You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1351 lines
42KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  18. */
  19. /**
  20. * @file wmadec.c
  21. * WMA compatible decoder.
  22. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  23. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  24. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  25. *
  26. * To use this decoder, a calling application must supply the extra data
  27. * bytes provided with the WMA data. These are the extra, codec-specific
  28. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  29. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  30. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  31. */
  32. #include "avcodec.h"
  33. #include "bitstream.h"
  34. #include "dsputil.h"
  35. /* size of blocks */
  36. #define BLOCK_MIN_BITS 7
  37. #define BLOCK_MAX_BITS 11
  38. #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
  39. #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
  40. /* XXX: find exact max size */
  41. #define HIGH_BAND_MAX_SIZE 16
  42. #define NB_LSP_COEFS 10
  43. /* XXX: is it a suitable value ? */
  44. #define MAX_CODED_SUPERFRAME_SIZE 16384
  45. #define MAX_CHANNELS 2
  46. #define NOISE_TAB_SIZE 8192
  47. #define LSP_POW_BITS 7
  48. #define VLCBITS 9
  49. #define VLCMAX ((22+VLCBITS-1)/VLCBITS)
  50. #define EXPVLCBITS 8
  51. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  52. #define HGAINVLCBITS 9
  53. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  54. typedef struct WMADecodeContext {
  55. GetBitContext gb;
  56. int sample_rate;
  57. int nb_channels;
  58. int bit_rate;
  59. int version; /* 1 = 0x160 (WMAV1), 2 = 0x161 (WMAV2) */
  60. int block_align;
  61. int use_bit_reservoir;
  62. int use_variable_block_len;
  63. int use_exp_vlc; /* exponent coding: 0 = lsp, 1 = vlc + delta */
  64. int use_noise_coding; /* true if perceptual noise is added */
  65. int byte_offset_bits;
  66. VLC exp_vlc;
  67. int exponent_sizes[BLOCK_NB_SIZES];
  68. uint16_t exponent_bands[BLOCK_NB_SIZES][25];
  69. int high_band_start[BLOCK_NB_SIZES]; /* index of first coef in high band */
  70. int coefs_start; /* first coded coef */
  71. int coefs_end[BLOCK_NB_SIZES]; /* max number of coded coefficients */
  72. int exponent_high_sizes[BLOCK_NB_SIZES];
  73. int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
  74. VLC hgain_vlc;
  75. /* coded values in high bands */
  76. int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
  77. int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
  78. /* there are two possible tables for spectral coefficients */
  79. VLC coef_vlc[2];
  80. uint16_t *run_table[2];
  81. uint16_t *level_table[2];
  82. /* frame info */
  83. int frame_len; /* frame length in samples */
  84. int frame_len_bits; /* frame_len = 1 << frame_len_bits */
  85. int nb_block_sizes; /* number of block sizes */
  86. /* block info */
  87. int reset_block_lengths;
  88. int block_len_bits; /* log2 of current block length */
  89. int next_block_len_bits; /* log2 of next block length */
  90. int prev_block_len_bits; /* log2 of prev block length */
  91. int block_len; /* block length in samples */
  92. int block_num; /* block number in current frame */
  93. int block_pos; /* current position in frame */
  94. uint8_t ms_stereo; /* true if mid/side stereo mode */
  95. uint8_t channel_coded[MAX_CHANNELS]; /* true if channel is coded */
  96. DECLARE_ALIGNED_16(float, exponents[MAX_CHANNELS][BLOCK_MAX_SIZE]);
  97. float max_exponent[MAX_CHANNELS];
  98. int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
  99. DECLARE_ALIGNED_16(float, coefs[MAX_CHANNELS][BLOCK_MAX_SIZE]);
  100. MDCTContext mdct_ctx[BLOCK_NB_SIZES];
  101. float *windows[BLOCK_NB_SIZES];
  102. DECLARE_ALIGNED_16(FFTSample, mdct_tmp[BLOCK_MAX_SIZE]); /* temporary storage for imdct */
  103. /* output buffer for one frame and the last for IMDCT windowing */
