz[1] + nnz[8] + nnz[9];
  4367. }else{
  4368. for(i4x4=0; i4x4<4; i4x4++){
  4369. const int index= i4x4 + 4*i8x8;
  4370. if( decode_residual(h, gb, h->mb + 16*index, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) <0 ){
  4371. return -1;
  4372. }
  4373. }
  4374. }
  4375. }else{
  4376. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4377. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  4378. }
  4379. }
  4380. }
  4381. if(cbp&0x30){
  4382. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  4383. if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, NULL, 4) < 0){
  4384. return -1;
  4385. }
  4386. }
  4387. if(cbp&0x20){
  4388. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  4389. const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[chroma_idx]];
  4390. for(i4x4=0; i4x4<4; i4x4++){
  4391. const int index= 16 + 4*chroma_idx + i4x4;
  4392. if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, qmul, 15) < 0){
  4393. return -1;
  4394. }
  4395. }
  4396. }
  4397. }else{
  4398. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4399. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4400. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4401. }
  4402. }else{
  4403. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4404. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  4405. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4406. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4407. }
  4408. s->current_picture.qscale_table[mb_xy]= s->qscale;
  4409. write_back_non_zero_count(h);
  4410. if(MB_MBAFF){
  4411. h->ref_count[0] >>= 1;
  4412. h->ref_count[1] >>= 1;
  4413. }
  4414. return 0;
  4415. }
  4416. static int decode_cabac_field_decoding_flag(H264Context *h) {
  4417. MpegEncContext * const s = &h->s;
  4418. const int mb_x = s->mb_x;
  4419. const int mb_y = s->mb_y & ~1;
  4420. const int mba_xy = mb_x - 1 + mb_y *s->mb_stride;
  4421. const int mbb_xy = mb_x + (mb_y-2)*s->mb_stride;
  4422. unsigned int ctx = 0;
  4423. if( h->slice_table[mba_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) ) {
  4424. ctx += 1;
  4425. }
  4426. if( h->slice_table[mbb_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) ) {
  4427. ctx += 1;
  4428. }
  4429. return get_cabac_noinline( &h->cabac, &h->cabac_state[70 + ctx] );
  4430. }
  4431. static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
  4432. uint8_t *state= &h->cabac_state[ctx_base];
  4433. int mb_type;
  4434. if(intra_slice){
  4435. MpegEncContext * const s = &h->s;
  4436. const int mba_xy = h->left_mb_xy[0];
  4437. const int mbb_xy = h->top_mb_xy;
  4438. int ctx=0;
  4439. if( h->slice_table[mba_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mba_xy] ) )
  4440. ctx++;
  4441. if( h->slice_table[mbb_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mbb_xy] ) )
  4442. ctx++;
  4443. if( get_cabac_noinline( &h->cabac, &state[ctx] ) == 0 )
  4444. return 0; /* I4x4 */
  4445. state += 2;
  4446. }else{
  4447. if( get_cabac_noinline( &h->cabac, &state[0] ) == 0 )
  4448. return 0; /* I4x4 */
  4449. }
  4450. if( get_cabac_terminate( &h->cabac ) )
  4451. return 25; /* PCM */
  4452. mb_type = 1; /* I16x16 */
  4453. mb_type += 12 * get_cabac_noinline( &h->cabac, &state[1] ); /* cbp_luma != 0 */
  4454. if( get_cabac_noinline( &h->cabac, &state[2] ) ) /* cbp_chroma */
  4455. mb_type += 4 + 4 * get_cabac_noinline( &h->cabac, &state[2+intra_slice] );
  4456. mb_type += 2 * get_cabac_noinline( &h->cabac, &state[3+intra_slice] );
  4457. mb_type += 1 * get_cabac_noinline( &h->cabac, &state[3+2*intra_slice] );
  4458. return mb_type;
  4459. }
  4460. static int decode_cabac_mb_type( H264Context *h ) {
  4461. MpegEncContext * const s = &h->s;
  4462. if( h->slice_type == FF_I_TYPE ) {
  4463. return decode_cabac_intra_mb_type(h, 3, 1);
  4464. } else if( h->slice_type == FF_P_TYPE ) {
  4465. if( get_cabac_noinline( &h->cabac, &h->cabac_state[14] ) == 0 ) {
  4466. /* P-type */
  4467. if( get_cabac_noinline( &h->cabac, &h->cabac_state[15] ) == 0 ) {
  4468. /* P_L0_D16x16, P_8x8 */
  4469. return 3 * get_cabac_noinline( &h->cabac, &h->cabac_state[16] );
  4470. } else {
  4471. /* P_L0_D8x16, P_L0_D16x8 */
  4472. return 2 - get_cabac_noinline( &h->cabac, &h->cabac_state[17] );
  4473. }
  4474. } else {
  4475. return decode_cabac_intra_mb_type(h, 17, 0) + 5;
  4476. }
  4477. } else if( h->slice_type == FF_B_TYPE ) {
  4478. const int mba_xy = h->left_mb_xy[0];
  4479. const int mbb_xy = h->top_mb_xy;
  4480. int ctx = 0;
  4481. int bits;
  4482. if( h->slice_table[mba_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mba_xy] ) )
  4483. ctx++;
  4484. if( h->slice_table[mbb_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mbb_xy] ) )
  4485. ctx++;
  4486. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+ctx] ) )
  4487. return 0; /* B_Direct_16x16 */
  4488. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+3] ) ) {
  4489. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
  4490. }
  4491. bits = get_cabac_noinline( &h->cabac, &h->cabac_state[27+4] ) << 3;
  4492. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 2;
  4493. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 1;
  4494. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  4495. if( bits < 8 )
  4496. return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
  4497. else if( bits == 13 ) {
  4498. return decode_cabac_intra_mb_type(h, 32, 0) + 23;
  4499. } else if( bits == 14 )
  4500. return 11; /* B_L1_L0_8x16 */
  4501. else if( bits == 15 )
  4502. return 22; /* B_8x8 */
  4503. bits= ( bits<<1 ) | get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  4504. return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
  4505. } else {
  4506. /* TODO SI/SP frames? */
  4507. return -1;
  4508. }
  4509. }
  4510. static int decode_cabac_mb_skip( H264Context *h, int mb_x, int mb_y ) {
  4511. MpegEncContext * const s = &h->s;
  4512. int mba_xy, mbb_xy;
  4513. int ctx = 0;
  4514. if(FRAME_MBAFF){ //FIXME merge with the stuff in fill_caches?
  4515. int mb_xy = mb_x + (mb_y&~1)*s->mb_stride;
  4516. mba_xy = mb_xy - 1;
  4517. if( (mb_y&1)
  4518. && h->slice_table[mba_xy] == h->slice_num
  4519. && MB_FIELD == !!IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) )
  4520. mba_xy += s->mb_stride;
  4521. if( MB_FIELD ){
  4522. mbb_xy = mb_xy - s->mb_stride;
  4523. if( !(mb_y&1)
  4524. && h->slice_table[mbb_xy] == h->slice_num
  4525. && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) )
  4526. mbb_xy -= s->mb_stride;
  4527. }else
  4528. mbb_xy = mb_x + (mb_y-1)*s->mb_stride;
  4529. }else{
  4530. int mb_xy = mb_x + mb_y*s->mb_stride;
  4531. mba_xy = mb_xy - 1;
  4532. mbb_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
  4533. }
  4534. if( h->slice_table[mba_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mba_xy] ))
  4535. ctx++;
  4536. if( h->slice_table[mbb_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ))
  4537. ctx++;
  4538. if( h->slice_type == FF_B_TYPE )
  4539. ctx += 13;
  4540. return get_cabac_noinline( &h->cabac, &h->cabac_state[11+ctx] );
  4541. }
  4542. static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
  4543. int mode = 0;
  4544. if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
  4545. return pred_mode;
  4546. mode += 1 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4547. mode += 2 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4548. mode += 4 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4549. if( mode >= pred_mode )
  4550. return mode + 1;
  4551. else
  4552. return mode;
  4553. }
  4554. static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
  4555. const int mba_xy = h->left_mb_xy[0];
  4556. const int mbb_xy = h->top_mb_xy;
  4557. int ctx = 0;
  4558. /* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */
  4559. if( h->slice_table[mba_xy] == h->slice_num && h->chroma_pred_mode_table[mba_xy] != 0 )
  4560. ctx++;
  4561. if( h->slice_table[mbb_xy] == h->slice_num && h->chroma_pred_mode_table[mbb_xy] != 0 )
  4562. ctx++;
  4563. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+ctx] ) == 0 )
  4564. return 0;
  4565. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4566. return 1;
  4567. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4568. return 2;
  4569. else
  4570. return 3;
  4571. }
  4572. static int decode_cabac_mb_cbp_luma( H264Context *h) {
  4573. int cbp_b, cbp_a, ctx, cbp = 0;
  4574. cbp_a = h->slice_table[h->left_mb_xy[0]] == h->slice_num ? h->left_cbp : -1;
  4575. cbp_b = h->slice_table[h->top_mb_xy] == h->slice_num ? h->top_cbp : -1;
  4576. ctx = !(cbp_a & 0x02) + 2 * !(cbp_b & 0x04);
  4577. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]);
  4578. ctx = !(cbp & 0x01) + 2 * !(cbp_b & 0x08);
  4579. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 1;
  4580. ctx = !(cbp_a & 0x08) + 2 * !(cbp & 0x01);
  4581. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 2;
  4582. ctx = !(cbp & 0x04) + 2 * !(cbp & 0x02);
  4583. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 3;
  4584. return cbp;
  4585. }
  4586. static int decode_cabac_mb_cbp_chroma( H264Context *h) {
  4587. int ctx;
  4588. int cbp_a, cbp_b;
  4589. cbp_a = (h->left_cbp>>4)&0x03;
  4590. cbp_b = (h-> top_cbp>>4)&0x03;
  4591. ctx = 0;
  4592. if( cbp_a > 0 ) ctx++;
  4593. if( cbp_b > 0 ) ctx += 2;
  4594. if( get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] ) == 0 )
  4595. return 0;
  4596. ctx = 4;
  4597. if( cbp_a == 2 ) ctx++;
  4598. if( cbp_b == 2 ) ctx += 2;
  4599. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] );
  4600. }
  4601. static int decode_cabac_mb_dqp( H264Context *h) {
  4602. int ctx = 0;
  4603. int val = 0;
  4604. if( h->last_qscale_diff != 0 )
  4605. ctx++;
  4606. while( get_cabac_noinline( &h->cabac, &h->cabac_state[60 + ctx] ) ) {
  4607. if( ctx < 2 )
  4608. ctx = 2;
  4609. else
  4610. ctx = 3;
  4611. val++;
  4612. if(val > 102) //prevent infinite loop
  4613. return INT_MIN;
  4614. }
  4615. if( val&0x01 )
  4616. return (val + 1)/2;
  4617. else
  4618. return -(val + 1)/2;
  4619. }
  4620. static int decode_cabac_p_mb_sub_type( H264Context *h ) {
  4621. if( get_cabac( &h->cabac, &h->cabac_state[21] ) )
  4622. return 0; /* 8x8 */
  4623. if( !get_cabac( &h->cabac, &h->cabac_state[22] ) )
  4624. return 1; /* 8x4 */
  4625. if( get_cabac( &h->cabac, &h->cabac_state[23] ) )
  4626. return 2; /* 4x8 */
  4627. return 3; /* 4x4 */
  4628. }
  4629. static int decode_cabac_b_mb_sub_type( H264Context *h ) {
  4630. int type;
  4631. if( !get_cabac( &h->cabac, &h->cabac_state[36] ) )
  4632. return 0; /* B_Direct_8x8 */
  4633. if( !get_cabac( &h->cabac, &h->cabac_state[37] ) )
  4634. return 1 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L0_8x8, B_L1_8x8 */
  4635. type = 3;
  4636. if( get_cabac( &h->cabac, &h->cabac_state[38] ) ) {
  4637. if( get_cabac( &h->cabac, &h->cabac_state[39] ) )
  4638. return 11 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L1_4x4, B_Bi_4x4 */
  4639. type += 4;
  4640. }
  4641. type += 2*get_cabac( &h->cabac, &h->cabac_state[39] );
  4642. type += get_cabac( &h->cabac, &h->cabac_state[39] );
  4643. return type;
  4644. }
  4645. static inline int decode_cabac_mb_transform_size( H264Context *h ) {
  4646. return get_cabac_noinline( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] );
  4647. }
  4648. static int decode_cabac_mb_ref( H264Context *h, int list, int n ) {
  4649. int refa = h->ref_cache[list][scan8[n] - 1];
  4650. int refb = h->ref_cache[list][scan8[n] - 8];
  4651. int ref = 0;
  4652. int ctx = 0;
  4653. if( h->slice_type == FF_B_TYPE) {
  4654. if( refa > 0 && !h->direct_cache[scan8[n] - 1] )
  4655. ctx++;
  4656. if( refb > 0 && !h->direct_cache[scan8[n] - 8] )
  4657. ctx += 2;
  4658. } else {
  4659. if( refa > 0 )
  4660. ctx++;
  4661. if( refb > 0 )
  4662. ctx += 2;
  4663. }
  4664. while( get_cabac( &h->cabac, &h->cabac_state[54+ctx] ) ) {
  4665. ref++;
  4666. if( ctx < 4 )
  4667. ctx = 4;
  4668. else
  4669. ctx = 5;
  4670. if(ref >= 32 /*h->ref_list[list]*/){
  4671. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_ref\n");
  4672. return 0; //FIXME we should return -1 and check the return everywhere
  4673. }
  4674. }
  4675. return ref;
  4676. }
  4677. static int decode_cabac_mb_mvd( H264Context *h, int list, int n, int l ) {
