You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

849 lines
21KB

  1. /*
  2. * yuv2rgb.c, Software YUV to RGB coverter
  3. *
  4. * Copyright (C) 1999, Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
  5. * All Rights Reserved.
  6. *
  7. * Functions broken out from display_x11.c and several new modes
  8. * added by HÃ¥kan Hjort <d95hjort@dtek.chalmers.se>
  9. *
  10. * 15 & 16 bpp support by Franck Sicard <Franck.Sicard@solsoft.fr>
  11. *
  12. * This file is part of mpeg2dec, a free MPEG-2 video decoder
  13. *
  14. * mpeg2dec is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2, or (at your option)
  17. * any later version.
  18. *
  19. * mpeg2dec is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with GNU Make; see the file COPYING. If not, write to
  26. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  27. *
  28. * MMX/MMX2 Template stuff from Michael Niedermayer (michaelni@gmx.at) (needed for fast movntq support)
  29. * 1,4,8bpp support by Michael Niedermayer (michaelni@gmx.at)
  30. * context / deglobalize stuff by Michael Niedermayer
  31. */
  32. #include <stdio.h>
  33. #include <stdlib.h>
  34. #include <inttypes.h>
  35. #include <assert.h>
  36. #include "config.h"
  37. //#include "video_out.h"
  38. #include "rgb2rgb.h"
  39. #include "swscale.h"
  40. #include "swscale_internal.h"
  41. #include "mangle.h"
  42. #include "libvo/img_format.h" //FIXME try to reduce dependency of such stuff
  43. #ifdef HAVE_MLIB
  44. #include "yuv2rgb_mlib.c"
  45. #endif
  46. #define DITHER1XBPP // only for mmx
  47. const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
  48. { 1, 3, 1, 3, 1, 3, 1, 3, },
  49. { 2, 0, 2, 0, 2, 0, 2, 0, },
  50. };
  51. const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
  52. { 6, 2, 6, 2, 6, 2, 6, 2, },
  53. { 0, 4, 0, 4, 0, 4, 0, 4, },
  54. };
  55. const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
  56. { 17, 9, 23, 15, 16, 8, 22, 14, },
  57. { 5, 29, 3, 27, 4, 28, 2, 26, },
  58. { 21, 13, 19, 11, 20, 12, 18, 10, },
  59. { 0, 24, 6, 30, 1, 25, 7, 31, },
  60. { 16, 8, 22, 14, 17, 9, 23, 15, },
  61. { 4, 28, 2, 26, 5, 29, 3, 27, },
  62. { 20, 12, 18, 10, 21, 13, 19, 11, },
  63. { 1, 25, 7, 31, 0, 24, 6, 30, },
  64. };
  65. #if 0
  66. const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
  67. { 0, 48, 12, 60, 3, 51, 15, 63, },
  68. { 32, 16, 44, 28, 35, 19, 47, 31, },
  69. { 8, 56, 4, 52, 11, 59, 7, 55, },
  70. { 40, 24, 36, 20, 43, 27, 39, 23, },
  71. { 2, 50, 14, 62, 1, 49, 13, 61, },
  72. { 34, 18, 46, 30, 33, 17, 45, 29, },
  73. { 10, 58, 6, 54, 9, 57, 5, 53, },
  74. { 42, 26, 38, 22, 41, 25, 37, 21, },
  75. };
  76. #endif
  77. const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
  78. { 0, 55, 14, 68, 3, 58, 17, 72, },
  79. { 37, 18, 50, 32, 40, 22, 54, 35, },
  80. { 9, 64, 5, 59, 13, 67, 8, 63, },
  81. { 46, 27, 41, 23, 49, 31, 44, 26, },
  82. { 2, 57, 16, 71, 1, 56, 15, 70, },