  104. DECLARE_ALIGNED_16(float, frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2]);
  105. /* last frame info */
  106. uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
  107. int last_bitoffset;
  108. int last_superframe_len;
  109. float noise_table[NOISE_TAB_SIZE];
  110. int noise_index;
  111. float noise_mult; /* XXX: suppress that and integrate it in the noise array */
  112. /* lsp_to_curve tables */
  113. float lsp_cos_table[BLOCK_MAX_SIZE];
  114. float lsp_pow_e_table[256];
  115. float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
  116. float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
  117. /* pow tables */
  118. float pow_005_10[121];
  119. float pow_00625_10[121];
  120. #ifdef TRACE
  121. int frame_count;
  122. #endif
  123. } WMADecodeContext;
  124. typedef struct CoefVLCTable {
  125. int n; /* total number of codes */
  126. const uint32_t *huffcodes; /* VLC bit values */
  127. const uint8_t *huffbits; /* VLC bit size */
  128. const uint16_t *levels; /* table to build run/level tables */
  129. } CoefVLCTable;
  130. static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
  131. #include "wmadata.h"
  132. #ifdef TRACE
  133. static void dump_shorts(const char *name, const short *tab, int n)
  134. {
  135. int i;
  136. tprintf("%s[%d]:\n", name, n);
  137. for(i=0;i<n;i++) {
  138. if ((i & 7) == 0)
  139. tprintf("%4d: ", i);
  140. tprintf(" %5d.0", tab[i]);
  141. if ((i & 7) == 7)
  142. tprintf("\n");
  143. }
  144. }
  145. static void dump_floats(const char *name, int prec, const float *tab, int n)
  146. {
  147. int i;
  148. tprintf("%s[%d]:\n", name, n);
  149. for(i=0;i<n;i++) {
  150. if ((i & 7) == 0)
  151. tprintf("%4d: ", i);
  152. tprintf(" %8.*f", prec, tab[i]);
  153. if ((i & 7) == 7)
  154. tprintf("\n");
  155. }
  156. if ((i & 7) != 0)
  157. tprintf("\n");
  158. }
  159. #endif
  160. /* XXX: use same run/length optimization as mpeg decoders */
  161. static void init_coef_vlc(VLC *vlc,
  162. uint16_t **prun_table, uint16_t **plevel_table,
  163. const CoefVLCTable *vlc_table)
  164. {
  165. int n = vlc_table->n;
  166. const uint8_t *table_bits = vlc_table->huffbits;
  167. const uint32_t *table_codes = vlc_table->huffcodes;
  168. const uint16_t *levels_table = vlc_table->levels;
  169. uint16_t *run_table, *level_table;
  170. const uint16_t *p;
  171. int i, l, j, level;
  172. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  173. run_table = av_malloc(n * sizeof(uint16_t));
  174. level_table = av_malloc(n * sizeof(uint16_t));
  175. p = levels_table;
  176. i = 2;
  177. level = 1;
  178. while (i < n) {
  179. l = *p++;
  180. for(j=0;j<l;j++) {
  181. run_table[i] = j;
  182. level_table[i] = level;
  183. i++;
  184. }
  185. level++;
  186. }
  187. *prun_table = run_table;
  188. *plevel_table = level_table;
  189. }
  190. static int wma_decode_init(AVCodecContext * avctx)
  191. {
  192. WMADecodeContext *s = avctx->priv_data;
  193. int i, flags1, flags2;
  194. float *window;
  195. uint8_t *extradata;
  196. float bps, bps1;
  197. volatile float high_freq_factor= 0; //initial value should not matter as the tables build from this are unused if !use_noise_coding
  198. int sample_rate1;
  199. int coef_vlc_table;
  200. s->sample_rate = avctx->sample_rate;
  201. s->nb_channels = avctx->channels;
  202. s->bit_rate = avctx->bit_rate;
  203. s->block_align = avctx->block_align;
  204. if (avctx->codec->id == CODEC_ID_WMAV1) {
  205. s->version = 1;
  206. } else {
  207. s->version = 2;
  208. }
  209. /* extract flag infos */
  210. flags1 = 0;
  211. flags2 = 0;
  212. extradata = avctx->extradata;
  213. if (s->version == 1 && avctx->extradata_size >= 4) {
  214. flags1 = extradata[0] | (extradata[1] << 8);
  215. flags2 = extradata[2] | (extradata[3] << 8);
  216. } else if (s->version == 2 && avctx->extradata_size >= 6) {
  217. flags1 = extradata[0] | (extradata[1] << 8) |
  218. (extradata[2] << 16) | (extradata[3] << 24);