  4678. int amvd = abs( h->mvd_cache[list][scan8[n] - 1][l] ) +
  4679. abs( h->mvd_cache[list][scan8[n] - 8][l] );
  4680. int ctxbase = (l == 0) ? 40 : 47;
  4681. int ctx, mvd;
  4682. if( amvd < 3 )
  4683. ctx = 0;
  4684. else if( amvd > 32 )
  4685. ctx = 2;
  4686. else
  4687. ctx = 1;
  4688. if(!get_cabac(&h->cabac, &h->cabac_state[ctxbase+ctx]))
  4689. return 0;
  4690. mvd= 1;
  4691. ctx= 3;
  4692. while( mvd < 9 && get_cabac( &h->cabac, &h->cabac_state[ctxbase+ctx] ) ) {
  4693. mvd++;
  4694. if( ctx < 6 )
  4695. ctx++;
  4696. }
  4697. if( mvd >= 9 ) {
  4698. int k = 3;
  4699. while( get_cabac_bypass( &h->cabac ) ) {
  4700. mvd += 1 << k;
  4701. k++;
  4702. if(k>24){
  4703. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_mvd\n");
  4704. return INT_MIN;
  4705. }
  4706. }
  4707. while( k-- ) {
  4708. if( get_cabac_bypass( &h->cabac ) )
  4709. mvd += 1 << k;
  4710. }
  4711. }
  4712. return get_cabac_bypass_sign( &h->cabac, -mvd );
  4713. }
  4714. static inline int get_cabac_cbf_ctx( H264Context *h, int cat, int idx ) {
  4715. int nza, nzb;
  4716. int ctx = 0;
  4717. if( cat == 0 ) {
  4718. nza = h->left_cbp&0x100;
  4719. nzb = h-> top_cbp&0x100;
  4720. } else if( cat == 1 || cat == 2 ) {
  4721. nza = h->non_zero_count_cache[scan8[idx] - 1];
  4722. nzb = h->non_zero_count_cache[scan8[idx] - 8];
  4723. } else if( cat == 3 ) {
  4724. nza = (h->left_cbp>>(6+idx))&0x01;
  4725. nzb = (h-> top_cbp>>(6+idx))&0x01;
  4726. } else {
  4727. assert(cat == 4);
  4728. nza = h->non_zero_count_cache[scan8[16+idx] - 1];
  4729. nzb = h->non_zero_count_cache[scan8[16+idx] - 8];
  4730. }
  4731. if( nza > 0 )
  4732. ctx++;
  4733. if( nzb > 0 )
  4734. ctx += 2;
  4735. return ctx + 4 * cat;
  4736. }
  4737. DECLARE_ASM_CONST(1, const uint8_t, last_coeff_flag_offset_8x8[63]) = {
  4738. 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  4739. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  4740. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  4741. 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8
  4742. };
  4743. static void decode_cabac_residual( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff) {
  4744. const int mb_xy = h->s.mb_x + h->s.mb_y*h->s.mb_stride;
  4745. static const int significant_coeff_flag_offset[2][6] = {
  4746. { 105+0, 105+15, 105+29, 105+44, 105+47, 402 },
  4747. { 277+0, 277+15, 277+29, 277+44, 277+47, 436 }
  4748. };
  4749. static const int last_coeff_flag_offset[2][6] = {
  4750. { 166+0, 166+15, 166+29, 166+44, 166+47, 417 },
  4751. { 338+0, 338+15, 338+29, 338+44, 338+47, 451 }
  4752. };
  4753. static const int coeff_abs_level_m1_offset[6] = {
  4754. 227+0, 227+10, 227+20, 227+30, 227+39, 426
  4755. };
  4756. static const uint8_t significant_coeff_flag_offset_8x8[2][63] = {
  4757. { 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5,
  4758. 4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9,10, 9, 8, 7,
  4759. 7, 6,11,12,13,11, 6, 7, 8, 9,14,10, 9, 8, 6,11,
  4760. 12,13,11, 6, 9,14,10, 9,11,12,13,11,14,10,12 },
  4761. { 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 7, 8, 4, 5,
  4762. 6, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,11,12,11,
  4763. 9, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,13,13, 9,
  4764. 9,10,10, 8,13,13, 9, 9,10,10,14,14,14,14,14 }
  4765. };
  4766. int index[64];
  4767. int av_unused last;
  4768. int coeff_count = 0;
  4769. int abslevel1 = 1;
  4770. int abslevelgt1 = 0;
  4771. uint8_t *significant_coeff_ctx_base;
  4772. uint8_t *last_coeff_ctx_base;
  4773. uint8_t *abs_level_m1_ctx_base;
  4774. #ifndef ARCH_X86
  4775. #define CABAC_ON_STACK
  4776. #endif
  4777. #ifdef CABAC_ON_STACK
  4778. #define CC &cc
  4779. CABACContext cc;
  4780. cc.range = h->cabac.range;
  4781. cc.low = h->cabac.low;
  4782. cc.bytestream= h->cabac.bytestream;
  4783. #else
  4784. #define CC &h->cabac
  4785. #endif
  4786. /* cat: 0-> DC 16x16 n = 0
  4787. * 1-> AC 16x16 n = luma4x4idx
  4788. * 2-> Luma4x4 n = luma4x4idx
  4789. * 3-> DC Chroma n = iCbCr
  4790. * 4-> AC Chroma n = 4 * iCbCr + chroma4x4idx
  4791. * 5-> Luma8x8 n = 4 * luma8x8idx
  4792. */
  4793. /* read coded block flag */
  4794. if( cat != 5 ) {
  4795. if( get_cabac( CC, &h->cabac_state[85 + get_cabac_cbf_ctx( h, cat, n ) ] ) == 0 ) {
  4796. if( cat == 1 || cat == 2 )
  4797. h->non_zero_count_cache[scan8[n]] = 0;
  4798. else if( cat == 4 )
  4799. h->non_zero_count_cache[scan8[16+n]] = 0;
  4800. #ifdef CABAC_ON_STACK
  4801. h->cabac.range = cc.range ;
  4802. h->cabac.low = cc.low ;
  4803. h->cabac.bytestream= cc.bytestream;
  4804. #endif
  4805. return;
  4806. }
  4807. }
  4808. significant_coeff_ctx_base = h->cabac_state
  4809. + significant_coeff_flag_offset[MB_FIELD][cat];
  4810. last_coeff_ctx_base = h->cabac_state
  4811. + last_coeff_flag_offset[MB_FIELD][cat];
  4812. abs_level_m1_ctx_base = h->cabac_state
  4813. + coeff_abs_level_m1_offset[cat];
  4814. if( cat == 5 ) {
  4815. #define DECODE_SIGNIFICANCE( coefs, sig_off, last_off ) \
  4816. for(last= 0; last < coefs; last++) { \
  4817. uint8_t *sig_ctx = significant_coeff_ctx_base + sig_off; \
  4818. if( get_cabac( CC, sig_ctx )) { \
  4819. uint8_t *last_ctx = last_coeff_ctx_base + last_off; \
  4820. index[coeff_count++] = last; \
  4821. if( get_cabac( CC, last_ctx ) ) { \
  4822. last= max_coeff; \
  4823. break; \
  4824. } \
  4825. } \
  4826. }\
  4827. if( last == max_coeff -1 ) {\
  4828. index[coeff_count++] = last;\
  4829. }
  4830. const uint8_t *sig_off = significant_coeff_flag_offset_8x8[MB_FIELD];
  4831. #if defined(ARCH_X86) && defined(HAVE_7REGS) && defined(HAVE_EBX_AVAILABLE) && !defined(BROKEN_RELOCATIONS)
  4832. coeff_count= decode_significance_8x8_x86(CC, significant_coeff_ctx_base, index, sig_off);
  4833. } else {
  4834. coeff_count= decode_significance_x86(CC, max_coeff, significant_coeff_ctx_base, index);
  4835. #else
  4836. DECODE_SIGNIFICANCE( 63, sig_off[last], last_coeff_flag_offset_8x8[last] );
  4837. } else {
  4838. DECODE_SIGNIFICANCE( max_coeff - 1, last, last );
  4839. #endif
  4840. }
  4841. assert(coeff_count > 0);
  4842. if( cat == 0 )
  4843. h->cbp_table[mb_xy] |= 0x100;
  4844. else if( cat == 1 || cat == 2 )
  4845. h->non_zero_count_cache[scan8[n]] = coeff_count;
  4846. else if( cat == 3 )
  4847. h->cbp_table[mb_xy] |= 0x40 << n;
  4848. else if( cat == 4 )
  4849. h->non_zero_count_cache[scan8[16+n]] = coeff_count;
  4850. else {
  4851. assert( cat == 5 );
  4852. fill_rectangle(&h->non_zero_count_cache[scan8[n]], 2, 2, 8, coeff_count, 1);
  4853. }
  4854. for( coeff_count--; coeff_count >= 0; coeff_count-- ) {
  4855. uint8_t *ctx = (abslevelgt1 != 0 ? 0 : FFMIN( 4, abslevel1 )) + abs_level_m1_ctx_base;
  4856. int j= scantable[index[coeff_count]];
  4857. if( get_cabac( CC, ctx ) == 0 ) {
  4858. if( !qmul ) {
  4859. block[j] = get_cabac_bypass_sign( CC, -1);
  4860. }else{
  4861. block[j] = (get_cabac_bypass_sign( CC, -qmul[j]) + 32) >> 6;
  4862. }
  4863. abslevel1++;
  4864. } else {
  4865. int coeff_abs = 2;
  4866. ctx = 5 + FFMIN( 4, abslevelgt1 ) + abs_level_m1_ctx_base;
  4867. while( coeff_abs < 15 && get_cabac( CC, ctx ) ) {
  4868. coeff_abs++;
  4869. }
  4870. if( coeff_abs >= 15 ) {
  4871. int j = 0;
  4872. while( get_cabac_bypass( CC ) ) {
  4873. j++;
  4874. }
  4875. coeff_abs=1;
  4876. while( j-- ) {
  4877. coeff_abs += coeff_abs + get_cabac_bypass( CC );
  4878. }
  4879. coeff_abs+= 14;
  4880. }
  4881. if( !qmul ) {
  4882. if( get_cabac_bypass( CC ) ) block[j] = -coeff_abs;
  4883. else block[j] = coeff_abs;
  4884. }else{
  4885. if( get_cabac_bypass( CC ) ) block[j] = (-coeff_abs * qmul[j] + 32) >> 6;
  4886. else block[j] = ( coeff_abs * qmul[j] + 32) >> 6;
  4887. }
  4888. abslevelgt1++;
  4889. }
  4890. }
  4891. #ifdef CABAC_ON_STACK
  4892. h->cabac.range = cc.range ;
  4893. h->cabac.low = cc.low ;
  4894. h->cabac.bytestream= cc.bytestream;
  4895. #endif
  4896. }
  4897. static inline void compute_mb_neighbors(H264Context *h)
  4898. {
  4899. MpegEncContext * const s = &h->s;
  4900. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  4901. h->top_mb_xy = mb_xy - s->mb_stride;
  4902. h->left_mb_xy[0] = mb_xy - 1;
  4903. if(FRAME_MBAFF){
  4904. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  4905. const int top_pair_xy = pair_xy - s->mb_stride;
  4906. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  4907. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  4908. const int curr_mb_frame_flag = !MB_FIELD;
  4909. const int bottom = (s->mb_y & 1);
  4910. if (bottom
  4911. ? !curr_mb_frame_flag // bottom macroblock
  4912. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  4913. ) {
  4914. h->top_mb_xy -= s->mb_stride;
  4915. }
  4916. if (left_mb_frame_flag != curr_mb_frame_flag) {
  4917. h->left_mb_xy[0] = pair_xy - 1;
  4918. }
  4919. } else if (FIELD_PICTURE) {
  4920. h->top_mb_xy -= s->mb_stride;
  4921. }
  4922. return;
  4923. }
  4924. /**
  4925. * decodes a macroblock
  4926. * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  4927. */
  4928. static int decode_mb_cabac(H264Context *h) {
  4929. MpegEncContext * const s = &h->s;
  4930. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  4931. int mb_type, partition_count, cbp = 0;
  4932. int dct8x8_allowed= h->pps.transform_8x8_mode;
  4933. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?)
  4934. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  4935. if( h->slice_type != FF_I_TYPE && h->slice_type != FF_SI_TYPE ) {
  4936. int skip;
  4937. /* a skipped mb needs the aff flag from the following mb */
  4938. if( FRAME_MBAFF && s->mb_x==0 && (s->mb_y&1)==0 )
  4939. predict_field_decoding_flag(h);
  4940. if( FRAME_MBAFF && (s->mb_y&1)==1 && h->prev_mb_skipped )
  4941. skip = h->next_mb_skipped;
  4942. else
  4943. skip = decode_cabac_mb_skip( h, s->mb_x, s->mb_y );
  4944. /* read skip flags */
  4945. if( skip ) {
  4946. if( FRAME_MBAFF && (s->mb_y&1)==0 ){
  4947. s->current_picture.mb_type[mb_xy] = MB_TYPE_SKIP;
  4948. h->next_mb_skipped = decode_cabac_mb_skip( h, s->mb_x, s->mb_y+1 );
  4949. if(h->next_mb_skipped)
  4950. predict_field_decoding_flag(h);
  4951. else
  4952. h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  4953. }
  4954. decode_mb_skip(h);
  4955. h->cbp_table[mb_xy] = 0;
  4956. h->chroma_pred_mode_table[mb_xy] = 0;
  4957. h->last_qscale_diff = 0;
  4958. return 0;
  4959. }
  4960. }
  4961. if(FRAME_MBAFF){
  4962. if( (s->mb_y&1) == 0 )
  4963. h->mb_mbaff =
  4964. h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  4965. }else
  4966. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  4967. h->prev_mb_skipped = 0;
  4968. compute_mb_neighbors(h);
  4969. if( ( mb_type = decode_cabac_mb_type( h ) ) < 0 ) {
  4970. av_log( h->s.avctx, AV_LOG_ERROR, "decode_cabac_mb_type failed\n" );
  4971. return -1;
  4972. }
  4973. if( h->slice_type == FF_B_TYPE ) {
  4974. if( mb_type < 23 ){
  4975. partition_count= b_mb_type_info[mb_type].partition_count;
  4976. mb_type= b_mb_type_info[mb_type].type;
  4977. }else{
  4978. mb_type -= 23;
  4979. goto decode_intra_mb;
  4980. }
  4981. } else if( h->slice_type == FF_P_TYPE ) {
  4982. if( mb_type < 5) {
  4983. partition_count= p_mb_type_info[mb_type].partition_count;
  4984. mb_type= p_mb_type_info[mb_type].type;
  4985. } else {
  4986. mb_type -= 5;
  4987. goto decode_intra_mb;
  4988. }
  4989. } else {
  4990. assert(h->slice_type == FF_I_TYPE);
  4991. decode_intra_mb:
  4992. partition_count = 0;
  4993. cbp= i_mb_type_info[mb_type].cbp;
  4994. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  4995. mb_type= i_mb_type_info[mb_type].type;
  4996. }
  4997. if(MB_FIELD)
  4998. mb_type |= MB_TYPE_INTERLACED;
  4999. h->slice_table[ mb_xy ]= h->slice_num;
  5000. if(IS_INTRA_PCM(mb_type)) {
  5001. const uint8_t *ptr;
  5002. unsigned int x, y;
  5003. // We assume these blocks are very rare so we do not optimize it.
  5004. // FIXME The two following lines get the bitstream position in the cabac
  5005. // decode, I think it should be done by a function in cabac.h (or cabac.c).
  5006. ptr= h->cabac.bytestream;
  5007. if(h->cabac.low&0x1) ptr--;
  5008. if(CABAC_BITS==16){
  5009. if(h->cabac.low&0x1FF) ptr--;
  5010. }
  5011. // The pixels are stored in the same order as levels in h->mb array.