  83. { 39, 21, 52, 34, 38, 19, 51, 33, },
  84. { 11, 66, 7, 62, 10, 65, 6, 60, },
  85. { 48, 30, 43, 25, 47, 29, 42, 24, },
  86. };
  87. #if 0
  88. const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
  89. { 68, 36, 92, 60, 66, 34, 90, 58, },
  90. { 20, 116, 12, 108, 18, 114, 10, 106, },
  91. { 84, 52, 76, 44, 82, 50, 74, 42, },
  92. { 0, 96, 24, 120, 6, 102, 30, 126, },
  93. { 64, 32, 88, 56, 70, 38, 94, 62, },
  94. { 16, 112, 8, 104, 22, 118, 14, 110, },
  95. { 80, 48, 72, 40, 86, 54, 78, 46, },
  96. { 4, 100, 28, 124, 2, 98, 26, 122, },
  97. };
  98. #endif
  99. #if 1
  100. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  101. {117, 62, 158, 103, 113, 58, 155, 100, },
  102. { 34, 199, 21, 186, 31, 196, 17, 182, },
  103. {144, 89, 131, 76, 141, 86, 127, 72, },
  104. { 0, 165, 41, 206, 10, 175, 52, 217, },
  105. {110, 55, 151, 96, 120, 65, 162, 107, },
  106. { 28, 193, 14, 179, 38, 203, 24, 189, },
  107. {138, 83, 124, 69, 148, 93, 134, 79, },
  108. { 7, 172, 48, 213, 3, 168, 45, 210, },
  109. };
  110. #elif 1
  111. // tries to correct a gamma of 1.5
  112. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  113. { 0, 143, 18, 200, 2, 156, 25, 215, },
  114. { 78, 28, 125, 64, 89, 36, 138, 74, },
  115. { 10, 180, 3, 161, 16, 195, 8, 175, },
  116. {109, 51, 93, 38, 121, 60, 105, 47, },
  117. { 1, 152, 23, 210, 0, 147, 20, 205, },
  118. { 85, 33, 134, 71, 81, 30, 130, 67, },
  119. { 14, 190, 6, 171, 12, 185, 5, 166, },
  120. {117, 57, 101, 44, 113, 54, 97, 41, },
  121. };
  122. #elif 1
  123. // tries to correct a gamma of 2.0
  124. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  125. { 0, 124, 8, 193, 0, 140, 12, 213, },
  126. { 55, 14, 104, 42, 66, 19, 119, 52, },
  127. { 3, 168, 1, 145, 6, 187, 3, 162, },
  128. { 86, 31, 70, 21, 99, 39, 82, 28, },
  129. { 0, 134, 11, 206, 0, 129, 9, 200, },
  130. { 62, 17, 114, 48, 58, 16, 109, 45, },
  131. { 5, 181, 2, 157, 4, 175, 1, 151, },
  132. { 95, 36, 78, 26, 90, 34, 74, 24, },
  133. };
  134. #else
  135. // tries to correct a gamma of 2.5
  136. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  137. { 0, 107, 3, 187, 0, 125, 6, 212, },
  138. { 39, 7, 86, 28, 49, 11, 102, 36, },
  139. { 1, 158, 0, 131, 3, 180, 1, 151, },
  140. { 68, 19, 52, 12, 81, 25, 64, 17, },
  141. { 0, 119, 5, 203, 0, 113, 4, 195, },
  142. { 45, 9, 96, 33, 42, 8, 91, 30, },
  143. { 2, 172, 1, 144, 2, 165, 0, 137, },
  144. { 77, 23, 60, 15, 72, 21, 56, 14, },
  145. };
  146. #endif
  147. #if defined(ARCH_X86) || defined(ARCH_X86_64)
  148. /* hope these constant values are cache line aligned */
  149. uint64_t attribute_used __attribute__((aligned(8))) mmx_00ffw = 0x00ff00ff00ff00ffULL;
  150. uint64_t attribute_used __attribute__((aligned(8))) mmx_redmask = 0xf8f8f8f8f8f8f8f8ULL;
  151. uint64_t attribute_used __attribute__((aligned(8))) mmx_grnmask = 0xfcfcfcfcfcfcfcfcULL;
  152. uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFULL;