  219. flags2 = extradata[4] | (extradata[5] << 8);
  220. }
  221. s->use_exp_vlc = flags2 & 0x0001;
  222. s->use_bit_reservoir = flags2 & 0x0002;
  223. s->use_variable_block_len = flags2 & 0x0004;
  224. /* compute MDCT block size */
  225. if (s->sample_rate <= 16000) {
  226. s->frame_len_bits = 9;
  227. } else if (s->sample_rate <= 22050 ||
  228. (s->sample_rate <= 32000 && s->version == 1)) {
  229. s->frame_len_bits = 10;
  230. } else {
  231. s->frame_len_bits = 11;
  232. }
  233. s->frame_len = 1 << s->frame_len_bits;
  234. if (s->use_variable_block_len) {
  235. int nb_max, nb;
  236. nb = ((flags2 >> 3) & 3) + 1;
  237. if ((s->bit_rate / s->nb_channels) >= 32000)
  238. nb += 2;
  239. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  240. if (nb > nb_max)
  241. nb = nb_max;
  242. s->nb_block_sizes = nb + 1;
  243. } else {
  244. s->nb_block_sizes = 1;
  245. }
  246. /* init rate dependant parameters */
  247. s->use_noise_coding = 1;
  248. /* if version 2, then the rates are normalized */
  249. sample_rate1 = s->sample_rate;
  250. if (s->version == 2) {
  251. if (sample_rate1 >= 44100)
  252. sample_rate1 = 44100;
  253. else if (sample_rate1 >= 22050)
  254. sample_rate1 = 22050;
  255. else if (sample_rate1 >= 16000)
  256. sample_rate1 = 16000;
  257. else if (sample_rate1 >= 11025)
  258. sample_rate1 = 11025;
  259. else if (sample_rate1 >= 8000)
  260. sample_rate1 = 8000;
  261. }
  262. bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
  263. s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
  264. /* compute high frequency value and choose if noise coding should
  265. be activated */
  266. bps1 = bps;
  267. if (s->nb_channels == 2)
  268. bps1 = bps * 1.6;
  269. if (sample_rate1 == 44100) {
  270. if (bps1 >= 0.61)
  271. s->use_noise_coding = 0;
  272. else
  273. high_freq_factor = 0.4;
  274. } else if (sample_rate1 == 22050) {
  275. if (bps1 >= 1.16)
  276. s->use_noise_coding = 0;
  277. else if (bps1 >= 0.72)
  278. high_freq_factor = 0.7;
  279. else
  280. high_freq_factor = 0.6;
  281. } else if (sample_rate1 == 16000) {
  282. if (bps > 0.5)
  283. high_freq_factor = 0.5;
  284. else
  285. high_freq_factor = 0.3;
  286. } else if (sample_rate1 == 11025) {
  287. high_freq_factor = 0.7;
  288. } else if (sample_rate1 == 8000) {
  289. if (bps <= 0.625) {
  290. high_freq_factor = 0.5;
  291. } else if (bps > 0.75) {
  292. s->use_noise_coding = 0;
  293. } else {
  294. high_freq_factor = 0.65;
  295. }
  296. } else {
  297. if (bps >= 0.8) {
  298. high_freq_factor = 0.75;
  299. } else if (bps >= 0.6) {
  300. high_freq_factor = 0.6;
  301. } else {
  302. high_freq_factor = 0.5;
  303. }
  304. }
  305. dprintf("flags1=0x%x flags2=0x%x\n", flags1, flags2);
  306. dprintf("version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  307. s->version, s->nb_channels, s->sample_rate, s->bit_rate,
  308. s->block_align);
  309. dprintf("bps=%f bps1=%f bitoffset=%d\n",
  310. bps, bps1, s->byte_offset_bits);
  311. dprintf("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  312. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  313. /* compute the scale factor band sizes for each MDCT block size */
  314. {
  315. int a, b, pos, lpos, k, block_len, i, j, n;
  316. const uint8_t *table;
  317. if (s->version == 1) {
  318. s->coefs_start = 3;
  319. } else {
  320. s->coefs_start = 0;
  321. }
  322. for(k = 0; k < s->nb_block_sizes; k++) {
  323. block_len = s->frame_len >> k;
  324. if (s->version == 1) {
  325. lpos = 0;
  326. for(i=0;i<25;i++) {
  327. a = wma_critical_freqs[i];
  328. b = s->sample_rate;
  329. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  330. if (pos > block_len)
  331. pos = block_len;
  332. s->exponent_bands[0][i] = pos - lpos;
  333. if (pos >= block_len) {
  334. i++;
  335. break;
  336. }
  337. lpos = pos;
  338. }
  339. s->exponent_sizes[0] = i;
  340. } else {
  341. /* hardcoded tables */