  5012. for(y=0; y<16; y++){
  5013. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  5014. for(x=0; x<16; x++){
  5015. tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", *ptr);
  5016. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= *ptr++;
  5017. }
  5018. }
  5019. for(y=0; y<8; y++){
  5020. const int index= 256 + 4*(y&3) + 32*(y>>2);
  5021. for(x=0; x<8; x++){
  5022. tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", *ptr);
  5023. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5024. }
  5025. }
  5026. for(y=0; y<8; y++){
  5027. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  5028. for(x=0; x<8; x++){
  5029. tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", *ptr);
  5030. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5031. }
  5032. }
  5033. ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr);
  5034. // All blocks are present
  5035. h->cbp_table[mb_xy] = 0x1ef;
  5036. h->chroma_pred_mode_table[mb_xy] = 0;
  5037. // In deblocking, the quantizer is 0
  5038. s->current_picture.qscale_table[mb_xy]= 0;
  5039. h->chroma_qp[0] = get_chroma_qp(h, 0, 0);
  5040. h->chroma_qp[1] = get_chroma_qp(h, 1, 0);
  5041. // All coeffs are present
  5042. memset(h->non_zero_count[mb_xy], 16, 16);
  5043. s->current_picture.mb_type[mb_xy]= mb_type;
  5044. return 0;
  5045. }
  5046. if(MB_MBAFF){
  5047. h->ref_count[0] <<= 1;
  5048. h->ref_count[1] <<= 1;
  5049. }
  5050. fill_caches(h, mb_type, 0);
  5051. if( IS_INTRA( mb_type ) ) {
  5052. int i, pred_mode;
  5053. if( IS_INTRA4x4( mb_type ) ) {
  5054. if( dct8x8_allowed && decode_cabac_mb_transform_size( h ) ) {
  5055. mb_type |= MB_TYPE_8x8DCT;
  5056. for( i = 0; i < 16; i+=4 ) {
  5057. int pred = pred_intra_mode( h, i );
  5058. int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5059. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  5060. }
  5061. } else {
  5062. for( i = 0; i < 16; i++ ) {
  5063. int pred = pred_intra_mode( h, i );
  5064. h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5065. //av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] );
  5066. }
  5067. }
  5068. write_back_intra_pred_mode(h);
  5069. if( check_intra4x4_pred_mode(h) < 0 ) return -1;
  5070. } else {
  5071. h->intra16x16_pred_mode= check_intra_pred_mode( h, h->intra16x16_pred_mode );
  5072. if( h->intra16x16_pred_mode < 0 ) return -1;
  5073. }
  5074. h->chroma_pred_mode_table[mb_xy] =
  5075. pred_mode = decode_cabac_mb_chroma_pre_mode( h );
  5076. pred_mode= check_intra_pred_mode( h, pred_mode );
  5077. if( pred_mode < 0 ) return -1;
  5078. h->chroma_pred_mode= pred_mode;
  5079. } else if( partition_count == 4 ) {
  5080. int i, j, sub_partition_count[4], list, ref[2][4];
  5081. if( h->slice_type == FF_B_TYPE ) {
  5082. for( i = 0; i < 4; i++ ) {
  5083. h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h );
  5084. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5085. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5086. }
  5087. if( IS_DIRECT(h->sub_mb_type[0] | h->sub_mb_type[1] |
  5088. h->sub_mb_type[2] | h->sub_mb_type[3]) ) {
  5089. pred_direct_motion(h, &mb_type);
  5090. h->ref_cache[0][scan8[4]] =
  5091. h->ref_cache[1][scan8[4]] =
  5092. h->ref_cache[0][scan8[12]] =
  5093. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  5094. if( h->ref_count[0] > 1 || h->ref_count[1] > 1 ) {
  5095. for( i = 0; i < 4; i++ )
  5096. if( IS_DIRECT(h->sub_mb_type[i]) )
  5097. fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, 1, 1 );
  5098. }
  5099. }
  5100. } else {
  5101. for( i = 0; i < 4; i++ ) {
  5102. h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h );
  5103. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5104. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5105. }
  5106. }
  5107. for( list = 0; list < h->list_count; list++ ) {
  5108. for( i = 0; i < 4; i++ ) {
  5109. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  5110. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  5111. if( h->ref_count[list] > 1 )
  5112. ref[list][i] = decode_cabac_mb_ref( h, list, 4*i );
  5113. else
  5114. ref[list][i] = 0;
  5115. } else {
  5116. ref[list][i] = -1;
  5117. }
  5118. h->ref_cache[list][ scan8[4*i]+1 ]=
  5119. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  5120. }
  5121. }
  5122. if(dct8x8_allowed)
  5123. dct8x8_allowed = get_dct8x8_allowed(h);
  5124. for(list=0; list<h->list_count; list++){
  5125. for(i=0; i<4; i++){
  5126. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ];
  5127. if(IS_DIRECT(h->sub_mb_type[i])){
  5128. fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 4);
  5129. continue;
  5130. }
  5131. if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
  5132. const int sub_mb_type= h->sub_mb_type[i];
  5133. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  5134. for(j=0; j<sub_partition_count[i]; j++){
  5135. int mpx, mpy;
  5136. int mx, my;
  5137. const int index= 4*i + block_width*j;
  5138. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  5139. int16_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ];
  5140. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mpx, &mpy);
  5141. mx = mpx + decode_cabac_mb_mvd( h, list, index, 0 );
  5142. my = mpy + decode_cabac_mb_mvd( h, list, index, 1 );
  5143. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5144. if(IS_SUB_8X8(sub_mb_type)){
  5145. mv_cache[ 1 ][0]=
  5146. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  5147. mv_cache[ 1 ][1]=
  5148. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  5149. mvd_cache[ 1 ][0]=
  5150. mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mx - mpx;
  5151. mvd_cache[ 1 ][1]=
  5152. mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= my - mpy;
  5153. }else if(IS_SUB_8X4(sub_mb_type)){
  5154. mv_cache[ 1 ][0]= mx;
  5155. mv_cache[ 1 ][1]= my;
  5156. mvd_cache[ 1 ][0]= mx - mpx;
  5157. mvd_cache[ 1 ][1]= my - mpy;
  5158. }else if(IS_SUB_4X8(sub_mb_type)){
  5159. mv_cache[ 8 ][0]= mx;
  5160. mv_cache[ 8 ][1]= my;
  5161. mvd_cache[ 8 ][0]= mx - mpx;
  5162. mvd_cache[ 8 ][1]= my - mpy;
  5163. }
  5164. mv_cache[ 0 ][0]= mx;
  5165. mv_cache[ 0 ][1]= my;
  5166. mvd_cache[ 0 ][0]= mx - mpx;
  5167. mvd_cache[ 0 ][1]= my - mpy;
  5168. }
  5169. }else{
  5170. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  5171. uint32_t *pd= (uint32_t *)&h->mvd_cache[list][ scan8[4*i] ][0];
  5172. p[0] = p[1] = p[8] = p[9] = 0;
  5173. pd[0]= pd[1]= pd[8]= pd[9]= 0;
  5174. }
  5175. }
  5176. }
  5177. } else if( IS_DIRECT(mb_type) ) {
  5178. pred_direct_motion(h, &mb_type);
  5179. fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  5180. fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  5181. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  5182. } else {
  5183. int list, mx, my, i, mpx, mpy;
  5184. if(IS_16X16(mb_type)){
  5185. for(list=0; list<h->list_count; list++){
  5186. if(IS_DIR(mb_type, 0, list)){
  5187. const int ref = h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 0 ) : 0;
  5188. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1);
  5189. }else
  5190. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1); //FIXME factorize and the other fill_rect below too
  5191. }
  5192. for(list=0; list<h->list_count; list++){
  5193. if(IS_DIR(mb_type, 0, list)){
  5194. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mpx, &mpy);
  5195. mx = mpx + decode_cabac_mb_mvd( h, list, 0, 0 );
  5196. my = mpy + decode_cabac_mb_mvd( h, list, 0, 1 );
  5197. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5198. fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5199. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  5200. }else
  5201. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4);
  5202. }
  5203. }
  5204. else if(IS_16X8(mb_type)){
  5205. for(list=0; list<h->list_count; list++){
  5206. for(i=0; i<2; i++){
  5207. if(IS_DIR(mb_type, i, list)){
  5208. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 8*i ) : 0;
  5209. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1);
  5210. }else
  5211. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
  5212. }
  5213. }
  5214. for(list=0; list<h->list_count; list++){
  5215. for(i=0; i<2; i++){
  5216. if(IS_DIR(mb_type, i, list)){
  5217. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mpx, &mpy);
  5218. mx = mpx + decode_cabac_mb_mvd( h, list, 8*i, 0 );
  5219. my = mpy + decode_cabac_mb_mvd( h, list, 8*i, 1 );
  5220. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5221. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx-mpx,my-mpy), 4);
  5222. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
  5223. }else{
  5224. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5225. fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5226. }
  5227. }
  5228. }
  5229. }else{
  5230. assert(IS_8X16(mb_type));
  5231. for(list=0; list<h->list_count; list++){
  5232. for(i=0; i<2; i++){
  5233. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  5234. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 4*i ) : 0;
  5235. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1);
  5236. }else
  5237. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
  5238. }
  5239. }
  5240. for(list=0; list<h->list_count; list++){
  5241. for(i=0; i<2; i++){
  5242. if(IS_DIR(mb_type, i, list)){
  5243. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mpx, &mpy);
  5244. mx = mpx + decode_cabac_mb_mvd( h, list, 4*i, 0 );
  5245. my = mpy + decode_cabac_mb_mvd( h, list, 4*i, 1 );
  5246. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5247. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5248. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
  5249. }else{
  5250. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5251. fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5252. }
  5253. }
  5254. }
  5255. }
  5256. }
  5257. if( IS_INTER( mb_type ) ) {
  5258. h->chroma_pred_mode_table[mb_xy] = 0;
  5259. write_back_motion( h, mb_type );
  5260. }
  5261. if( !IS_INTRA16x16( mb_type ) ) {
  5262. cbp = decode_cabac_mb_cbp_luma( h );
  5263. cbp |= decode_cabac_mb_cbp_chroma( h ) << 4;
  5264. }
  5265. h->cbp_table[mb_xy] = h->cbp = cbp;
  5266. if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) {
  5267. if( decode_cabac_mb_transform_size( h ) )
  5268. mb_type |= MB_TYPE_8x8DCT;
  5269. }
  5270. s->current_picture.mb_type[mb_xy]= mb_type;
  5271. if( cbp || IS_INTRA16x16( mb_type ) ) {
  5272. const uint8_t *scan, *scan8x8, *dc_scan;
  5273. const uint32_t *qmul;
  5274. int dqp;
  5275. if(IS_INTERLACED(mb_type)){
  5276. scan8x8= s->qscale ? h->field_scan8x8 : h->field_scan8x8_q0;
  5277. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  5278. dc_scan= luma_dc_field_scan;
  5279. }else{
  5280. scan8x8= s->qscale ? h->zigzag_scan8x8 : h->zigzag_scan8x8_q0;
  5281. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  5282. dc_scan= luma_dc_zigzag_scan;
  5283. }
  5284. h->last_qscale_diff = dqp = decode_cabac_mb_dqp( h );
  5285. if( dqp == INT_MIN ){
  5286. av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y);
  5287. return -1;
  5288. }
  5289. s->qscale += dqp;
  5290. if(((unsigned)s->qscale) > 51){
  5291. if(s->qscale<0) s->qscale+= 52;
  5292. else s->qscale-= 52;
  5293. }
  5294. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  5295. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  5296. if( IS_INTRA16x16( mb_type ) ) {
  5297. int i;
  5298. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 DC\n" );
  5299. decode_cabac_residual( h, h->mb, 0, 0, dc_scan, NULL, 16);
  5300. if( cbp&15 ) {
  5301. qmul = h->dequant4_coeff[0][s->qscale];
  5302. for( i = 0; i < 16; i++ ) {
  5303. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 AC:%d\n", i );
  5304. decode_cabac_residual(h, h->mb + 16*i, 1, i, scan + 1, qmul, 15);
  5305. }
  5306. } else {
  5307. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  5308. }
  5309. } else {
  5310. int i8x8, i4x4;
  5311. for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
  5312. if( cbp & (1<<i8x8) ) {
  5313. if( IS_8x8DCT(mb_type) ) {
  5314. decode_cabac_residual(h, h->mb + 64*i8x8, 5, 4*i8x8,
  5315. scan8x8, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 64);
  5316. } else {
  5317. qmul = h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale];
  5318. for( i4x4 = 0; i4x4 < 4; i4x4++ ) {
  5319. const int index = 4*i8x8 + i4x4;
  5320. //av_log( s->avctx, AV_LOG_ERROR, "Luma4x4: %d\n", index );
  5321. //START_TIMER
  5322. decode_cabac_residual(h, h->mb + 16*index, 2, index, scan, qmul, 16);
  5323. //STOP_TIMER("decode_residual")
  5324. }
  5325. }
  5326. } else {
  5327. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  5328. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  5329. }
  5330. }
  5331. }
  5332. if( cbp&0x30 ){
  5333. int c;
  5334. for( c = 0; c < 2; c++ ) {
  5335. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c );
  5336. decode_cabac_residual(h, h->mb + 256 + 16*4*c, 3, c, chroma_dc_scan, NULL, 4);
  5337. }
  5338. }
  5339. if( cbp&0x20 ) {
  5340. int c, i;
  5341. for( c = 0; c < 2; c++ ) {
  5342. qmul = h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[c]];
  5343. for( i = 0; i < 4; i++ ) {
  5344. const int index = 16 + 4 * c + i;
  5345. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 );
  5346. decode_cabac_residual(h, h->mb + 16*index, 4, index - 16, scan + 1, qmul, 15);
  5347. }
  5348. }
  5349. } else {
  5350. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5351. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5352. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5353. }
  5354. } else {
  5355. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5356. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  5357. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5358. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5359. h->last_qscale_diff = 0;
  5360. }