  153. uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00ULL;
  154. uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000ULL;
  155. // the volatile is required because gcc otherwise optimizes some writes away not knowing that these
  156. // are read in the asm block
  157. volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
  158. volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
  159. volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
  160. volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
  161. uint64_t __attribute__((aligned(8))) dither4[2]={
  162. 0x0103010301030103LL,
  163. 0x0200020002000200LL,};
  164. uint64_t __attribute__((aligned(8))) dither8[2]={
  165. 0x0602060206020602LL,
  166. 0x0004000400040004LL,};
  167. #undef HAVE_MMX
  168. //MMX versions
  169. #undef RENAME
  170. #define HAVE_MMX
  171. #undef HAVE_MMX2
  172. #undef HAVE_3DNOW
  173. #define RENAME(a) a ## _MMX
  174. #include "yuv2rgb_template.c"
  175. //MMX2 versions
  176. #undef RENAME
  177. #define HAVE_MMX
  178. #define HAVE_MMX2
  179. #undef HAVE_3DNOW
  180. #define RENAME(a) a ## _MMX2
  181. #include "yuv2rgb_template.c"
  182. #endif // CAN_COMPILE_X86_ASM
  183. const int32_t Inverse_Table_6_9[8][4] = {
  184. {117504, 138453, 13954, 34903}, /* no sequence_display_extension */
  185. {117504, 138453, 13954, 34903}, /* ITU-R Rec. 709 (1990) */
  186. {104597, 132201, 25675, 53279}, /* unspecified */
  187. {104597, 132201, 25675, 53279}, /* reserved */
  188. {104448, 132798, 24759, 53109}, /* FCC */
  189. {104597, 132201, 25675, 53279}, /* ITU-R Rec. 624-4 System B, G */
  190. {104597, 132201, 25675, 53279}, /* SMPTE 170M */
  191. {117579, 136230, 16907, 35559} /* SMPTE 240M (1987) */
  192. };
  193. #define RGB(i) \
  194. U = pu[i]; \
  195. V = pv[i]; \
  196. r = c->table_rV[V]; \
  197. g = c->table_gU[U] + c->table_gV[V]; \
  198. b = c->table_bU[U];
  199. #define DST1(i) \
  200. Y = py_1[2*i]; \
  201. dst_1[2*i] = r[Y] + g[Y] + b[Y]; \
  202. Y = py_1[2*i+1]; \
  203. dst_1[2*i+1] = r[Y] + g[Y] + b[Y];
  204. #define DST2(i) \
  205. Y = py_2[2*i]; \
  206. dst_2[2*i] = r[Y] + g[Y] + b[Y]; \
  207. Y = py_2[2*i+1]; \
  208. dst_2[2*i+1] = r[Y] + g[Y] + b[Y];
  209. #define DST1RGB(i) \
  210. Y = py_1[2*i]; \
  211. dst_1[6*i] = r[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = b[Y]; \
  212. Y = py_1[2*i+1]; \
  213. dst_1[6*i+3] = r[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = b[Y];
  214. #define DST2RGB(i) \
  215. Y = py_2[2*i]; \
  216. dst_2[6*i] = r[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = b[Y]; \
  217. Y = py_2[2*i+1]; \
  218. dst_2[6*i+3] = r[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = b[Y];
  219. #define DST1BGR(i) \
  220. Y = py_1[2*i]; \
  221. dst_1[6*i] = b[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = r[Y]; \
  222. Y = py_1[2*i+1]; \
  223. dst_1[6*i+3] = b[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = r[Y];