  342. table = NULL;
  343. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  344. if (a < 3) {
  345. if (s->sample_rate >= 44100)
  346. table = exponent_band_44100[a];
  347. else if (s->sample_rate >= 32000)
  348. table = exponent_band_32000[a];
  349. else if (s->sample_rate >= 22050)
  350. table = exponent_band_22050[a];
  351. }
  352. if (table) {
  353. n = *table++;
  354. for(i=0;i<n;i++)
  355. s->exponent_bands[k][i] = table[i];
  356. s->exponent_sizes[k] = n;
  357. } else {
  358. j = 0;
  359. lpos = 0;
  360. for(i=0;i<25;i++) {
  361. a = wma_critical_freqs[i];
  362. b = s->sample_rate;
  363. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  364. pos <<= 2;
  365. if (pos > block_len)
  366. pos = block_len;
  367. if (pos > lpos)
  368. s->exponent_bands[k][j++] = pos - lpos;
  369. if (pos >= block_len)
  370. break;
  371. lpos = pos;
  372. }
  373. s->exponent_sizes[k] = j;
  374. }
  375. }
  376. /* max number of coefs */
  377. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  378. /* high freq computation */
  379. s->high_band_start[k] = (int)((block_len * high_freq_factor) + 0.5);
  380. n = s->exponent_sizes[k];
  381. j = 0;
  382. pos = 0;
  383. for(i=0;i<n;i++) {
  384. int start, end;
  385. start = pos;
  386. pos += s->exponent_bands[k][i];
  387. end = pos;
  388. if (start < s->high_band_start[k])
  389. start = s->high_band_start[k];
  390. if (end > s->coefs_end[k])
  391. end = s->coefs_end[k];
  392. if (end > start)
  393. s->exponent_high_bands[k][j++] = end - start;
  394. }
  395. s->exponent_high_sizes[k] = j;
  396. #if 0
  397. tprintf("%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  398. s->frame_len >> k,
  399. s->coefs_end[k],
  400. s->high_band_start[k],
  401. s->exponent_high_sizes[k]);
  402. for(j=0;j<s->exponent_high_sizes[k];j++)
  403. tprintf(" %d", s->exponent_high_bands[k][j]);
  404. tprintf("\n");
  405. #endif
  406. }
  407. }
  408. #ifdef TRACE
  409. {
  410. int i, j;
  411. for(i = 0; i < s->nb_block_sizes; i++) {
  412. tprintf("%5d: n=%2d:",
  413. s->frame_len >> i,
  414. s->exponent_sizes[i]);
  415. for(j=0;j<s->exponent_sizes[i];j++)
  416. tprintf(" %d", s->exponent_bands[i][j]);
  417. tprintf("\n");
  418. }
  419. }
  420. #endif
  421. /* init MDCT */
  422. for(i = 0; i < s->nb_block_sizes; i++)
  423. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
  424. /* init MDCT windows : simple sinus window */
  425. for(i = 0; i < s->nb_block_sizes; i++) {
  426. int n, j;
  427. float alpha;
  428. n = 1 << (s->frame_len_bits - i);
  429. window = av_malloc(sizeof(float) * n);
  430. alpha = M_PI / (2.0 * n);
  431. for(j=0;j<n;j++) {
  432. window[n - j - 1] = sin((j + 0.5) * alpha);
  433. }
  434. s->windows[i] = window;
  435. }
  436. s->reset_block_lengths = 1;
  437. if (s->use_noise_coding) {
  438. /* init the noise generator */
  439. if (s->use_exp_vlc)
  440. s->noise_mult = 0.02;
  441. else
  442. s->noise_mult = 0.04;
  443. #ifdef TRACE
  444. for(i=0;i<NOISE_TAB_SIZE;i++)
  445. s->noise_table[i] = 1.0 * s->noise_mult;
  446. #else
  447. {
  448. unsigned int seed;
  449. float norm;
  450. seed = 1;
  451. norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
  452. for(i=0;i<NOISE_TAB_SIZE;i++) {
  453. seed = seed * 314159 + 1;
  454. s->noise_table[i] = (float)((int)seed) * norm;
  455. }
  456. }
  457. #endif
  458. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(hgain_huffbits),
  459. hgain_huffbits, 1, 1,
  460. hgain_huffcodes, 2, 2, 0);
  461. }
  462. if (s->use_exp_vlc) {
  463. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(scale_huffbits),
  464. scale_huffbits, 1, 1,
  465. scale_huffcodes, 4, 4, 0);
  466. } else {
  467. wma_lsp_to_curve_init(s, s->frame_len);
  468. }
  469. /* choose the VLC tables for the coefficients */
  470. coef_vlc_table = 2;
  471. if (s->sample_rate >= 32000) {
  472. if (bps1 < 0.72)
  473. coef_vlc_table = 0;