  5361. s->current_picture.qscale_table[mb_xy]= s->qscale;
  5362. write_back_non_zero_count(h);
  5363. if(MB_MBAFF){
  5364. h->ref_count[0] >>= 1;
  5365. h->ref_count[1] >>= 1;
  5366. }
  5367. return 0;
  5368. }
  5369. static void filter_mb_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5370. int i, d;
  5371. const int index_a = qp + h->slice_alpha_c0_offset;
  5372. const int alpha = (alpha_table+52)[index_a];
  5373. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5374. if( bS[0] < 4 ) {
  5375. int8_t tc[4];
  5376. for(i=0; i<4; i++)
  5377. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  5378. h->s.dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc);
  5379. } else {
  5380. /* 16px edge length, because bS=4 is triggered by being at
  5381. * the edge of an intra MB, so all 4 bS are the same */
  5382. for( d = 0; d < 16; d++ ) {
  5383. const int p0 = pix[-1];
  5384. const int p1 = pix[-2];
  5385. const int p2 = pix[-3];
  5386. const int q0 = pix[0];
  5387. const int q1 = pix[1];
  5388. const int q2 = pix[2];
  5389. if( FFABS( p0 - q0 ) < alpha &&
  5390. FFABS( p1 - p0 ) < beta &&
  5391. FFABS( q1 - q0 ) < beta ) {
  5392. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5393. if( FFABS( p2 - p0 ) < beta)
  5394. {
  5395. const int p3 = pix[-4];
  5396. /* p0', p1', p2' */
  5397. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5398. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5399. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5400. } else {
  5401. /* p0' */
  5402. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5403. }
  5404. if( FFABS( q2 - q0 ) < beta)
  5405. {
  5406. const int q3 = pix[3];
  5407. /* q0', q1', q2' */
  5408. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5409. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5410. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5411. } else {
  5412. /* q0' */
  5413. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5414. }
  5415. }else{
  5416. /* p0', q0' */
  5417. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5418. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5419. }
  5420. tprintf(h->s.avctx, "filter_mb_edgev i:%d d:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, p2, p1, p0, q0, q1, q2, pix[-2], pix[-1], pix[0], pix[1]);
  5421. }
  5422. pix += stride;
  5423. }
  5424. }
  5425. }
  5426. static void filter_mb_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5427. int i;
  5428. const int index_a = qp + h->slice_alpha_c0_offset;
  5429. const int alpha = (alpha_table+52)[index_a];
  5430. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5431. if( bS[0] < 4 ) {
  5432. int8_t tc[4];
  5433. for(i=0; i<4; i++)
  5434. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  5435. h->s.dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5436. } else {
  5437. h->s.dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5438. }
  5439. }
  5440. static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  5441. int i;
  5442. for( i = 0; i < 16; i++, pix += stride) {
  5443. int index_a;
  5444. int alpha;
  5445. int beta;
  5446. int qp_index;
  5447. int bS_index = (i >> 1);
  5448. if (!MB_FIELD) {
  5449. bS_index &= ~1;
  5450. bS_index |= (i & 1);
  5451. }
  5452. if( bS[bS_index] == 0 ) {
  5453. continue;
  5454. }
  5455. qp_index = MB_FIELD ? (i >> 3) : (i & 1);
  5456. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  5457. alpha = (alpha_table+52)[index_a];
  5458. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  5459. if( bS[bS_index] < 4 ) {
  5460. const int tc0 = (tc0_table+52)[index_a][bS[bS_index] - 1];
  5461. const int p0 = pix[-1];
  5462. const int p1 = pix[-2];
  5463. const int p2 = pix[-3];
  5464. const int q0 = pix[0];
  5465. const int q1 = pix[1];
  5466. const int q2 = pix[2];
  5467. if( FFABS( p0 - q0 ) < alpha &&
  5468. FFABS( p1 - p0 ) < beta &&
  5469. FFABS( q1 - q0 ) < beta ) {
  5470. int tc = tc0;
  5471. int i_delta;
  5472. if( FFABS( p2 - p0 ) < beta ) {
  5473. pix[-2] = p1 + av_clip( ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( p1 << 1 ) ) >> 1, -tc0, tc0 );
  5474. tc++;
  5475. }
  5476. if( FFABS( q2 - q0 ) < beta ) {
  5477. pix[1] = q1 + av_clip( ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( q1 << 1 ) ) >> 1, -tc0, tc0 );
  5478. tc++;
  5479. }
  5480. i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5481. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  5482. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  5483. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5484. }
  5485. }else{
  5486. const int p0 = pix[-1];
  5487. const int p1 = pix[-2];
  5488. const int p2 = pix[-3];
  5489. const int q0 = pix[0];
  5490. const int q1 = pix[1];
  5491. const int q2 = pix[2];
  5492. if( FFABS( p0 - q0 ) < alpha &&
  5493. FFABS( p1 - p0 ) < beta &&
  5494. FFABS( q1 - q0 ) < beta ) {
  5495. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5496. if( FFABS( p2 - p0 ) < beta)
  5497. {
  5498. const int p3 = pix[-4];
  5499. /* p0', p1', p2' */
  5500. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5501. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5502. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5503. } else {
  5504. /* p0' */
  5505. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5506. }
  5507. if( FFABS( q2 - q0 ) < beta)
  5508. {
  5509. const int q3 = pix[3];
  5510. /* q0', q1', q2' */
  5511. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5512. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5513. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5514. } else {
  5515. /* q0' */
  5516. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5517. }
  5518. }else{
  5519. /* p0', q0' */
  5520. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5521. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5522. }
  5523. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, p2, p1, p0, q0, q1, q2, pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5524. }
  5525. }
  5526. }
  5527. }
  5528. static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  5529. int i;
  5530. for( i = 0; i < 8; i++, pix += stride) {
  5531. int index_a;
  5532. int alpha;
  5533. int beta;
  5534. int qp_index;
  5535. int bS_index = i;
  5536. if( bS[bS_index] == 0 ) {
  5537. continue;
  5538. }
  5539. qp_index = MB_FIELD ? (i >> 2) : (i & 1);
  5540. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  5541. alpha = (alpha_table+52)[index_a];
  5542. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  5543. if( bS[bS_index] < 4 ) {
  5544. const int tc = (tc0_table+52)[index_a][bS[bS_index] - 1] + 1;
  5545. const int p0 = pix[-1];
  5546. const int p1 = pix[-2];
  5547. const int q0 = pix[0];
  5548. const int q1 = pix[1];
  5549. if( FFABS( p0 - q0 ) < alpha &&
  5550. FFABS( p1 - p0 ) < beta &&
  5551. FFABS( q1 - q0 ) < beta ) {
  5552. const int i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5553. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  5554. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  5555. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5556. }
  5557. }else{
  5558. const int p0 = pix[-1];
  5559. const int p1 = pix[-2];
  5560. const int q0 = pix[0];
  5561. const int q1 = pix[1];
  5562. if( FFABS( p0 - q0 ) < alpha &&
  5563. FFABS( p1 - p0 ) < beta &&
  5564. FFABS( q1 - q0 ) < beta ) {
  5565. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
  5566. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
  5567. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, pix[-3], p1, p0, q0, q1, pix[2], pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5568. }
  5569. }
  5570. }
  5571. }
  5572. static void filter_mb_edgeh( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5573. int i, d;
  5574. const int index_a = qp + h->slice_alpha_c0_offset;
  5575. const int alpha = (alpha_table+52)[index_a];
  5576. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5577. const int pix_next = stride;
  5578. if( bS[0] < 4 ) {
  5579. int8_t tc[4];
  5580. for(i=0; i<4; i++)
  5581. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  5582. h->s.dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc);
  5583. } else {
  5584. /* 16px edge length, see filter_mb_edgev */
  5585. for( d = 0; d < 16; d++ ) {
  5586. const int p0 = pix[-1*pix_next];
  5587. const int p1 = pix[-2*pix_next];
  5588. const int p2 = pix[-3*pix_next];
  5589. const int q0 = pix[0];
  5590. const int q1 = pix[1*pix_next];
  5591. const int q2 = pix[2*pix_next];
  5592. if( FFABS( p0 - q0 ) < alpha &&
  5593. FFABS( p1 - p0 ) < beta &&
  5594. FFABS( q1 - q0 ) < beta ) {
  5595. const int p3 = pix[-4*pix_next];
  5596. const int q3 = pix[ 3*pix_next];
  5597. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5598. if( FFABS( p2 - p0 ) < beta) {
  5599. /* p0', p1', p2' */
  5600. pix[-1*pix_next] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5601. pix[-2*pix_next] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5602. pix[-3*pix_next] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5603. } else {
  5604. /* p0' */
  5605. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5606. }
  5607. if( FFABS( q2 - q0 ) < beta) {
  5608. /* q0', q1', q2' */
  5609. pix[0*pix_next] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5610. pix[1*pix_next] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5611. pix[2*pix_next] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5612. } else {
  5613. /* q0' */
  5614. pix[0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5615. }
  5616. }else{
  5617. /* p0', q0' */
  5618. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5619. pix[ 0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5620. }
  5621. tprintf(h->s.avctx, "filter_mb_edgeh i:%d d:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, qp, index_a, alpha, beta, bS[i], p2, p1, p0, q0, q1, q2, pix[-2*pix_next], pix[-pix_next], pix[0], pix[pix_next]);
  5622. }
  5623. pix++;
  5624. }
  5625. }
  5626. }
  5627. static void filter_mb_edgech( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5628. int i;
  5629. const int index_a = qp + h->slice_alpha_c0_offset;
  5630. const int alpha = (alpha_table+52)[index_a];
  5631. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5632. if( bS[0] < 4 ) {
  5633. int8_t tc[4];
  5634. for(i=0; i<4; i++)
  5635. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  5636. h->s.dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5637. } else {
  5638. h->s.dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5639. }
  5640. }
  5641. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  5642. MpegEncContext * const s = &h->s;
  5643. int mb_y_firstrow = s->picture_structure == PICT_BOTTOM_FIELD;
  5644. int mb_xy, mb_type;
  5645. int qp, qp0, qp1, qpc, qpc0, qpc1, qp_thresh;
  5646. mb_xy = mb_x + mb_y*s->mb_stride;
  5647. if(mb_x==0 || mb_y==mb_y_firstrow || !s->dsp.h264_loop_filter_strength || h->pps.chroma_qp_diff ||
  5648. (h->deblocking_filter == 2 && (h->slice_table[mb_xy] != h->slice_table[h->top_mb_xy] ||
  5649. h->slice_table[mb_xy] != h->slice_table[mb_xy - 1]))) {
  5650. filter_mb(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize);
  5651. return;
  5652. }
  5653. assert(!FRAME_MBAFF);
  5654. mb_type = s->current_picture.mb_type[mb_xy];
  5655. qp = s->current_picture.qscale_table[mb_xy];
  5656. qp0 = s->current_picture.qscale_table[mb_xy-1];
  5657. qp1 = s->current_picture.qscale_table[h->top_mb_xy];
  5658. qpc = get_chroma_qp( h, 0, qp );
  5659. qpc0 = get_chroma_qp( h, 0, qp0 );
  5660. qpc1 = get_chroma_qp( h, 0, qp1 );
  5661. qp0 = (qp + qp0 + 1) >> 1;
  5662. qp1 = (qp + qp1 + 1) >> 1;
  5663. qpc0 = (qpc + qpc0 + 1) >> 1;
  5664. qpc1 = (qpc + qpc1 + 1) >> 1;
  5665. qp_thresh = 15 - h->slice_alpha_c0_offset;
  5666. if(qp <= qp_thresh && qp0 <= qp_thresh && qp1 <= qp_thresh &&
  5667. qpc <= qp_thresh && qpc0 <= qp_thresh && qpc1 <= qp_thresh)
  5668. return;
  5669. if( IS_INTRA(mb_type) ) {
  5670. int16_t bS4[4] = {4,4,4,4};
  5671. int16_t bS3[4] = {3,3,3,3};
  5672. int16_t *bSH = FIELD_PICTURE ? bS3 : bS4;
  5673. if( IS_8x8DCT(mb_type) ) {
  5674. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  5675. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  5676. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bSH, qp1 );
  5677. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  5678. } else {
  5679. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  5680. filter_mb_edgev( h, &img_y[4*1], linesize, bS3, qp );
  5681. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  5682. filter_mb_edgev( h, &img_y[4*3], linesize, bS3, qp );
  5683. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bSH, qp1 );
  5684. filter_mb_edgeh( h, &img_y[4*1*linesize], linesize, bS3, qp );
  5685. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  5686. filter_mb_edgeh( h, &img_y[4*3*linesize], linesize, bS3, qp );
  5687. }
  5688. filter_mb_edgecv( h, &img_cb[2*0], uvlinesize, bS4, qpc0 );
  5689. filter_mb_edgecv( h, &img_cb[2*2], uvlinesize, bS3, qpc );
  5690. filter_mb_edgecv( h, &img_cr[2*0], uvlinesize, bS4, qpc0 );
  5691. filter_mb_edgecv( h, &img_cr[2*2], uvlinesize, bS3, qpc );
  5692. filter_mb_edgech( h, &img_cb[2*0*uvlinesize], uvlinesize, bSH, qpc1 );
  5693. filter_mb_edgech( h, &img_cb[2*2*uvlinesize], uvlinesize, bS3, qpc );
  5694. filter_mb_edgech( h, &img_cr[2*0*uvlinesize], uvlinesize, bSH, qpc1 );
  5695. filter_mb_edgech( h, &img_cr[2*2*uvlinesize], uvlinesize, bS3, qpc );
  5696. return;
  5697. } else {
  5698. DECLARE_ALIGNED_8(int16_t, bS[2][4][4]);
  5699. uint64_t (*bSv)[4] = (uint64_t(*)[4])bS;
  5700. int edges;
  5701. if( IS_8x8DCT(mb_type) && (h->cbp&7) == 7 ) {
  5702. edges = 4;
  5703. bSv[0][0] = bSv[0][2] = bSv[1][0] = bSv[1][2] = 0x0002000200020002ULL;
  5704. } else {
  5705. int mask_edge1 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 :