  224. #define DST2BGR(i) \
  225. Y = py_2[2*i]; \
  226. dst_2[6*i] = b[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = r[Y]; \
  227. Y = py_2[2*i+1]; \
  228. dst_2[6*i+3] = b[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = r[Y];
  229. #define PROLOG(func_name, dst_type) \
  230. static int func_name(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, \
  231. int srcSliceH, uint8_t* dst[], int dstStride[]){\
  232. int y;\
  233. \
  234. if(c->srcFormat == IMGFMT_422P){\
  235. srcStride[1] *= 2;\
  236. srcStride[2] *= 2;\
  237. }\
  238. for(y=0; y<srcSliceH; y+=2){\
  239. dst_type *dst_1= (dst_type*)(dst[0] + (y+srcSliceY )*dstStride[0]);\
  240. dst_type *dst_2= (dst_type*)(dst[0] + (y+srcSliceY+1)*dstStride[0]);\
  241. dst_type *r, *g, *b;\
  242. uint8_t *py_1= src[0] + y*srcStride[0];\
  243. uint8_t *py_2= py_1 + srcStride[0];\
  244. uint8_t *pu= src[1] + (y>>1)*srcStride[1];\
  245. uint8_t *pv= src[2] + (y>>1)*srcStride[2];\
  246. unsigned int h_size= c->dstW>>3;\
  247. while (h_size--) {\
  248. int U, V, Y;\
  249. #define EPILOG(dst_delta)\
  250. pu += 4;\
  251. pv += 4;\
  252. py_1 += 8;\
  253. py_2 += 8;\
  254. dst_1 += dst_delta;\
  255. dst_2 += dst_delta;\
  256. }\
  257. }\
  258. return srcSliceH;\
  259. }
  260. PROLOG(yuv2rgb_c_32, uint32_t)
  261. RGB(0);
  262. DST1(0);
  263. DST2(0);
  264. RGB(1);
  265. DST2(1);
  266. DST1(1);
  267. RGB(2);
  268. DST1(2);
  269. DST2(2);
  270. RGB(3);
  271. DST2(3);
  272. DST1(3);
  273. EPILOG(8)
  274. PROLOG(yuv2rgb_c_24_rgb, uint8_t)
  275. RGB(0);
  276. DST1RGB(0);
  277. DST2RGB(0);
  278. RGB(1);
  279. DST2RGB(1);
  280. DST1RGB(1);
  281. RGB(2);
  282. DST1RGB(2);
  283. DST2RGB(2);
  284. RGB(3);
  285. DST2RGB(3);
  286. DST1RGB(3);
  287. EPILOG(24)
  288. // only trivial mods from yuv2rgb_c_24_rgb
  289. PROLOG(yuv2rgb_c_24_bgr, uint8_t)
  290. RGB(0);
  291. DST1BGR(0);
  292. DST2BGR(0);
  293. RGB(1);
  294. DST2BGR(1);
  295. DST1BGR(1);
  296. RGB(2);
  297. DST1BGR(2);
  298. DST2BGR(2);
  299. RGB(3);
  300. DST2BGR(3);
  301. DST1BGR(3);
  302. EPILOG(24)
  303. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  304. // r, g, b, dst_1, dst_2
  305. PROLOG(yuv2rgb_c_16, uint16_t)
  306. RGB(0);
  307. DST1(0);
  308. DST2(0);
  309. RGB(1);
  310. DST2(1);
  311. DST1(1);
  312. RGB(2);
  313. DST1(2);
  314. DST2(2);
  315. RGB(3);
  316. DST2(3);
  317. DST1(3);
  318. EPILOG(8)
  319. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  320. // r, g, b, dst_1, dst_2
  321. PROLOG(yuv2rgb_c_8, uint8_t)
  322. RGB(0);
  323. DST1(0);
  324. DST2(0);
  325. RGB(1);
  326. DST2(1);
  327. DST1(1);
  328. RGB(2);
  329. DST1(2);
  330. DST2(2);
  331. RGB(3);
  332. DST2(3);
  333. DST1(3);
  334. EPILOG(8)
  335. // r, g, b, dst_1, dst_2
  336. PROLOG(yuv2rgb_c_8_ordered_dither, uint8_t)
  337. const uint8_t *d32= dither_8x8_32[y&7];
  338. const uint8_t *d64= dither_8x8_73[y&7];