  474. else if (bps1 < 1.16)
  475. coef_vlc_table = 1;
  476. }
  477. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
  478. &coef_vlcs[coef_vlc_table * 2]);
  479. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
  480. &coef_vlcs[coef_vlc_table * 2 + 1]);
  481. /* init pow tables */
  482. for (i=0 ; i<121 ; i++) {
  483. s->pow_005_10[i] = pow(10, i * 0.05);
  484. s->pow_00625_10[i] = pow(10, i * (1.0 / 16.0));
  485. }
  486. return 0;
  487. }
  488. /* interpolate values for a bigger or smaller block. The block must
  489. have multiple sizes */
  490. static void interpolate_array(float *scale, int old_size, int new_size)
  491. {
  492. int i, j, jincr, k;
  493. float v;
  494. if (new_size > old_size) {
  495. jincr = new_size / old_size;
  496. j = new_size;
  497. for(i = old_size - 1; i >=0; i--) {
  498. v = scale[i];
  499. k = jincr;
  500. do {
  501. scale[--j] = v;
  502. } while (--k);
  503. }
  504. } else if (new_size < old_size) {
  505. j = 0;
  506. jincr = old_size / new_size;
  507. for(i = 0; i < new_size; i++) {
  508. scale[i] = scale[j];
  509. j += jincr;
  510. }
  511. }
  512. }
  513. /* compute x^-0.25 with an exponent and mantissa table. We use linear
  514. interpolation to reduce the mantissa table size at a small speed
  515. expense (linear interpolation approximately doubles the number of
  516. bits of precision). */
  517. static inline float pow_m1_4(WMADecodeContext *s, float x)
  518. {
  519. union {
  520. float f;
  521. unsigned int v;
  522. } u, t;
  523. unsigned int e, m;
  524. float a, b;
  525. u.f = x;
  526. e = u.v >> 23;
  527. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  528. /* build interpolation scale: 1 <= t < 2. */
  529. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  530. a = s->lsp_pow_m_table1[m];
  531. b = s->lsp_pow_m_table2[m];
  532. return s->lsp_pow_e_table[e] * (a + b * t.f);
  533. }
  534. static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
  535. {
  536. float wdel, a, b;
  537. int i, e, m;
  538. wdel = M_PI / frame_len;
  539. for(i=0;i<frame_len;i++)
  540. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  541. /* tables for x^-0.25 computation */
  542. for(i=0;i<256;i++) {
  543. e = i - 126;
  544. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  545. }
  546. /* NOTE: these two tables are needed to avoid two operations in
  547. pow_m1_4 */
  548. b = 1.0;
  549. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  550. m = (1 << LSP_POW_BITS) + i;
  551. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  552. a = pow(a, -0.25);
  553. s->lsp_pow_m_table1[i] = 2 * a - b;
  554. s->lsp_pow_m_table2[i] = b - a;
  555. b = a;
  556. }
  557. #if 0
  558. for(i=1;i<20;i++) {
  559. float v, r1, r2;
  560. v = 5.0 / i;
  561. r1 = pow_m1_4(s, v);
  562. r2 = pow(v,-0.25);
  563. printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
  564. }
  565. #endif
  566. }
  567. /* NOTE: We use the same code as Vorbis here */
  568. /* XXX: optimize it further with SSE/3Dnow */
  569. static void wma_lsp_to_curve(WMADecodeContext *s,
  570. float *out, float *val_max_ptr,
  571. int n, float *lsp)
  572. {
  573. int i, j;
  574. float p, q, w, v, val_max;
  575. val_max = 0;
  576. for(i=0;i<n;i++) {
  577. p = 0.5f;
  578. q = 0.5f;
  579. w = s->lsp_cos_table[i];
  580. for(j=1;j<NB_LSP_COEFS;j+=2){
  581. q *= w - lsp[j - 1];
  582. p *= w - lsp[j];
  583. }
  584. p *= p * (2.0f - w);
  585. q *= q * (2.0f + w);
  586. v = p + q;
  587. v = pow_m1_4(s, v);
  588. if (v > val_max)
  589. val_max = v;
  590. out[i] = v;
  591. }
  592. *val_max_ptr = val_max;
  593. }
  594. /* decode exponents coded with LSP coefficients (same idea as Vorbis) */
  595. static void decode_exp_lsp(WMADecodeContext *s, int ch)
  596. {
  597. float lsp_coefs[NB_LSP_COEFS];
  598. int val, i;
  599. for(i = 0; i < NB_LSP_COEFS; i++) {
  600. if (i == 0 || i >= 8)
  601. val = get_bits(&s->gb, 3);
  602. else