  5706. (mb_type & MB_TYPE_16x8) ? 1 : 0;
  5707. int mask_edge0 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16))
  5708. && (s->current_picture.mb_type[mb_xy-1] & (MB_TYPE_16x16 | MB_TYPE_8x16))
  5709. ? 3 : 0;
  5710. int step = IS_8x8DCT(mb_type) ? 2 : 1;
  5711. edges = (mb_type & MB_TYPE_16x16) && !(h->cbp & 15) ? 1 : 4;
  5712. s->dsp.h264_loop_filter_strength( bS, h->non_zero_count_cache, h->ref_cache, h->mv_cache,
  5713. (h->slice_type == FF_B_TYPE), edges, step, mask_edge0, mask_edge1 );
  5714. }
  5715. if( IS_INTRA(s->current_picture.mb_type[mb_xy-1]) )
  5716. bSv[0][0] = 0x0004000400040004ULL;
  5717. if( IS_INTRA(s->current_picture.mb_type[h->top_mb_xy]) )
  5718. bSv[1][0] = FIELD_PICTURE ? 0x0003000300030003ULL : 0x0004000400040004ULL;
  5719. #define FILTER(hv,dir,edge)\
  5720. if(bSv[dir][edge]) {\
  5721. filter_mb_edge##hv( h, &img_y[4*edge*(dir?linesize:1)], linesize, bS[dir][edge], edge ? qp : qp##dir );\
  5722. if(!(edge&1)) {\
  5723. filter_mb_edgec##hv( h, &img_cb[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  5724. filter_mb_edgec##hv( h, &img_cr[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  5725. }\
  5726. }
  5727. if( edges == 1 ) {
  5728. FILTER(v,0,0);
  5729. FILTER(h,1,0);
  5730. } else if( IS_8x8DCT(mb_type) ) {
  5731. FILTER(v,0,0);
  5732. FILTER(v,0,2);
  5733. FILTER(h,1,0);
  5734. FILTER(h,1,2);
  5735. } else {
  5736. FILTER(v,0,0);
  5737. FILTER(v,0,1);
  5738. FILTER(v,0,2);
  5739. FILTER(v,0,3);
  5740. FILTER(h,1,0);
  5741. FILTER(h,1,1);
  5742. FILTER(h,1,2);
  5743. FILTER(h,1,3);
  5744. }
  5745. #undef FILTER
  5746. }
  5747. }
  5748. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  5749. MpegEncContext * const s = &h->s;
  5750. const int mb_xy= mb_x + mb_y*s->mb_stride;
  5751. const int mb_type = s->current_picture.mb_type[mb_xy];
  5752. const int mvy_limit = IS_INTERLACED(mb_type) ? 2 : 4;
  5753. int first_vertical_edge_done = 0;
  5754. int dir;
  5755. /* FIXME: A given frame may occupy more than one position in
  5756. * the reference list. So ref2frm should be populated with
  5757. * frame numbers, not indices. */
  5758. static const int ref2frm[34] = {-1,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
  5759. 16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31};
  5760. //for sufficiently low qp, filtering wouldn't do anything
  5761. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  5762. if(!FRAME_MBAFF){
  5763. int qp_thresh = 15 - h->slice_alpha_c0_offset - FFMAX(0, FFMAX(h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]));
  5764. int qp = s->current_picture.qscale_table[mb_xy];
  5765. if(qp <= qp_thresh
  5766. && (mb_x == 0 || ((qp + s->current_picture.qscale_table[mb_xy-1] + 1)>>1) <= qp_thresh)
  5767. && (mb_y == 0 || ((qp + s->current_picture.qscale_table[h->top_mb_xy] + 1)>>1) <= qp_thresh)){
  5768. return;
  5769. }
  5770. }
  5771. if (FRAME_MBAFF
  5772. // left mb is in picture
  5773. && h->slice_table[mb_xy-1] != 255
  5774. // and current and left pair do not have the same interlaced type
  5775. && (IS_INTERLACED(mb_type) != IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]))
  5776. // and left mb is in the same slice if deblocking_filter == 2
  5777. && (h->deblocking_filter!=2 || h->slice_table[mb_xy-1] == h->slice_table[mb_xy])) {
  5778. /* First vertical edge is different in MBAFF frames
  5779. * There are 8 different bS to compute and 2 different Qp
  5780. */
  5781. const int pair_xy = mb_x + (mb_y&~1)*s->mb_stride;
  5782. const int left_mb_xy[2] = { pair_xy-1, pair_xy-1+s->mb_stride };
  5783. int16_t bS[8];
  5784. int qp[2];
  5785. int bqp[2];
  5786. int rqp[2];
  5787. int mb_qp, mbn0_qp, mbn1_qp;
  5788. int i;
  5789. first_vertical_edge_done = 1;
  5790. if( IS_INTRA(mb_type) )
  5791. bS[0] = bS[1] = bS[2] = bS[3] = bS[4] = bS[5] = bS[6] = bS[7] = 4;
  5792. else {
  5793. for( i = 0; i < 8; i++ ) {
  5794. int mbn_xy = MB_FIELD ? left_mb_xy[i>>2] : left_mb_xy[i&1];
  5795. if( IS_INTRA( s->current_picture.mb_type[mbn_xy] ) )
  5796. bS[i] = 4;
  5797. else if( h->non_zero_count_cache[12+8*(i>>1)] != 0 ||
  5798. /* FIXME: with 8x8dct + cavlc, should check cbp instead of nnz */
  5799. h->non_zero_count[mbn_xy][MB_FIELD ? i&3 : (i>>2)+(mb_y&1)*2] )
  5800. bS[i] = 2;
  5801. else
  5802. bS[i] = 1;
  5803. }
  5804. }
  5805. mb_qp = s->current_picture.qscale_table[mb_xy];
  5806. mbn0_qp = s->current_picture.qscale_table[left_mb_xy[0]];
  5807. mbn1_qp = s->current_picture.qscale_table[left_mb_xy[1]];
  5808. qp[0] = ( mb_qp + mbn0_qp + 1 ) >> 1;
  5809. bqp[0] = ( get_chroma_qp( h, 0, mb_qp ) +
  5810. get_chroma_qp( h, 0, mbn0_qp ) + 1 ) >> 1;
  5811. rqp[0] = ( get_chroma_qp( h, 1, mb_qp ) +
  5812. get_chroma_qp( h, 1, mbn0_qp ) + 1 ) >> 1;
  5813. qp[1] = ( mb_qp + mbn1_qp + 1 ) >> 1;
  5814. bqp[1] = ( get_chroma_qp( h, 0, mb_qp ) +
  5815. get_chroma_qp( h, 0, mbn1_qp ) + 1 ) >> 1;
  5816. rqp[1] = ( get_chroma_qp( h, 1, mb_qp ) +
  5817. get_chroma_qp( h, 1, mbn1_qp ) + 1 ) >> 1;
  5818. /* Filter edge */
  5819. tprintf(s->avctx, "filter mb:%d/%d MBAFF, QPy:%d/%d, QPb:%d/%d QPr:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], bqp[0], bqp[1], rqp[0], rqp[1], linesize, uvlinesize);
  5820. { int i; for (i = 0; i < 8; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  5821. filter_mb_mbaff_edgev ( h, &img_y [0], linesize, bS, qp );
  5822. filter_mb_mbaff_edgecv( h, &img_cb[0], uvlinesize, bS, bqp );
  5823. filter_mb_mbaff_edgecv( h, &img_cr[0], uvlinesize, bS, rqp );
  5824. }
  5825. /* dir : 0 -> vertical edge, 1 -> horizontal edge */
  5826. for( dir = 0; dir < 2; dir++ )
  5827. {
  5828. int edge;
  5829. const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy;
  5830. const int mbm_type = s->current_picture.mb_type[mbm_xy];
  5831. int start = h->slice_table[mbm_xy] == 255 ? 1 : 0;
  5832. const int edges = (mb_type & (MB_TYPE_16x16|MB_TYPE_SKIP))
  5833. == (MB_TYPE_16x16|MB_TYPE_SKIP) ? 1 : 4;
  5834. // how often to recheck mv-based bS when iterating between edges
  5835. const int mask_edge = (mb_type & (MB_TYPE_16x16 | (MB_TYPE_16x8 << dir))) ? 3 :
  5836. (mb_type & (MB_TYPE_8x16 >> dir)) ? 1 : 0;
  5837. // how often to recheck mv-based bS when iterating along each edge
  5838. const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir));
  5839. if (first_vertical_edge_done) {
  5840. start = 1;
  5841. first_vertical_edge_done = 0;
  5842. }
  5843. if (h->deblocking_filter==2 && h->slice_table[mbm_xy] != h->slice_table[mb_xy])
  5844. start = 1;
  5845. if (FRAME_MBAFF && (dir == 1) && ((mb_y&1) == 0) && start == 0
  5846. && !IS_INTERLACED(mb_type)
  5847. && IS_INTERLACED(mbm_type)
  5848. ) {
  5849. // This is a special case in the norm where the filtering must
  5850. // be done twice (one each of the field) even if we are in a
  5851. // frame macroblock.
  5852. //
  5853. static const int nnz_idx[4] = {4,5,6,3};
  5854. unsigned int tmp_linesize = 2 * linesize;
  5855. unsigned int tmp_uvlinesize = 2 * uvlinesize;
  5856. int mbn_xy = mb_xy - 2 * s->mb_stride;
  5857. int qp;
  5858. int i, j;
  5859. int16_t bS[4];
  5860. for(j=0; j<2; j++, mbn_xy += s->mb_stride){
  5861. if( IS_INTRA(mb_type) ||
  5862. IS_INTRA(s->current_picture.mb_type[mbn_xy]) ) {
  5863. bS[0] = bS[1] = bS[2] = bS[3] = 3;
  5864. } else {
  5865. const uint8_t *mbn_nnz = h->non_zero_count[mbn_xy];
  5866. for( i = 0; i < 4; i++ ) {
  5867. if( h->non_zero_count_cache[scan8[0]+i] != 0 ||
  5868. mbn_nnz[nnz_idx[i]] != 0 )
  5869. bS[i] = 2;
  5870. else
  5871. bS[i] = 1;
  5872. }
  5873. }
  5874. // Do not use s->qscale as luma quantizer because it has not the same
  5875. // value in IPCM macroblocks.
  5876. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  5877. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
  5878. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  5879. filter_mb_edgeh( h, &img_y[j*linesize], tmp_linesize, bS, qp );
  5880. filter_mb_edgech( h, &img_cb[j*uvlinesize], tmp_uvlinesize, bS,
  5881. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5882. filter_mb_edgech( h, &img_cr[j*uvlinesize], tmp_uvlinesize, bS,
  5883. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5884. }
  5885. start = 1;
  5886. }
  5887. /* Calculate bS */
  5888. for( edge = start; edge < edges; edge++ ) {
  5889. /* mbn_xy: neighbor macroblock */
  5890. const int mbn_xy = edge > 0 ? mb_xy : mbm_xy;
  5891. const int mbn_type = s->current_picture.mb_type[mbn_xy];
  5892. int16_t bS[4];
  5893. int qp;
  5894. if( (edge&1) && IS_8x8DCT(mb_type) )
  5895. continue;
  5896. if( IS_INTRA(mb_type) ||
  5897. IS_INTRA(mbn_type) ) {
  5898. int value;
  5899. if (edge == 0) {
  5900. if ( (!IS_INTERLACED(mb_type) && !IS_INTERLACED(mbm_type))
  5901. || ((FRAME_MBAFF || (s->picture_structure != PICT_FRAME)) && (dir == 0))
  5902. ) {
  5903. value = 4;
  5904. } else {
  5905. value = 3;
  5906. }
  5907. } else {
  5908. value = 3;
  5909. }
  5910. bS[0] = bS[1] = bS[2] = bS[3] = value;
  5911. } else {
  5912. int i, l;
  5913. int mv_done;
  5914. if( edge & mask_edge ) {
  5915. bS[0] = bS[1] = bS[2] = bS[3] = 0;
  5916. mv_done = 1;
  5917. }
  5918. else if( FRAME_MBAFF && IS_INTERLACED(mb_type ^ mbn_type)) {
  5919. bS[0] = bS[1] = bS[2] = bS[3] = 1;
  5920. mv_done = 1;
  5921. }
  5922. else if( mask_par0 && (edge || (mbn_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) {
  5923. int b_idx= 8 + 4 + edge * (dir ? 8:1);
  5924. int bn_idx= b_idx - (dir ? 8:1);
  5925. int v = 0;
  5926. for( l = 0; !v && l < 1 + (h->slice_type == FF_B_TYPE); l++ ) {
  5927. v |= ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
  5928. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  5929. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit;
  5930. }
  5931. bS[0] = bS[1] = bS[2] = bS[3] = v;
  5932. mv_done = 1;
  5933. }
  5934. else
  5935. mv_done = 0;
  5936. for( i = 0; i < 4; i++ ) {
  5937. int x = dir == 0 ? edge : i;
  5938. int y = dir == 0 ? i : edge;
  5939. int b_idx= 8 + 4 + x + 8*y;
  5940. int bn_idx= b_idx - (dir ? 8:1);
  5941. if( h->non_zero_count_cache[b_idx] != 0 ||
  5942. h->non_zero_count_cache[bn_idx] != 0 ) {
  5943. bS[i] = 2;
  5944. }
  5945. else if(!mv_done)
  5946. {
  5947. bS[i] = 0;
  5948. for( l = 0; l < 1 + (h->slice_type == FF_B_TYPE); l++ ) {
  5949. if( ref2frm[h->ref_cache[l][b_idx]+2] != ref2frm[h->ref_cache[l][bn_idx]+2] ||
  5950. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  5951. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit ) {
  5952. bS[i] = 1;
  5953. break;
  5954. }
  5955. }
  5956. }
  5957. }
  5958. if(bS[0]+bS[1]+bS[2]+bS[3] == 0)
  5959. continue;
  5960. }
  5961. /* Filter edge */
  5962. // Do not use s->qscale as luma quantizer because it has not the same
  5963. // value in IPCM macroblocks.
  5964. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  5965. //tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp, s->current_picture.qscale_table[mbn_xy]);
  5966. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
  5967. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  5968. if( dir == 0 ) {
  5969. filter_mb_edgev( h, &img_y[4*edge], linesize, bS, qp );
  5970. if( (edge&1) == 0 ) {
  5971. filter_mb_edgecv( h, &img_cb[2*edge], uvlinesize, bS,
  5972. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5973. filter_mb_edgecv( h, &img_cr[2*edge], uvlinesize, bS,
  5974. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5975. }
  5976. } else {
  5977. filter_mb_edgeh( h, &img_y[4*edge*linesize], linesize, bS, qp );
  5978. if( (edge&1) == 0 ) {
  5979. filter_mb_edgech( h, &img_cb[2*edge*uvlinesize], uvlinesize, bS,
  5980. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5981. filter_mb_edgech( h, &img_cr[2*edge*uvlinesize], uvlinesize, bS,
  5982. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5983. }
  5984. }
  5985. }
  5986. }
  5987. }
  5988. static int decode_slice(struct AVCodecContext *avctx, H264Context *h){
  5989. MpegEncContext * const s = &h->s;
  5990. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  5991. s->mb_skip_run= -1;
  5992. if( h->pps.cabac ) {
  5993. int i;
  5994. /* realign */
  5995. align_get_bits( &s->gb );
  5996. /* init cabac */
  5997. ff_init_cabac_states( &h->cabac);
  5998. ff_init_cabac_decoder( &h->cabac,
  5999. s->gb.buffer + get_bits_count(&s->gb)/8,
  6000. ( s->gb.size_in_bits - get_bits_count(&s->gb) + 7)/8);
  6001. /* calculate pre-state */
  6002. for( i= 0; i < 460; i++ ) {
  6003. int pre;
  6004. if( h->slice_type == FF_I_TYPE )
  6005. pre = av_clip( ((cabac_context_init_I[i][0] * s->qscale) >>4 ) + cabac_context_init_I[i][1], 1, 126 );
  6006. else
  6007. pre = av_clip( ((cabac_context_init_PB[h->cabac_init_idc][i][0] * s->qscale) >>4 ) + cabac_context_init_PB[h->cabac_init_idc][i][1], 1, 126 );
  6008. if( pre <= 63 )
  6009. h->cabac_state[i] = 2 * ( 63 - pre ) + 0;
  6010. else
  6011. h->cabac_state[i] = 2 * ( pre - 64 ) + 1;
  6012. }
  6013. for(;;){
  6014. //START_TIMER
  6015. int ret = decode_mb_cabac(h);
  6016. int eos;
  6017. //STOP_TIMER("decode_mb_cabac")
  6018. if(ret>=0) hl_decode_mb(h);
  6019. if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  6020. s->mb_y++;
  6021. if(ret>=0) ret = decode_mb_cabac(h);
  6022. if(ret>=0) hl_decode_mb(h);
  6023. s->mb_y--;
  6024. }
  6025. eos = get_cabac_terminate( &h->cabac );
  6026. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  6027. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
  6028. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6029. return -1;
  6030. }
  6031. if( ++s->mb_x >= s->mb_width ) {
  6032. s->mb_x = 0;
  6033. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6034. ++s->mb_y;
  6035. if(FIELD_OR_MBAFF_PICTURE) {
  6036. ++s->mb_y;
  6037. }
  6038. }
  6039. if( eos || s->mb_y >= s->mb_height ) {
  6040. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6041. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6042. return 0;