  339. #define DST1bpp8(i,o) \
  340. Y = py_1[2*i]; \
  341. dst_1[2*i] = r[Y+d32[0+o]] + g[Y+d32[0+o]] + b[Y+d64[0+o]]; \
  342. Y = py_1[2*i+1]; \
  343. dst_1[2*i+1] = r[Y+d32[1+o]] + g[Y+d32[1+o]] + b[Y+d64[1+o]];
  344. #define DST2bpp8(i,o) \
  345. Y = py_2[2*i]; \
  346. dst_2[2*i] = r[Y+d32[8+o]] + g[Y+d32[8+o]] + b[Y+d64[8+o]]; \
  347. Y = py_2[2*i+1]; \
  348. dst_2[2*i+1] = r[Y+d32[9+o]] + g[Y+d32[9+o]] + b[Y+d64[9+o]];
  349. RGB(0);
  350. DST1bpp8(0,0);
  351. DST2bpp8(0,0);
  352. RGB(1);
  353. DST2bpp8(1,2);
  354. DST1bpp8(1,2);
  355. RGB(2);
  356. DST1bpp8(2,4);
  357. DST2bpp8(2,4);
  358. RGB(3);
  359. DST2bpp8(3,6);
  360. DST1bpp8(3,6);
  361. EPILOG(8)
  362. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  363. // r, g, b, dst_1, dst_2
  364. PROLOG(yuv2rgb_c_4, uint8_t)
  365. int acc;
  366. #define DST1_4(i) \
  367. Y = py_1[2*i]; \
  368. acc = r[Y] + g[Y] + b[Y]; \
  369. Y = py_1[2*i+1]; \
  370. acc |= (r[Y] + g[Y] + b[Y])<<4;\
  371. dst_1[i] = acc;
  372. #define DST2_4(i) \
  373. Y = py_2[2*i]; \
  374. acc = r[Y] + g[Y] + b[Y]; \
  375. Y = py_2[2*i+1]; \
  376. acc |= (r[Y] + g[Y] + b[Y])<<4;\
  377. dst_2[i] = acc;
  378. RGB(0);
  379. DST1_4(0);
  380. DST2_4(0);
  381. RGB(1);
  382. DST2_4(1);
  383. DST1_4(1);
  384. RGB(2);
  385. DST1_4(2);
  386. DST2_4(2);
  387. RGB(3);
  388. DST2_4(3);
  389. DST1_4(3);
  390. EPILOG(4)
  391. PROLOG(yuv2rgb_c_4_ordered_dither, uint8_t)
  392. const uint8_t *d64= dither_8x8_73[y&7];
  393. const uint8_t *d128=dither_8x8_220[y&7];
  394. int acc;
  395. #define DST1bpp4(i,o) \
  396. Y = py_1[2*i]; \
  397. acc = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \
  398. Y = py_1[2*i+1]; \
  399. acc |= (r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]])<<4;\
  400. dst_1[i]= acc;
  401. #define DST2bpp4(i,o) \
  402. Y = py_2[2*i]; \
  403. acc = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \
  404. Y = py_2[2*i+1]; \
  405. acc |= (r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]])<<4;\
  406. dst_2[i]= acc;
  407. RGB(0);
  408. DST1bpp4(0,0);
  409. DST2bpp4(0,0);
  410. RGB(1);
  411. DST2bpp4(1,2);
  412. DST1bpp4(1,2);
  413. RGB(2);
  414. DST1bpp4(2,4);
  415. DST2bpp4(2,4);
  416. RGB(3);
  417. DST2bpp4(3,6);
  418. DST1bpp4(3,6);
  419. EPILOG(4)
  420. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  421. // r, g, b, dst_1, dst_2
  422. PROLOG(yuv2rgb_c_4b, uint8_t)
  423. RGB(0);
  424. DST1(0);
  425. DST2(0);
  426. RGB(1);
  427. DST2(1);
  428. DST1(1);
  429. RGB(2);
  430. DST1(2);
  431. DST2(2);
  432. RGB(3);
  433. DST2(3);
  434. DST1(3);
  435. EPILOG(8)
  436. PROLOG(yuv2rgb_c_4b_ordered_dither, uint8_t)
  437. const uint8_t *d64= dither_8x8_73[y&7];
  438. const uint8_t *d128=dither_8x8_220[y&7];
  439. #define DST1bpp4b(i,o) \
  440. Y = py_1[2*i]; \
  441. dst_1[2*i] = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \
  442. Y = py_1[2*i+1]; \