  603. val = get_bits(&s->gb, 4);
  604. lsp_coefs[i] = lsp_codebook[i][val];
  605. }
  606. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  607. s->block_len, lsp_coefs);
  608. }
  609. /* decode exponents coded with VLC codes */
  610. static int decode_exp_vlc(WMADecodeContext *s, int ch)
  611. {
  612. int last_exp, n, code;
  613. const uint16_t *ptr, *band_ptr;
  614. float v, *q, max_scale, *q_end;
  615. band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  616. ptr = band_ptr;
  617. q = s->exponents[ch];
  618. q_end = q + s->block_len;
  619. max_scale = 0;
  620. if (s->version == 1) {
  621. last_exp = get_bits(&s->gb, 5) + 10;
  622. v = s->pow_00625_10[last_exp];
  623. max_scale = v;
  624. n = *ptr++;
  625. do {
  626. *q++ = v;
  627. } while (--n);
  628. }
  629. last_exp = 36;
  630. while (q < q_end) {
  631. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  632. if (code < 0)
  633. return -1;
  634. /* NOTE: this offset is the same as MPEG4 AAC ! */
  635. last_exp += code - 60;
  636. v = s->pow_00625_10[last_exp];
  637. if (v > max_scale)
  638. max_scale = v;
  639. n = *ptr++;
  640. do {
  641. *q++ = v;
  642. } while (--n);
  643. }
  644. s->max_exponent[ch] = max_scale;
  645. return 0;
  646. }
  647. /* return 0 if OK. return 1 if last block of frame. return -1 if
  648. unrecorrable error. */
  649. static int wma_decode_block(WMADecodeContext *s)
  650. {
  651. int n, v, a, ch, code, bsize;
  652. int coef_nb_bits, total_gain, parse_exponents;
  653. float window[BLOCK_MAX_SIZE * 2];
  654. // XXX: FIXME!! there's a bug somewhere which makes this mandatory under altivec
  655. #ifdef HAVE_ALTIVEC
  656. volatile int nb_coefs[MAX_CHANNELS] __attribute__((aligned(16)));
  657. #else
  658. int nb_coefs[MAX_CHANNELS];
  659. #endif
  660. float mdct_norm;
  661. #ifdef TRACE
  662. tprintf("***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  663. #endif
  664. /* compute current block length */
  665. if (s->use_variable_block_len) {
  666. n = av_log2(s->nb_block_sizes - 1) + 1;
  667. if (s->reset_block_lengths) {
  668. s->reset_block_lengths = 0;
  669. v = get_bits(&s->gb, n);
  670. if (v >= s->nb_block_sizes)
  671. return -1;
  672. s->prev_block_len_bits = s->frame_len_bits - v;
  673. v = get_bits(&s->gb, n);
  674. if (v >= s->nb_block_sizes)
  675. return -1;
  676. s->block_len_bits = s->frame_len_bits - v;
  677. } else {
  678. /* update block lengths */
  679. s->prev_block_len_bits = s->block_len_bits;
  680. s->block_len_bits = s->next_block_len_bits;
  681. }
  682. v = get_bits(&s->gb, n);
  683. if (v >= s->nb_block_sizes)
  684. return -1;
  685. s->next_block_len_bits = s->frame_len_bits - v;
  686. } else {
  687. /* fixed block len */
  688. s->next_block_len_bits = s->frame_len_bits;
  689. s->prev_block_len_bits = s->frame_len_bits;
  690. s->block_len_bits = s->frame_len_bits;
  691. }
  692. /* now check if the block length is coherent with the frame length */
  693. s->block_len = 1 << s->block_len_bits;
  694. if ((s->block_pos + s->block_len) > s->frame_len)
  695. return -1;
  696. if (s->nb_channels == 2) {
  697. s->ms_stereo = get_bits(&s->gb, 1);
  698. }
  699. v = 0;
  700. for(ch = 0; ch < s->nb_channels; ch++) {
  701. a = get_bits(&s->gb, 1);
  702. s->channel_coded[ch] = a;
  703. v |= a;
  704. }
  705. /* if no channel coded, no need to go further */
  706. /* XXX: fix potential framing problems */
  707. if (!v)
  708. goto next;
  709. bsize = s->frame_len_bits - s->block_len_bits;
  710. /* read total gain and extract corresponding number of bits for
  711. coef escape coding */
  712. total_gain = 1;
  713. for(;;) {
  714. a = get_bits(&s->gb, 7);
  715. total_gain += a;
  716. if (a != 127)
  717. break;
  718. }
  719. if (total_gain < 15)
  720. coef_nb_bits = 13;
  721. else if (total_gain < 32)
  722. coef_nb_bits = 12;
  723. else if (total_gain < 40)
  724. coef_nb_bits = 11;
  725. else if (total_gain < 45)