  6043. }
  6044. }
  6045. } else {
  6046. for(;;){
  6047. int ret = decode_mb_cavlc(h);
  6048. if(ret>=0) hl_decode_mb(h);
  6049. if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
  6050. s->mb_y++;
  6051. ret = decode_mb_cavlc(h);
  6052. if(ret>=0) hl_decode_mb(h);
  6053. s->mb_y--;
  6054. }
  6055. if(ret<0){
  6056. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6057. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6058. return -1;
  6059. }
  6060. if(++s->mb_x >= s->mb_width){
  6061. s->mb_x=0;
  6062. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6063. ++s->mb_y;
  6064. if(FIELD_OR_MBAFF_PICTURE) {
  6065. ++s->mb_y;
  6066. }
  6067. if(s->mb_y >= s->mb_height){
  6068. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6069. if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
  6070. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6071. return 0;
  6072. }else{
  6073. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6074. return -1;
  6075. }
  6076. }
  6077. }
  6078. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  6079. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6080. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  6081. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6082. return 0;
  6083. }else{
  6084. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6085. return -1;
  6086. }
  6087. }
  6088. }
  6089. }
  6090. #if 0
  6091. for(;s->mb_y < s->mb_height; s->mb_y++){
  6092. for(;s->mb_x < s->mb_width; s->mb_x++){
  6093. int ret= decode_mb(h);
  6094. hl_decode_mb(h);
  6095. if(ret<0){
  6096. av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6097. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6098. return -1;
  6099. }
  6100. if(++s->mb_x >= s->mb_width){
  6101. s->mb_x=0;
  6102. if(++s->mb_y >= s->mb_height){
  6103. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6104. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6105. return 0;
  6106. }else{
  6107. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6108. return -1;
  6109. }
  6110. }
  6111. }
  6112. if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
  6113. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6114. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6115. return 0;
  6116. }else{
  6117. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6118. return -1;
  6119. }
  6120. }
  6121. }
  6122. s->mb_x=0;
  6123. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6124. }
  6125. #endif
  6126. return -1; //not reached
  6127. }
  6128. static int decode_unregistered_user_data(H264Context *h, int size){
  6129. MpegEncContext * const s = &h->s;
  6130. uint8_t user_data[16+256];
  6131. int e, build, i;
  6132. if(size<16)
  6133. return -1;
  6134. for(i=0; i<sizeof(user_data)-1 && i<size; i++){
  6135. user_data[i]= get_bits(&s->gb, 8);
  6136. }
  6137. user_data[i]= 0;
  6138. e= sscanf(user_data+16, "x264 - core %d"/*%s - H.264/MPEG-4 AVC codec - Copyleft 2005 - http://www.videolan.org/x264.html*/, &build);
  6139. if(e==1 && build>=0)
  6140. h->x264_build= build;
  6141. if(s->avctx->debug & FF_DEBUG_BUGS)
  6142. av_log(s->avctx, AV_LOG_DEBUG, "user data:\"%s\"\n", user_data+16);
  6143. for(; i<size; i++)
  6144. skip_bits(&s->gb, 8);
  6145. return 0;
  6146. }
  6147. static int decode_sei(H264Context *h){
  6148. MpegEncContext * const s = &h->s;
  6149. while(get_bits_count(&s->gb) + 16 < s->gb.size_in_bits){
  6150. int size, type;
  6151. type=0;
  6152. do{
  6153. type+= show_bits(&s->gb, 8);
  6154. }while(get_bits(&s->gb, 8) == 255);
  6155. size=0;
  6156. do{
  6157. size+= show_bits(&s->gb, 8);
  6158. }while(get_bits(&s->gb, 8) == 255);
  6159. switch(type){
  6160. case 5:
  6161. if(decode_unregistered_user_data(h, size) < 0)
  6162. return -1;
  6163. break;
  6164. default:
  6165. skip_bits(&s->gb, 8*size);
  6166. }
  6167. //FIXME check bits here
  6168. align_get_bits(&s->gb);
  6169. }
  6170. return 0;
  6171. }
  6172. static inline void decode_hrd_parameters(H264Context *h, SPS *sps){
  6173. MpegEncContext * const s = &h->s;
  6174. int cpb_count, i;
  6175. cpb_count = get_ue_golomb(&s->gb) + 1;
  6176. get_bits(&s->gb, 4); /* bit_rate_scale */
  6177. get_bits(&s->gb, 4); /* cpb_size_scale */
  6178. for(i=0; i<cpb_count; i++){
  6179. get_ue_golomb(&s->gb); /* bit_rate_value_minus1 */
  6180. get_ue_golomb(&s->gb); /* cpb_size_value_minus1 */
  6181. get_bits1(&s->gb); /* cbr_flag */
  6182. }
  6183. get_bits(&s->gb, 5); /* initial_cpb_removal_delay_length_minus1 */
  6184. get_bits(&s->gb, 5); /* cpb_removal_delay_length_minus1 */
  6185. get_bits(&s->gb, 5); /* dpb_output_delay_length_minus1 */
  6186. get_bits(&s->gb, 5); /* time_offset_length */
  6187. }
  6188. static inline int decode_vui_parameters(H264Context *h, SPS *sps){
  6189. MpegEncContext * const s = &h->s;
  6190. int aspect_ratio_info_present_flag;
  6191. unsigned int aspect_ratio_idc;
  6192. int nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag;
  6193. aspect_ratio_info_present_flag= get_bits1(&s->gb);
  6194. if( aspect_ratio_info_present_flag ) {
  6195. aspect_ratio_idc= get_bits(&s->gb, 8);
  6196. if( aspect_ratio_idc == EXTENDED_SAR ) {
  6197. sps->sar.num= get_bits(&s->gb, 16);
  6198. sps->sar.den= get_bits(&s->gb, 16);
  6199. }else if(aspect_ratio_idc < sizeof(pixel_aspect)/sizeof(*pixel_aspect)){
  6200. sps->sar= pixel_aspect[aspect_ratio_idc];
  6201. }else{
  6202. av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n");
  6203. return -1;
  6204. }
  6205. }else{
  6206. sps->sar.num=
  6207. sps->sar.den= 0;
  6208. }
  6209. // s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
  6210. if(get_bits1(&s->gb)){ /* overscan_info_present_flag */
  6211. get_bits1(&s->gb); /* overscan_appropriate_flag */
  6212. }
  6213. if(get_bits1(&s->gb)){ /* video_signal_type_present_flag */
  6214. get_bits(&s->gb, 3); /* video_format */
  6215. get_bits1(&s->gb); /* video_full_range_flag */
  6216. if(get_bits1(&s->gb)){ /* colour_description_present_flag */
  6217. get_bits(&s->gb, 8); /* colour_primaries */
  6218. get_bits(&s->gb, 8); /* transfer_characteristics */
  6219. get_bits(&s->gb, 8); /* matrix_coefficients */
  6220. }
  6221. }
  6222. if(get_bits1(&s->gb)){ /* chroma_location_info_present_flag */
  6223. get_ue_golomb(&s->gb); /* chroma_sample_location_type_top_field */
  6224. get_ue_golomb(&s->gb); /* chroma_sample_location_type_bottom_field */
  6225. }
  6226. sps->timing_info_present_flag = get_bits1(&s->gb);
  6227. if(sps->timing_info_present_flag){
  6228. sps->num_units_in_tick = get_bits_long(&s->gb, 32);
  6229. sps->time_scale = get_bits_long(&s->gb, 32);
  6230. sps->fixed_frame_rate_flag = get_bits1(&s->gb);
  6231. }
  6232. nal_hrd_parameters_present_flag = get_bits1(&s->gb);
  6233. if(nal_hrd_parameters_present_flag)
  6234. decode_hrd_parameters(h, sps);
  6235. vcl_hrd_parameters_present_flag = get_bits1(&s->gb);
  6236. if(vcl_hrd_parameters_present_flag)
  6237. decode_hrd_parameters(h, sps);
  6238. if(nal_hrd_parameters_present_flag || vcl_hrd_parameters_present_flag)
  6239. get_bits1(&s->gb); /* low_delay_hrd_flag */
  6240. get_bits1(&s->gb); /* pic_struct_present_flag */
  6241. sps->bitstream_restriction_flag = get_bits1(&s->gb);
  6242. if(sps->bitstream_restriction_flag){
  6243. unsigned int num_reorder_frames;
  6244. get_bits1(&s->gb); /* motion_vectors_over_pic_boundaries_flag */
  6245. get_ue_golomb(&s->gb); /* max_bytes_per_pic_denom */
  6246. get_ue_golomb(&s->gb); /* max_bits_per_mb_denom */
  6247. get_ue_golomb(&s->gb); /* log2_max_mv_length_horizontal */
  6248. get_ue_golomb(&s->gb); /* log2_max_mv_length_vertical */
  6249. num_reorder_frames= get_ue_golomb(&s->gb);
  6250. get_ue_golomb(&s->gb); /*max_dec_frame_buffering*/
  6251. if(num_reorder_frames > 16 /*max_dec_frame_buffering || max_dec_frame_buffering > 16*/){
  6252. av_log(h->s.avctx, AV_LOG_ERROR, "illegal num_reorder_frames %d\n", num_reorder_frames);
  6253. return -1;
  6254. }
  6255. sps->num_reorder_frames= num_reorder_frames;
  6256. }
  6257. return 0;
  6258. }
  6259. static void decode_scaling_list(H264Context *h, uint8_t *factors, int size,
  6260. const uint8_t *jvt_list, const uint8_t *fallback_list){
  6261. MpegEncContext * const s = &h->s;
  6262. int i, last = 8, next = 8;
  6263. const uint8_t *scan = size == 16 ? zigzag_scan : zigzag_scan8x8;
  6264. if(!get_bits1(&s->gb)) /* matrix not written, we use the predicted one */
  6265. memcpy(factors, fallback_list, size*sizeof(uint8_t));
  6266. else
  6267. for(i=0;i<size;i++){
  6268. if(next)
  6269. next = (last + get_se_golomb(&s->gb)) & 0xff;
  6270. if(!i && !next){ /* matrix not written, we use the preset one */
  6271. memcpy(factors, jvt_list, size*sizeof(uint8_t));
  6272. break;
  6273. }
  6274. last = factors[scan[i]] = next ? next : last;
  6275. }
  6276. }
  6277. static void decode_scaling_matrices(H264Context *h, SPS *sps, PPS *pps, int is_sps,
  6278. uint8_t (*scaling_matrix4)[16], uint8_t (*scaling_matrix8)[64]){
  6279. MpegEncContext * const s = &h->s;
  6280. int fallback_sps = !is_sps && sps->scaling_matrix_present;
  6281. const uint8_t *fallback[4] = {
  6282. fallback_sps ? sps->scaling_matrix4[0] : default_scaling4[0],
  6283. fallback_sps ? sps->scaling_matrix4[3] : default_scaling4[1],
  6284. fallback_sps ? sps->scaling_matrix8[0] : default_scaling8[0],
  6285. fallback_sps ? sps->scaling_matrix8[1] : default_scaling8[1]
  6286. };
  6287. if(get_bits1(&s->gb)){
  6288. sps->scaling_matrix_present |= is_sps;
  6289. decode_scaling_list(h,scaling_matrix4[0],16,default_scaling4[0],fallback[0]); // Intra, Y
  6290. decode_scaling_list(h,scaling_matrix4[1],16,default_scaling4[0],scaling_matrix4[0]); // Intra, Cr
  6291. decode_scaling_list(h,scaling_matrix4[2],16,default_scaling4[0],scaling_matrix4[1]); // Intra, Cb
  6292. decode_scaling_list(h,scaling_matrix4[3],16,default_scaling4[1],fallback[1]); // Inter, Y
  6293. decode_scaling_list(h,scaling_matrix4[4],16,default_scaling4[1],scaling_matrix4[3]); // Inter, Cr
  6294. decode_scaling_list(h,scaling_matrix4[5],16,default_scaling4[1],scaling_matrix4[4]); // Inter, Cb
  6295. if(is_sps || pps->transform_8x8_mode){
  6296. decode_scaling_list(h,scaling_matrix8[0],64,default_scaling8[0],fallback[2]); // Intra, Y
  6297. decode_scaling_list(h,scaling_matrix8[1],64,default_scaling8[1],fallback[3]); // Inter, Y
  6298. }
  6299. } else if(fallback_sps) {
  6300. memcpy(scaling_matrix4, sps->scaling_matrix4, 6*16*sizeof(uint8_t));
  6301. memcpy(scaling_matrix8, sps->scaling_matrix8, 2*64*sizeof(uint8_t));
  6302. }
  6303. }
  6304. /**
  6305. * Returns and optionally allocates SPS / PPS structures in the supplied array 'vec'
  6306. */
  6307. static void *
  6308. alloc_parameter_set(H264Context *h, void **vec, const unsigned int id, const unsigned int max,
  6309. const size_t size, const char *name)
  6310. {
  6311. if(id>=max) {
  6312. av_log(h->s.avctx, AV_LOG_ERROR, "%s_id (%d) out of range\n", name, id);
  6313. return NULL;
  6314. }
  6315. if(!vec[id]) {
  6316. vec[id] = av_mallocz(size);
  6317. if(vec[id] == NULL)
  6318. av_log(h->s.avctx, AV_LOG_ERROR, "cannot allocate memory for %s\n", name);
  6319. }
  6320. return vec[id];
  6321. }
  6322. static inline int decode_seq_parameter_set(H264Context *h){
  6323. MpegEncContext * const s = &h->s;
  6324. int profile_idc, level_idc;
  6325. unsigned int sps_id, tmp, mb_width, mb_height;
  6326. int i;
  6327. SPS *sps;
  6328. profile_idc= get_bits(&s->gb, 8);
  6329. get_bits1(&s->gb); //constraint_set0_flag
  6330. get_bits1(&s->gb); //constraint_set1_flag
  6331. get_bits1(&s->gb); //constraint_set2_flag
  6332. get_bits1(&s->gb); //constraint_set3_flag
  6333. get_bits(&s->gb, 4); // reserved
  6334. level_idc= get_bits(&s->gb, 8);
  6335. sps_id= get_ue_golomb(&s->gb);
  6336. sps = alloc_parameter_set(h, (void **)h->sps_buffers, sps_id, MAX_SPS_COUNT, sizeof(SPS), "sps");
  6337. if(sps == NULL)
  6338. return -1;
  6339. sps->profile_idc= profile_idc;
  6340. sps->level_idc= level_idc;
  6341. if(sps->profile_idc >= 100){ //high profile
  6342. if(get_ue_golomb(&s->gb) == 3) //chroma_format_idc
  6343. get_bits1(&s->gb); //residual_color_transform_flag
  6344. get_ue_golomb(&s->gb); //bit_depth_luma_minus8
  6345. get_ue_golomb(&s->gb); //bit_depth_chroma_minus8
  6346. sps->transform_bypass = get_bits1(&s->gb);
  6347. decode_scaling_matrices(h, sps, NULL, 1, sps->scaling_matrix4, sps->scaling_matrix8);
  6348. }else
  6349. sps->scaling_matrix_present = 0;
  6350. sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
  6351. sps->poc_type= get_ue_golomb(&s->gb);
  6352. if(sps->poc_type == 0){ //FIXME #define
  6353. sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
  6354. } else if(sps->poc_type == 1){//FIXME #define
  6355. sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
  6356. sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
  6357. sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
  6358. tmp= get_ue_golomb(&s->gb);
  6359. if(tmp >= sizeof(sps->offset_for_ref_frame) / sizeof(sps->offset_for_ref_frame[0])){
  6360. av_log(h->s.avctx, AV_LOG_ERROR, "poc_cycle_length overflow %u\n", tmp);
  6361. return -1;
  6362. }
  6363. sps->poc_cycle_length= tmp;
  6364. for(i=0; i<sps->poc_cycle_length; i++)
  6365. sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
  6366. }else if(sps->poc_type != 2){
  6367. av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
  6368. return -1;
  6369. }
  6370. tmp= get_ue_golomb(&s->gb);
  6371. if(tmp > MAX_PICTURE_COUNT-2 || tmp >= 32){
  6372. av_log(h->s.avctx, AV_LOG_ERROR, "too many reference frames\n");
  6373. return -1;
  6374. }
  6375. sps->ref_frame_count= tmp;
  6376. sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
  6377. mb_width= get_ue_golomb(&s->gb) + 1;
  6378. mb_height= get_ue_golomb(&s->gb) + 1;
  6379. if(mb_width >= INT_MAX/16 || mb_height >= INT_MAX/16 ||