  443. dst_1[2*i+1] = r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]];
  444. #define DST2bpp4b(i,o) \
  445. Y = py_2[2*i]; \
  446. dst_2[2*i] = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \
  447. Y = py_2[2*i+1]; \
  448. dst_2[2*i+1] = r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]];
  449. RGB(0);
  450. DST1bpp4b(0,0);
  451. DST2bpp4b(0,0);
  452. RGB(1);
  453. DST2bpp4b(1,2);
  454. DST1bpp4b(1,2);
  455. RGB(2);
  456. DST1bpp4b(2,4);
  457. DST2bpp4b(2,4);
  458. RGB(3);
  459. DST2bpp4b(3,6);
  460. DST1bpp4b(3,6);
  461. EPILOG(8)
  462. PROLOG(yuv2rgb_c_1_ordered_dither, uint8_t)
  463. const uint8_t *d128=dither_8x8_220[y&7];
  464. char out_1=0, out_2=0;
  465. g= c->table_gU[128] + c->table_gV[128];
  466. #define DST1bpp1(i,o) \
  467. Y = py_1[2*i]; \
  468. out_1+= out_1 + g[Y+d128[0+o]]; \
  469. Y = py_1[2*i+1]; \
  470. out_1+= out_1 + g[Y+d128[1+o]];
  471. #define DST2bpp1(i,o) \
  472. Y = py_2[2*i]; \
  473. out_2+= out_2 + g[Y+d128[8+o]]; \
  474. Y = py_2[2*i+1]; \
  475. out_2+= out_2 + g[Y+d128[9+o]];
  476. DST1bpp1(0,0);
  477. DST2bpp1(0,0);
  478. DST2bpp1(1,2);
  479. DST1bpp1(1,2);
  480. DST1bpp1(2,4);
  481. DST2bpp1(2,4);
  482. DST2bpp1(3,6);
  483. DST1bpp1(3,6);
  484. dst_1[0]= out_1;
  485. dst_2[0]= out_2;
  486. EPILOG(1)
  487. SwsFunc yuv2rgb_get_func_ptr (SwsContext *c)
  488. {
  489. #if defined(ARCH_X86) || defined(ARCH_X86_64)
  490. if(c->flags & SWS_CPU_CAPS_MMX2){
  491. switch(c->dstFormat){
  492. case IMGFMT_BGR32: return yuv420_rgb32_MMX2;
  493. case IMGFMT_BGR24: return yuv420_rgb24_MMX2;
  494. case IMGFMT_BGR16: return yuv420_rgb16_MMX2;
  495. case IMGFMT_BGR15: return yuv420_rgb15_MMX2;
  496. }
  497. }
  498. if(c->flags & SWS_CPU_CAPS_MMX){
  499. switch(c->dstFormat){
  500. case IMGFMT_BGR32: return yuv420_rgb32_MMX;
  501. case IMGFMT_BGR24: return yuv420_rgb24_MMX;
  502. case IMGFMT_BGR16: return yuv420_rgb16_MMX;
  503. case IMGFMT_BGR15: return yuv420_rgb15_MMX;
  504. }
  505. }
  506. #endif
  507. #ifdef HAVE_MLIB
  508. {
  509. SwsFunc t= yuv2rgb_init_mlib(c);
  510. if(t) return t;
  511. }
  512. #endif
  513. #ifdef HAVE_ALTIVEC
  514. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  515. {
  516. SwsFunc t = yuv2rgb_init_altivec(c);
  517. if(t) return t;
  518. }
  519. #endif
  520. MSG_WARN("No accelerated colorspace conversion found\n");
  521. switch(c->dstFormat){
  522. case IMGFMT_RGB32:
  523. case IMGFMT_BGR32: return yuv2rgb_c_32;
  524. case IMGFMT_RGB24: return yuv2rgb_c_24_rgb;
  525. case IMGFMT_BGR24: return yuv2rgb_c_24_bgr;
  526. case IMGFMT_RGB16:
  527. case IMGFMT_BGR16:
  528. case IMGFMT_RGB15:
  529. case IMGFMT_BGR15: return yuv2rgb_c_16;
  530. case IMGFMT_RGB8:
  531. case IMGFMT_BGR8: return yuv2rgb_c_8_ordered_dither;
  532. case IMGFMT_RGB4:
  533. case IMGFMT_BGR4: return yuv2rgb_c_4_ordered_dither;
  534. case IMGFMT_RG4B:
  535. case IMGFMT_BG4B: return yuv2rgb_c_4b_ordered_dither;