  726. coef_nb_bits = 10;
  727. else
  728. coef_nb_bits = 9;
  729. /* compute number of coefficients */
  730. n = s->coefs_end[bsize] - s->coefs_start;
  731. for(ch = 0; ch < s->nb_channels; ch++)
  732. nb_coefs[ch] = n;
  733. /* complex coding */
  734. if (s->use_noise_coding) {
  735. for(ch = 0; ch < s->nb_channels; ch++) {
  736. if (s->channel_coded[ch]) {
  737. int i, n, a;
  738. n = s->exponent_high_sizes[bsize];
  739. for(i=0;i<n;i++) {
  740. a = get_bits(&s->gb, 1);
  741. s->high_band_coded[ch][i] = a;
  742. /* if noise coding, the coefficients are not transmitted */
  743. if (a)
  744. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  745. }
  746. }
  747. }
  748. for(ch = 0; ch < s->nb_channels; ch++) {
  749. if (s->channel_coded[ch]) {
  750. int i, n, val, code;
  751. n = s->exponent_high_sizes[bsize];
  752. val = (int)0x80000000;
  753. for(i=0;i<n;i++) {
  754. if (s->high_band_coded[ch][i]) {
  755. if (val == (int)0x80000000) {
  756. val = get_bits(&s->gb, 7) - 19;
  757. } else {
  758. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  759. if (code < 0)
  760. return -1;
  761. val += code - 18;
  762. }
  763. s->high_band_values[ch][i] = val;
  764. }
  765. }
  766. }
  767. }
  768. }
  769. /* exposant can be interpolated in short blocks. */
  770. parse_exponents = 1;
  771. if (s->block_len_bits != s->frame_len_bits) {
  772. parse_exponents = get_bits(&s->gb, 1);
  773. }
  774. if (parse_exponents) {
  775. for(ch = 0; ch < s->nb_channels; ch++) {
  776. if (s->channel_coded[ch]) {
  777. if (s->use_exp_vlc) {
  778. if (decode_exp_vlc(s, ch) < 0)
  779. return -1;
  780. } else {
  781. decode_exp_lsp(s, ch);
  782. }
  783. }
  784. }
  785. } else {
  786. for(ch = 0; ch < s->nb_channels; ch++) {
  787. if (s->channel_coded[ch]) {
  788. interpolate_array(s->exponents[ch], 1 << s->prev_block_len_bits,
  789. s->block_len);
  790. }
  791. }
  792. }
  793. /* parse spectral coefficients : just RLE encoding */
  794. for(ch = 0; ch < s->nb_channels; ch++) {
  795. if (s->channel_coded[ch]) {
  796. VLC *coef_vlc;
  797. int level, run, sign, tindex;
  798. int16_t *ptr, *eptr;
  799. const int16_t *level_table, *run_table;
  800. /* special VLC tables are used for ms stereo because
  801. there is potentially less energy there */
  802. tindex = (ch == 1 && s->ms_stereo);
  803. coef_vlc = &s->coef_vlc[tindex];
  804. run_table = s->run_table[tindex];
  805. level_table = s->level_table[tindex];
  806. /* XXX: optimize */
  807. ptr = &s->coefs1[ch][0];
  808. eptr = ptr + nb_coefs[ch];
  809. memset(ptr, 0, s->block_len * sizeof(int16_t));
  810. for(;;) {
  811. code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
  812. if (code < 0)
  813. return -1;
  814. if (code == 1) {
  815. /* EOB */
  816. break;
  817. } else if (code == 0) {
  818. /* escape */
  819. level = get_bits(&s->gb, coef_nb_bits);
  820. /* NOTE: this is rather suboptimal. reading
  821. block_len_bits would be better */
  822. run = get_bits(&s->gb, s->frame_len_bits);
  823. } else {
  824. /* normal code */
  825. run = run_table[code];
  826. level = level_table[code];
  827. }
  828. sign = get_bits(&s->gb, 1);
  829. if (!sign)
  830. level = -level;
  831. ptr += run;
  832. if (ptr >= eptr)
  833. return -1;
  834. *ptr++ = level;
  835. /* NOTE: EOB can be omitted */
  836. if (ptr >= eptr)
  837. break;
  838. }
  839. }
  840. if (s->version == 1 && s->nb_channels >= 2) {
  841. align_get_bits(&s->gb);
  842. }
  843. }
  844. /* normalize */
  845. {
  846. int n4 = s->block_len / 2;
  847. mdct_norm = 1.0 / (float)n4;
  848. if (s->version == 1) {
  849. mdct_norm *= sqrt(n4);
  850. }
  851. }
  852. /* finally compute the MDCT coefficients */
  853. for(ch = 0; ch < s->nb_channels; ch++) {
  854. if (s->channel_coded[ch]) {
  855. int16_t *coefs1;
  856. float *coefs, *exponents, mult, mult1, noise, *exp_ptr;
  857. int i, j, n, n1, last_high_band;