  6380. avcodec_check_dimensions(NULL, 16*mb_width, 16*mb_height)){
  6381. av_log(h->s.avctx, AV_LOG_ERROR, "mb_width/height overflow\n");
  6382. return -1;
  6383. }
  6384. sps->mb_width = mb_width;
  6385. sps->mb_height= mb_height;
  6386. sps->frame_mbs_only_flag= get_bits1(&s->gb);
  6387. if(!sps->frame_mbs_only_flag)
  6388. sps->mb_aff= get_bits1(&s->gb);
  6389. else
  6390. sps->mb_aff= 0;
  6391. sps->direct_8x8_inference_flag= get_bits1(&s->gb);
  6392. #ifndef ALLOW_INTERLACE
  6393. if(sps->mb_aff)
  6394. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF support not included; enable it at compile-time.\n");
  6395. #endif
  6396. if(!sps->direct_8x8_inference_flag && sps->mb_aff)
  6397. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF + !direct_8x8_inference is not implemented\n");
  6398. sps->crop= get_bits1(&s->gb);
  6399. if(sps->crop){
  6400. sps->crop_left = get_ue_golomb(&s->gb);
  6401. sps->crop_right = get_ue_golomb(&s->gb);
  6402. sps->crop_top = get_ue_golomb(&s->gb);
  6403. sps->crop_bottom= get_ue_golomb(&s->gb);
  6404. if(sps->crop_left || sps->crop_top){
  6405. av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completely supported, this could look slightly wrong ...\n");
  6406. }
  6407. }else{
  6408. sps->crop_left =
  6409. sps->crop_right =
  6410. sps->crop_top =
  6411. sps->crop_bottom= 0;
  6412. }
  6413. sps->vui_parameters_present_flag= get_bits1(&s->gb);
  6414. if( sps->vui_parameters_present_flag )
  6415. decode_vui_parameters(h, sps);
  6416. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6417. av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%u profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n",
  6418. sps_id, sps->profile_idc, sps->level_idc,
  6419. sps->poc_type,
  6420. sps->ref_frame_count,
  6421. sps->mb_width, sps->mb_height,
  6422. sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
  6423. sps->direct_8x8_inference_flag ? "8B8" : "",
  6424. sps->crop_left, sps->crop_right,
  6425. sps->crop_top, sps->crop_bottom,
  6426. sps->vui_parameters_present_flag ? "VUI" : ""
  6427. );
  6428. }
  6429. return 0;
  6430. }
  6431. static void
  6432. build_qp_table(PPS *pps, int t, int index)
  6433. {
  6434. int i;
  6435. for(i = 0; i < 255; i++)
  6436. pps->chroma_qp_table[t][i & 0xff] = chroma_qp[av_clip(i + index, 0, 51)];
  6437. }
  6438. static inline int decode_picture_parameter_set(H264Context *h, int bit_length){
  6439. MpegEncContext * const s = &h->s;
  6440. unsigned int tmp, pps_id= get_ue_golomb(&s->gb);
  6441. PPS *pps;
  6442. pps = alloc_parameter_set(h, (void **)h->pps_buffers, pps_id, MAX_PPS_COUNT, sizeof(PPS), "pps");
  6443. if(pps == NULL)
  6444. return -1;
  6445. tmp= get_ue_golomb(&s->gb);
  6446. if(tmp>=MAX_SPS_COUNT || h->sps_buffers[tmp] == NULL){
  6447. av_log(h->s.avctx, AV_LOG_ERROR, "sps_id out of range\n");
  6448. return -1;
  6449. }
  6450. pps->sps_id= tmp;
  6451. pps->cabac= get_bits1(&s->gb);
  6452. pps->pic_order_present= get_bits1(&s->gb);
  6453. pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
  6454. if(pps->slice_group_count > 1 ){
  6455. pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
  6456. av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n");
  6457. switch(pps->mb_slice_group_map_type){
  6458. case 0:
  6459. #if 0
  6460. | for( i = 0; i <= num_slice_groups_minus1; i++ ) | | |
  6461. | run_length[ i ] |1 |ue(v) |
  6462. #endif
  6463. break;
  6464. case 2:
  6465. #if 0
  6466. | for( i = 0; i < num_slice_groups_minus1; i++ ) | | |
  6467. |{ | | |
  6468. | top_left_mb[ i ] |1 |ue(v) |
  6469. | bottom_right_mb[ i ] |1 |ue(v) |
  6470. | } | | |
  6471. #endif
  6472. break;
  6473. case 3:
  6474. case 4:
  6475. case 5:
  6476. #if 0
  6477. | slice_group_change_direction_flag |1 |u(1) |
  6478. | slice_group_change_rate_minus1 |1 |ue(v) |
  6479. #endif
  6480. break;
  6481. case 6:
  6482. #if 0
  6483. | slice_group_id_cnt_minus1 |1 |ue(v) |
  6484. | for( i = 0; i <= slice_group_id_cnt_minus1; i++ | | |
  6485. |) | | |
  6486. | slice_group_id[ i ] |1 |u(v) |
  6487. #endif
  6488. break;
  6489. }
  6490. }
  6491. pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  6492. pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  6493. if(pps->ref_count[0]-1 > 32-1 || pps->ref_count[1]-1 > 32-1){
  6494. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
  6495. pps->ref_count[0]= pps->ref_count[1]= 1;
  6496. return -1;
  6497. }
  6498. pps->weighted_pred= get_bits1(&s->gb);
  6499. pps->weighted_bipred_idc= get_bits(&s->gb, 2);
  6500. pps->init_qp= get_se_golomb(&s->gb) + 26;
  6501. pps->init_qs= get_se_golomb(&s->gb) + 26;
  6502. pps->chroma_qp_index_offset[0]= get_se_golomb(&s->gb);
  6503. pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
  6504. pps->constrained_intra_pred= get_bits1(&s->gb);
  6505. pps->redundant_pic_cnt_present = get_bits1(&s->gb);
  6506. pps->transform_8x8_mode= 0;
  6507. h->dequant_coeff_pps= -1; //contents of sps/pps can change even if id doesn't, so reinit
  6508. memset(pps->scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  6509. memset(pps->scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  6510. if(get_bits_count(&s->gb) < bit_length){
  6511. pps->transform_8x8_mode= get_bits1(&s->gb);
  6512. decode_scaling_matrices(h, h->sps_buffers[pps->sps_id], pps, 0, pps->scaling_matrix4, pps->scaling_matrix8);
  6513. pps->chroma_qp_index_offset[1]= get_se_golomb(&s->gb); //second_chroma_qp_index_offset
  6514. } else {
  6515. pps->chroma_qp_index_offset[1]= pps->chroma_qp_index_offset[0];
  6516. }
  6517. build_qp_table(pps, 0, pps->chroma_qp_index_offset[0]);
  6518. if(pps->chroma_qp_index_offset[0] != pps->chroma_qp_index_offset[1]) {
  6519. build_qp_table(pps, 1, pps->chroma_qp_index_offset[1]);
  6520. h->pps.chroma_qp_diff= 1;
  6521. } else
  6522. memcpy(pps->chroma_qp_table[1], pps->chroma_qp_table[0], 256);
  6523. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6524. av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%u sps:%u %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d/%d %s %s %s %s\n",
  6525. pps_id, pps->sps_id,
  6526. pps->cabac ? "CABAC" : "CAVLC",
  6527. pps->slice_group_count,
  6528. pps->ref_count[0], pps->ref_count[1],
  6529. pps->weighted_pred ? "weighted" : "",
  6530. pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset[0], pps->chroma_qp_index_offset[1],
  6531. pps->deblocking_filter_parameters_present ? "LPAR" : "",
  6532. pps->constrained_intra_pred ? "CONSTR" : "",
  6533. pps->redundant_pic_cnt_present ? "REDU" : "",
  6534. pps->transform_8x8_mode ? "8x8DCT" : ""
  6535. );
  6536. }
  6537. return 0;
  6538. }
  6539. /**
  6540. * Call decode_slice() for each context.
  6541. *
  6542. * @param h h264 master context
  6543. * @param context_count number of contexts to execute
  6544. */
  6545. static void execute_decode_slices(H264Context *h, int context_count){
  6546. MpegEncContext * const s = &h->s;
  6547. AVCodecContext * const avctx= s->avctx;
  6548. H264Context *hx;
  6549. int i;
  6550. if(context_count == 1) {
  6551. decode_slice(avctx, h);
  6552. } else {
  6553. for(i = 1; i < context_count; i++) {
  6554. hx = h->thread_context[i];
  6555. hx->s.error_resilience = avctx->error_resilience;
  6556. hx->s.error_count = 0;
  6557. }
  6558. avctx->execute(avctx, (void *)decode_slice,
  6559. (void **)h->thread_context, NULL, context_count);
  6560. /* pull back stuff from slices to master context */
  6561. hx = h->thread_context[context_count - 1];
  6562. s->mb_x = hx->s.mb_x;
  6563. s->mb_y = hx->s.mb_y;
  6564. s->dropable = hx->s.dropable;
  6565. s->picture_structure = hx->s.picture_structure;
  6566. for(i = 1; i < context_count; i++)
  6567. h->s.error_count += h->thread_context[i]->s.error_count;
  6568. }
  6569. }
  6570. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
  6571. MpegEncContext * const s = &h->s;
  6572. AVCodecContext * const avctx= s->avctx;
  6573. int buf_index=0;
  6574. H264Context *hx; ///< thread context
  6575. int context_count = 0;
  6576. h->max_contexts = avctx->thread_count;
  6577. #if 0
  6578. int i;
  6579. for(i=0; i<50; i++){
  6580. av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
  6581. }
  6582. #endif
  6583. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
  6584. h->current_slice = 0;
  6585. if (!s->first_field)
  6586. s->current_picture_ptr= NULL;
  6587. }
  6588. for(;;){
  6589. int consumed;
  6590. int dst_length;
  6591. int bit_length;
  6592. const uint8_t *ptr;
  6593. int i, nalsize = 0;
  6594. int err;
  6595. if(h->is_avc) {
  6596. if(buf_index >= buf_size) break;
  6597. nalsize = 0;
  6598. for(i = 0; i < h->nal_length_size; i++)
  6599. nalsize = (nalsize << 8) | buf[buf_index++];
  6600. if(nalsize <= 1 || (nalsize+buf_index > buf_size)){
  6601. if(nalsize == 1){
  6602. buf_index++;
  6603. continue;
  6604. }else{
  6605. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  6606. break;
  6607. }
  6608. }
  6609. } else {
  6610. // start code prefix search
  6611. for(; buf_index + 3 < buf_size; buf_index++){
  6612. // This should always succeed in the first iteration.
  6613. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  6614. break;
  6615. }
  6616. if(buf_index+3 >= buf_size) break;
  6617. buf_index+=3;
  6618. }
  6619. hx = h->thread_context[context_count];
  6620. ptr= decode_nal(hx, buf + buf_index, &dst_length, &consumed, h->is_avc ? nalsize : buf_size - buf_index);
  6621. if (ptr==NULL || dst_length < 0){
  6622. return -1;
  6623. }
  6624. while(ptr[dst_length - 1] == 0 && dst_length > 0)
  6625. dst_length--;
  6626. bit_length= !dst_length ? 0 : (8*dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1));
  6627. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  6628. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length);
  6629. }
  6630. if (h->is_avc && (nalsize != consumed)){
  6631. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  6632. consumed= nalsize;
  6633. }
  6634. buf_index += consumed;
  6635. if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME do not discard SEI id
  6636. ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  6637. continue;
  6638. again:
  6639. err = 0;
  6640. switch(hx->nal_unit_type){
  6641. case NAL_IDR_SLICE:
  6642. if (h->nal_unit_type != NAL_IDR_SLICE) {
  6643. av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
  6644. return -1;
  6645. }
  6646. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  6647. case NAL_SLICE:
  6648. init_get_bits(&hx->s.gb, ptr, bit_length);
  6649. hx->intra_gb_ptr=
  6650. hx->inter_gb_ptr= &hx->s.gb;
  6651. hx->s.data_partitioning = 0;
  6652. if((err = decode_slice_header(hx, h)))
  6653. break;
  6654. s->current_picture_ptr->key_frame|= (hx->nal_unit_type == NAL_IDR_SLICE);
  6655. if(hx->redundant_pic_count==0 && hx->s.hurry_up < 5
  6656. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  6657. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type!=FF_B_TYPE)
  6658. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type==FF_I_TYPE)
  6659. && avctx->skip_frame < AVDISCARD_ALL)
  6660. context_count++;
  6661. break;
  6662. case NAL_DPA:
  6663. init_get_bits(&hx->s.gb, ptr, bit_length);
  6664. hx->intra_gb_ptr=
  6665. hx->inter_gb_ptr= NULL;
  6666. hx->s.data_partitioning = 1;
  6667. err = decode_slice_header(hx, h);
  6668. break;
  6669. case NAL_DPB:
  6670. init_get_bits(&hx->intra_gb, ptr, bit_length);
  6671. hx->intra_gb_ptr= &hx->intra_gb;
  6672. break;
  6673. case NAL_DPC:
  6674. init_get_bits(&hx->inter_gb, ptr, bit_length);
  6675. hx->inter_gb_ptr= &hx->inter_gb;
  6676. if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
  6677. && s->context_initialized
  6678. && s->hurry_up < 5
  6679. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  6680. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type!=FF_B_TYPE)
  6681. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type==FF_I_TYPE)
  6682. && avctx->skip_frame < AVDISCARD_ALL)
  6683. context_count++;
  6684. break;
  6685. case NAL_SEI:
  6686. init_get_bits(&s->gb, ptr, bit_length);
  6687. decode_sei(h);
  6688. break;
  6689. case NAL_SPS:
  6690. init_get_bits(&s->gb, ptr, bit_length);
  6691. decode_seq_parameter_set(h);
  6692. if(s->flags& CODEC_FLAG_LOW_DELAY)
  6693. s->low_delay=1;
  6694. if(avctx->has_b_frames < 2)
  6695. avctx->has_b_frames= !s->low_delay;
  6696. break;
  6697. case NAL_PPS:
  6698. init_get_bits(&s->gb, ptr, bit_length);
  6699. decode_picture_parameter_set(h, bit_length);
  6700. break;
  6701. case NAL_AUD:
  6702. case NAL_END_SEQUENCE:
  6703. case NAL_END_STREAM:
  6704. case NAL_FILLER_DATA:
  6705. case NAL_SPS_EXT:
  6706. case NAL_AUXILIARY_SLICE:
  6707. break;
  6708. default:
  6709. av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", h->nal_unit_type, bit_length);
  6710. }
  6711. if(context_count == h->max_contexts) {
  6712. execute_decode_slices(h, context_count);
  6713. context_count = 0;
  6714. }
  6715. if (err < 0)
  6716. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  6717. else if(err == 1) {
  6718. /* Slice could not be decoded in parallel mode, copy down
  6719. * NAL unit stuff to context 0 and restart. Note that
  6720. * rbsp_buffer is not transfered, but since we no longer
  6721. * run in parallel mode this should not be an issue. */
  6722. h->nal_unit_type = hx->nal_unit_type;
  6723. h->nal_ref_idc = hx->nal_ref_idc;
  6724. hx = h;
  6725. goto again;
  6726. }
  6727. }
  6728. if(context_count)
  6729. execute_decode_slices(h, context_count);
  6730. return buf_index;
  6731. }
  6732. /**
  6733. * returns the number of bytes consumed for building the current frame
  6734. */
  6735. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  6736. if(s->flags&CODEC_FLAG_TRUNCATED){
  6737. pos -= s->parse_context.last_index;
  6738. if(pos<0) pos=0; // FIXME remove (unneeded?)