  536. case IMGFMT_RGB1:
  537. case IMGFMT_BGR1: return yuv2rgb_c_1_ordered_dither;
  538. default:
  539. assert(0);
  540. }
  541. return NULL;
  542. }
  543. static int div_round (int dividend, int divisor)
  544. {
  545. if (dividend > 0)
  546. return (dividend + (divisor>>1)) / divisor;
  547. else
  548. return -((-dividend + (divisor>>1)) / divisor);
  549. }
  550. int yuv2rgb_c_init_tables (SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
  551. {
  552. const int isRgb = IMGFMT_IS_BGR(c->dstFormat);
  553. const int bpp = isRgb?IMGFMT_RGB_DEPTH(c->dstFormat):IMGFMT_BGR_DEPTH(c->dstFormat);
  554. int i;
  555. uint8_t table_Y[1024];
  556. uint32_t *table_32 = 0;
  557. uint16_t *table_16 = 0;
  558. uint8_t *table_8 = 0;
  559. uint8_t *table_332 = 0;
  560. uint8_t *table_121 = 0;
  561. uint8_t *table_1 = 0;
  562. int entry_size = 0;
  563. void *table_r = 0, *table_g = 0, *table_b = 0;
  564. void *table_start;
  565. int64_t crv = inv_table[0];
  566. int64_t cbu = inv_table[1];
  567. int64_t cgu = -inv_table[2];
  568. int64_t cgv = -inv_table[3];
  569. int64_t cy = 1<<16;
  570. int64_t oy = 0;
  571. //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv);
  572. if(!fullRange){
  573. cy= (cy*255) / 219;
  574. oy= 16<<16;
  575. }
  576. cy = (cy *contrast )>>16;
  577. crv= (crv*contrast * saturation)>>32;
  578. cbu= (cbu*contrast * saturation)>>32;
  579. cgu= (cgu*contrast * saturation)>>32;
  580. cgv= (cgv*contrast * saturation)>>32;
  581. //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv);
  582. oy -= 256*brightness;
  583. for (i = 0; i < 1024; i++) {
  584. int j;
  585. j= (cy*(((i - 384)<<16) - oy) + (1<<31))>>32;
  586. j = (j < 0) ? 0 : ((j > 255) ? 255 : j);
  587. table_Y[i] = j;
  588. }
  589. switch (bpp) {
  590. case 32:
  591. table_start= table_32 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint32_t));
  592. entry_size = sizeof (uint32_t);
  593. table_r = table_32 + 197;
  594. table_b = table_32 + 197 + 685;
  595. table_g = table_32 + 197 + 2*682;
  596. for (i = -197; i < 256+197; i++)
  597. ((uint32_t *)table_r)[i] = table_Y[i+384] << (isRgb ? 16 : 0);
  598. for (i = -132; i < 256+132; i++)
  599. ((uint32_t *)table_g)[i] = table_Y[i+384] << 8;
  600. for (i = -232; i < 256+232; i++)
  601. ((uint32_t *)table_b)[i] = table_Y[i+384] << (isRgb ? 0 : 16);
  602. break;
  603. case 24:
  604. table_start= table_8 = malloc ((256 + 2*232) * sizeof (uint8_t));
  605. entry_size = sizeof (uint8_t);
  606. table_r = table_g = table_b = table_8 + 232;
  607. for (i = -232; i < 256+232; i++)
  608. ((uint8_t * )table_b)[i] = table_Y[i+384];
  609. break;
  610. case 15:
  611. case 16:
  612. table_start= table_16 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint16_t));
  613. entry_size = sizeof (uint16_t);
  614. table_r = table_16 + 197;
  615. table_b = table_16 + 197 + 685;
  616. table_g = table_16 + 197 + 2*682;