  6739. return pos;
  6740. }else{
  6741. if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
  6742. if(pos+10>buf_size) pos=buf_size; // oops ;)
  6743. return pos;
  6744. }
  6745. }
  6746. static int decode_frame(AVCodecContext *avctx,
  6747. void *data, int *data_size,
  6748. const uint8_t *buf, int buf_size)
  6749. {
  6750. H264Context *h = avctx->priv_data;
  6751. MpegEncContext *s = &h->s;
  6752. AVFrame *pict = data;
  6753. int buf_index;
  6754. s->flags= avctx->flags;
  6755. s->flags2= avctx->flags2;
  6756. /* no supplementary picture */
  6757. if (buf_size == 0) {
  6758. Picture *out;
  6759. int i, out_idx;
  6760. //FIXME factorize this with the output code below
  6761. out = h->delayed_pic[0];
  6762. out_idx = 0;
  6763. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame; i++)
  6764. if(h->delayed_pic[i]->poc < out->poc){
  6765. out = h->delayed_pic[i];
  6766. out_idx = i;
  6767. }
  6768. for(i=out_idx; h->delayed_pic[i]; i++)
  6769. h->delayed_pic[i] = h->delayed_pic[i+1];
  6770. if(out){
  6771. *data_size = sizeof(AVFrame);
  6772. *pict= *(AVFrame*)out;
  6773. }
  6774. return 0;
  6775. }
  6776. if(s->flags&CODEC_FLAG_TRUNCATED){
  6777. int next= ff_h264_find_frame_end(h, buf, buf_size);
  6778. if( ff_combine_frame(&s->parse_context, next, (const uint8_t **)&buf, &buf_size) < 0 )
  6779. return buf_size;
  6780. //printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index);
  6781. }
  6782. if(h->is_avc && !h->got_avcC) {
  6783. int i, cnt, nalsize;
  6784. unsigned char *p = avctx->extradata;
  6785. if(avctx->extradata_size < 7) {
  6786. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  6787. return -1;
  6788. }
  6789. if(*p != 1) {
  6790. av_log(avctx, AV_LOG_ERROR, "Unknown avcC version %d\n", *p);
  6791. return -1;
  6792. }
  6793. /* sps and pps in the avcC always have length coded with 2 bytes,
  6794. so put a fake nal_length_size = 2 while parsing them */
  6795. h->nal_length_size = 2;
  6796. // Decode sps from avcC
  6797. cnt = *(p+5) & 0x1f; // Number of sps
  6798. p += 6;
  6799. for (i = 0; i < cnt; i++) {
  6800. nalsize = AV_RB16(p) + 2;
  6801. if(decode_nal_units(h, p, nalsize) < 0) {
  6802. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  6803. return -1;
  6804. }
  6805. p += nalsize;
  6806. }
  6807. // Decode pps from avcC
  6808. cnt = *(p++); // Number of pps
  6809. for (i = 0; i < cnt; i++) {
  6810. nalsize = AV_RB16(p) + 2;
  6811. if(decode_nal_units(h, p, nalsize) != nalsize) {
  6812. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  6813. return -1;
  6814. }
  6815. p += nalsize;
  6816. }
  6817. // Now store right nal length size, that will be use to parse all other nals
  6818. h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
  6819. // Do not reparse avcC
  6820. h->got_avcC = 1;
  6821. }
  6822. if(avctx->frame_number==0 && !h->is_avc && s->avctx->extradata_size){
  6823. if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
  6824. return -1;
  6825. }
  6826. buf_index=decode_nal_units(h, buf, buf_size);
  6827. if(buf_index < 0)
  6828. return -1;
  6829. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
  6830. if (avctx->skip_frame >= AVDISCARD_NONREF || s->hurry_up) return 0;
  6831. av_log(avctx, AV_LOG_ERROR, "no frame!\n");
  6832. return -1;
  6833. }
  6834. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
  6835. Picture *out = s->current_picture_ptr;
  6836. Picture *cur = s->current_picture_ptr;
  6837. Picture *prev = h->delayed_output_pic;
  6838. int i, pics, cross_idr, out_of_order, out_idx;
  6839. s->mb_y= 0;
  6840. s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
  6841. s->current_picture_ptr->pict_type= s->pict_type;
  6842. h->prev_frame_num_offset= h->frame_num_offset;
  6843. h->prev_frame_num= h->frame_num;
  6844. if(!s->dropable) {
  6845. h->prev_poc_msb= h->poc_msb;
  6846. h->prev_poc_lsb= h->poc_lsb;
  6847. execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  6848. }
  6849. /*
  6850. * FIXME: Error handling code does not seem to support interlaced
  6851. * when slices span multiple rows
  6852. * The ff_er_add_slice calls don't work right for bottom
  6853. * fields; they cause massive erroneous error concealing
  6854. * Error marking covers both fields (top and bottom).
  6855. * This causes a mismatched s->error_count
  6856. * and a bad error table. Further, the error count goes to
  6857. * INT_MAX when called for bottom field, because mb_y is
  6858. * past end by one (callers fault) and resync_mb_y != 0
  6859. * causes problems for the first MB line, too.
  6860. */
  6861. if (!FIELD_PICTURE)
  6862. ff_er_frame_end(s);
  6863. MPV_frame_end(s);
  6864. if (s->first_field) {
  6865. /* Wait for second field. */
  6866. *data_size = 0;
  6867. } else {
  6868. cur->interlaced_frame = FIELD_OR_MBAFF_PICTURE;
  6869. /* Derive top_field_first from field pocs. */
  6870. cur->top_field_first = cur->field_poc[0] < cur->field_poc[1];
  6871. //FIXME do something with unavailable reference frames
  6872. #if 0 //decode order
  6873. *data_size = sizeof(AVFrame);
  6874. #else
  6875. /* Sort B-frames into display order */
  6876. if(h->sps.bitstream_restriction_flag
  6877. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  6878. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  6879. s->low_delay = 0;
  6880. }
  6881. pics = 0;
  6882. while(h->delayed_pic[pics]) pics++;
  6883. assert(pics+1 < sizeof(h->delayed_pic) / sizeof(h->delayed_pic[0]));
  6884. h->delayed_pic[pics++] = cur;
  6885. if(cur->reference == 0)
  6886. cur->reference = DELAYED_PIC_REF;
  6887. cross_idr = 0;
  6888. for(i=0; h->delayed_pic[i]; i++)
  6889. if(h->delayed_pic[i]->key_frame || h->delayed_pic[i]->poc==0)
  6890. cross_idr = 1;
  6891. out = h->delayed_pic[0];
  6892. out_idx = 0;
  6893. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame; i++)
  6894. if(h->delayed_pic[i]->poc < out->poc){
  6895. out = h->delayed_pic[i];
  6896. out_idx = i;
  6897. }
  6898. out_of_order = !cross_idr && prev && out->poc < prev->poc;
  6899. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  6900. { }
  6901. else if(prev && pics <= s->avctx->has_b_frames)
  6902. out = prev;
  6903. else if((out_of_order && pics-1 == s->avctx->has_b_frames && pics < 15)
  6904. || (s->low_delay &&
  6905. ((!cross_idr && prev && out->poc > prev->poc + 2)
  6906. || cur->pict_type == FF_B_TYPE)))
  6907. {
  6908. s->low_delay = 0;
  6909. s->avctx->has_b_frames++;
  6910. out = prev;
  6911. }
  6912. else if(out_of_order)
  6913. out = prev;
  6914. if(out_of_order || pics > s->avctx->has_b_frames){
  6915. for(i=out_idx; h->delayed_pic[i]; i++)
  6916. h->delayed_pic[i] = h->delayed_pic[i+1];
  6917. }
  6918. if(prev == out)
  6919. *data_size = 0;
  6920. else
  6921. *data_size = sizeof(AVFrame);
  6922. if(prev && prev != out && prev->reference == DELAYED_PIC_REF)
  6923. prev->reference = 0;
  6924. h->delayed_output_pic = out;
  6925. #endif
  6926. if(out)
  6927. *pict= *(AVFrame*)out;
  6928. else
  6929. av_log(avctx, AV_LOG_DEBUG, "no picture\n");
  6930. }
  6931. }
  6932. assert(pict->data[0] || !*data_size);
  6933. ff_print_debug_info(s, pict);
  6934. //printf("out %d\n", (int)pict->data[0]);
  6935. #if 0 //?
  6936. /* Return the Picture timestamp as the frame number */
  6937. /* we subtract 1 because it is added on utils.c */
  6938. avctx->frame_number = s->picture_number - 1;
  6939. #endif
  6940. return get_consumed_bytes(s, buf_index, buf_size);
  6941. }
  6942. #if 0
  6943. static inline void fill_mb_avail(H264Context *h){
  6944. MpegEncContext * const s = &h->s;
  6945. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  6946. if(s->mb_y){
  6947. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  6948. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  6949. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  6950. }else{
  6951. h->mb_avail[0]=
  6952. h->mb_avail[1]=
  6953. h->mb_avail[2]= 0;
  6954. }
  6955. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  6956. h->mb_avail[4]= 1; //FIXME move out
  6957. h->mb_avail[5]= 0; //FIXME move out
  6958. }
  6959. #endif
  6960. #ifdef TEST
  6961. #undef printf
  6962. #undef random
  6963. #define COUNT 8000
  6964. #define SIZE (COUNT*40)
  6965. int main(void){
  6966. int i;
  6967. uint8_t temp[SIZE];
  6968. PutBitContext pb;
  6969. GetBitContext gb;
  6970. // int int_temp[10000];
  6971. DSPContext dsp;
  6972. AVCodecContext avctx;
  6973. dsputil_init(&dsp, &avctx);
  6974. init_put_bits(&pb, temp, SIZE);
  6975. printf("testing unsigned exp golomb\n");
  6976. for(i=0; i<COUNT; i++){
  6977. START_TIMER
  6978. set_ue_golomb(&pb, i);
  6979. STOP_TIMER("set_ue_golomb");
  6980. }
  6981. flush_put_bits(&pb);
  6982. init_get_bits(&gb, temp, 8*SIZE);
  6983. for(i=0; i<COUNT; i++){
  6984. int j, s;
  6985. s= show_bits(&gb, 24);
  6986. START_TIMER
  6987. j= get_ue_golomb(&gb);
  6988. if(j != i){
  6989. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  6990. // return -1;
  6991. }
  6992. STOP_TIMER("get_ue_golomb");
  6993. }
  6994. init_put_bits(&pb, temp, SIZE);
  6995. printf("testing signed exp golomb\n");
  6996. for(i=0; i<COUNT; i++){
  6997. START_TIMER
  6998. set_se_golomb(&pb, i - COUNT/2);
  6999. STOP_TIMER("set_se_golomb");
  7000. }
  7001. flush_put_bits(&pb);
  7002. init_get_bits(&gb, temp, 8*SIZE);
  7003. for(i=0; i<COUNT; i++){
  7004. int j, s;
  7005. s= show_bits(&gb, 24);
  7006. START_TIMER
  7007. j= get_se_golomb(&gb);
  7008. if(j != i - COUNT/2){
  7009. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  7010. // return -1;
  7011. }
  7012. STOP_TIMER("get_se_golomb");
  7013. }
  7014. #if 0
  7015. printf("testing 4x4 (I)DCT\n");
  7016. DCTELEM block[16];
  7017. uint8_t src[16], ref[16];
  7018. uint64_t error= 0, max_error=0;
  7019. for(i=0; i<COUNT; i++){
  7020. int j;
  7021. // printf("%d %d %d\n", r1, r2, (r2-r1)*16);
  7022. for(j=0; j<16; j++){
  7023. ref[j]= random()%255;
  7024. src[j]= random()%255;
  7025. }
  7026. h264_diff_dct_c(block, src, ref, 4);
  7027. //normalize
  7028. for(j=0; j<16; j++){
  7029. // printf("%d ", block[j]);
  7030. block[j]= block[j]*4;
  7031. if(j&1) block[j]= (block[j]*4 + 2)/5;
  7032. if(j&4) block[j]= (block[j]*4 + 2)/5;
  7033. }
  7034. // printf("\n");
  7035. s->dsp.h264_idct_add(ref, block, 4);
  7036. /* for(j=0; j<16; j++){
  7037. printf("%d ", ref[j]);
  7038. }
  7039. printf("\n");*/
  7040. for(j=0; j<16; j++){
  7041. int diff= FFABS(src[j] - ref[j]);
  7042. error+= diff*diff;
  7043. max_error= FFMAX(max_error, diff);
  7044. }
  7045. }
  7046. printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
  7047. printf("testing quantizer\n");
  7048. for(qp=0; qp<52; qp++){
  7049. for(i=0; i<16; i++)
  7050. src1_block[i]= src2_block[i]= random()%255;
  7051. }
  7052. printf("Testing NAL layer\n");
  7053. uint8_t bitstream[COUNT];
  7054. uint8_t nal[COUNT*2];
  7055. H264Context h;
  7056. memset(&h, 0, sizeof(H264Context));
  7057. for(i=0; i<COUNT; i++){
  7058. int zeros= i;
  7059. int nal_length;
  7060. int consumed;
  7061. int out_length;
  7062. uint8_t *out;
  7063. int j;
  7064. for(j=0; j<COUNT; j++){
  7065. bitstream[j]= (random() % 255) + 1;
  7066. }
  7067. for(j=0; j<zeros; j++){
  7068. int pos= random() % COUNT;
  7069. while(bitstream[pos] == 0){
  7070. pos++;
  7071. pos %= COUNT;
  7072. }
  7073. bitstream[pos]=0;
  7074. }
  7075. START_TIMER
  7076. nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
  7077. if(nal_length<0){
  7078. printf("encoding failed\n");
  7079. return -1;
  7080. }
  7081. out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
  7082. STOP_TIMER("NAL")
  7083. if(out_length != COUNT){
  7084. printf("incorrect length %d %d\n", out_length, COUNT);
  7085. return -1;
  7086. }
  7087. if(consumed != nal_length){
  7088. printf("incorrect consumed length %d %d\n", nal_length, consumed);
  7089. return -1;
  7090. }
  7091. if(memcmp(bitstream, out, COUNT)){
  7092. printf("mismatch\n");
  7093. return -1;
  7094. }
  7095. }
  7096. #endif
  7097. printf("Testing RBSP\n");
  7098. return 0;
  7099. }
  7100. #endif /* TEST */
  7101. static av_cold int decode_end(AVCodecContext *avctx)
  7102. {
  7103. H264Context *h = avctx->priv_data;
  7104. MpegEncContext *s = &h->s;
  7105. av_freep(&h->rbsp_buffer[0]);
  7106. av_freep(&h->rbsp_buffer[1]);
  7107. free_tables(h); //FIXME cleanup init stuff perhaps
  7108. MPV_common_end(s);
  7109. // memset(h, 0, sizeof(H264Context));
  7110. return 0;
  7111. }
  7112. AVCodec h264_decoder = {
  7113. "h264",
  7114. CODEC_TYPE_VIDEO,
  7115. CODEC_ID_H264,
  7116. sizeof(H264Context),
  7117. decode_init,
  7118. NULL,
  7119. decode_end,
  7120. decode_frame,
  7121. /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED | CODEC_CAP_DELAY,
  7122. .flush= flush_dpb,
  7123. };
  7124. #include "svq3.c"