  617. for (i = -197; i < 256+197; i++) {
  618. int j = table_Y[i+384] >> 3;
  619. if (isRgb)
  620. j <<= ((bpp==16) ? 11 : 10);
  621. ((uint16_t *)table_r)[i] = j;
  622. }
  623. for (i = -132; i < 256+132; i++) {
  624. int j = table_Y[i+384] >> ((bpp==16) ? 2 : 3);
  625. ((uint16_t *)table_g)[i] = j << 5;
  626. }
  627. for (i = -232; i < 256+232; i++) {
  628. int j = table_Y[i+384] >> 3;
  629. if (!isRgb)
  630. j <<= ((bpp==16) ? 11 : 10);
  631. ((uint16_t *)table_b)[i] = j;
  632. }
  633. break;
  634. case 8:
  635. table_start= table_332 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t));
  636. entry_size = sizeof (uint8_t);
  637. table_r = table_332 + 197;
  638. table_b = table_332 + 197 + 685;
  639. table_g = table_332 + 197 + 2*682;
  640. for (i = -197; i < 256+197; i++) {
  641. int j = (table_Y[i+384 - 16] + 18)/36;
  642. if (isRgb)
  643. j <<= 5;
  644. ((uint8_t *)table_r)[i] = j;
  645. }
  646. for (i = -132; i < 256+132; i++) {
  647. int j = (table_Y[i+384 - 16] + 18)/36;
  648. if (!isRgb)
  649. j <<= 1;
  650. ((uint8_t *)table_g)[i] = j << 2;
  651. }
  652. for (i = -232; i < 256+232; i++) {
  653. int j = (table_Y[i+384 - 37] + 43)/85;
  654. if (!isRgb)
  655. j <<= 6;
  656. ((uint8_t *)table_b)[i] = j;
  657. }
  658. break;
  659. case 4:
  660. case 4|128:
  661. table_start= table_121 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t));
  662. entry_size = sizeof (uint8_t);
  663. table_r = table_121 + 197;
  664. table_b = table_121 + 197 + 685;
  665. table_g = table_121 + 197 + 2*682;
  666. for (i = -197; i < 256+197; i++) {
  667. int j = table_Y[i+384 - 110] >> 7;
  668. if (isRgb)
  669. j <<= 3;
  670. ((uint8_t *)table_r)[i] = j;
  671. }
  672. for (i = -132; i < 256+132; i++) {
  673. int j = (table_Y[i+384 - 37]+ 43)/85;
  674. ((uint8_t *)table_g)[i] = j << 1;
  675. }
  676. for (i = -232; i < 256+232; i++) {
  677. int j =table_Y[i+384 - 110] >> 7;
  678. if (!isRgb)
  679. j <<= 3;
  680. ((uint8_t *)table_b)[i] = j;
  681. }
  682. break;
  683. case 1:
  684. table_start= table_1 = malloc (256*2 * sizeof (uint8_t));
  685. entry_size = sizeof (uint8_t);
  686. table_g = table_1;
  687. table_r = table_b = NULL;
  688. for (i = 0; i < 256+256; i++) {
  689. int j = table_Y[i + 384 - 110]>>7;
  690. ((uint8_t *)table_g)[i] = j;
  691. }
  692. break;
  693. default:
  694. table_start= NULL;
  695. MSG_ERR("%ibpp not supported by yuv2rgb\n", bpp);
  696. //free mem?
  697. return -1;
  698. }
  699. for (i = 0; i < 256; i++) {
  700. c->table_rV[i] = table_r + entry_size * div_round (crv * (i-128), 76309);
  701. c->table_gU[i] = table_g + entry_size * div_round (cgu * (i-128), 76309);
  702. c->table_gV[i] = entry_size * div_round (cgv * (i-128), 76309);
  703. c->table_bU[i] = table_b + entry_size * div_round (cbu * (i-128), 76309);
  704. }
  705. if(c->yuvTable) free(c->yuvTable);
  706. c->yuvTable= table_start;
  707. return 0;
  708. }