  858. float exp_power[HIGH_BAND_MAX_SIZE];
  859. coefs1 = s->coefs1[ch];
  860. exponents = s->exponents[ch];
  861. mult = s->pow_005_10[total_gain] / s->max_exponent[ch];
  862. mult *= mdct_norm;
  863. coefs = s->coefs[ch];
  864. if (s->use_noise_coding) {
  865. mult1 = mult;
  866. /* very low freqs : noise */
  867. for(i = 0;i < s->coefs_start; i++) {
  868. *coefs++ = s->noise_table[s->noise_index] * (*exponents++) * mult1;
  869. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  870. }
  871. n1 = s->exponent_high_sizes[bsize];
  872. /* compute power of high bands */
  873. exp_ptr = exponents +
  874. s->high_band_start[bsize] -
  875. s->coefs_start;
  876. last_high_band = 0; /* avoid warning */
  877. for(j=0;j<n1;j++) {
  878. n = s->exponent_high_bands[s->frame_len_bits -
  879. s->block_len_bits][j];
  880. if (s->high_band_coded[ch][j]) {
  881. float e2, v;
  882. e2 = 0;
  883. for(i = 0;i < n; i++) {
  884. v = exp_ptr[i];
  885. e2 += v * v;
  886. }
  887. exp_power[j] = e2 / n;
  888. last_high_band = j;
  889. tprintf("%d: power=%f (%d)\n", j, exp_power[j], n);
  890. }
  891. exp_ptr += n;
  892. }
  893. /* main freqs and high freqs */
  894. for(j=-1;j<n1;j++) {
  895. if (j < 0) {
  896. n = s->high_band_start[bsize] -
  897. s->coefs_start;
  898. } else {
  899. n = s->exponent_high_bands[s->frame_len_bits -
  900. s->block_len_bits][j];
  901. }
  902. if (j >= 0 && s->high_band_coded[ch][j]) {
  903. /* use noise with specified power */
  904. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  905. mult1 = mult1 * s->pow_005_10[s->high_band_values[ch][j]];
  906. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  907. mult1 *= mdct_norm;
  908. for(i = 0;i < n; i++) {
  909. noise = s->noise_table[s->noise_index];
  910. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  911. *coefs++ = (*exponents++) * noise * mult1;
  912. }
  913. } else {
  914. /* coded values + small noise */
  915. for(i = 0;i < n; i++) {
  916. noise = s->noise_table[s->noise_index];
  917. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  918. *coefs++ = ((*coefs1++) + noise) * (*exponents++) * mult;
  919. }
  920. }
  921. }
  922. /* very high freqs : noise */
  923. n = s->block_len - s->coefs_end[bsize];
  924. mult1 = mult * exponents[-1];
  925. for(i = 0; i < n; i++) {
  926. *coefs++ = s->noise_table[s->noise_index] * mult1;
  927. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  928. }
  929. } else {
  930. /* XXX: optimize more */
  931. for(i = 0;i < s->coefs_start; i++)
  932. *coefs++ = 0.0;
  933. n = nb_coefs[ch];
  934. for(i = 0;i < n; i++) {
  935. *coefs++ = coefs1[i] * exponents[i] * mult;
  936. }
  937. n = s->block_len - s->coefs_end[bsize];
  938. for(i = 0;i < n; i++)
  939. *coefs++ = 0.0;
  940. }
  941. }
  942. }
  943. #ifdef TRACE
  944. for(ch = 0; ch < s->nb_channels; ch++) {
  945. if (s->channel_coded[ch]) {
  946. dump_floats("exponents", 3, s->exponents[ch], s->block_len);
  947. dump_floats("coefs", 1, s->coefs[ch], s->block_len);
  948. }
  949. }
  950. #endif
  951. if (s->ms_stereo && s->channel_coded[1]) {
  952. float a, b;
  953. int i;
  954. /* nominal case for ms stereo: we do it before mdct */
  955. /* no need to optimize this case because it should almost
  956. never happen */
  957. if (!s->channel_coded[0]) {
  958. tprintf("rare ms-stereo case happened\n");
  959. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  960. s->channel_coded[0] = 1;
  961. }
  962. for(i = 0; i < s->block_len; i++) {
  963. a = s->coefs[0][i];
  964. b = s->coefs[1][i];
  965. s->coefs[0][i] = a + b;
  966. s->coefs[1][i] = a - b;
  967. }
  968. }
  969. /* build the window : we ensure that when the windows overlap
  970. their squared sum is always 1 (MDCT reconstruction rule) */
  971. /* XXX: merge with output */
  972. {
  973. int i, next_block_len, block_len, prev_block_len, n;
  974. float *wptr;
  975. block_len = s->block_len;
  976. prev_block_len = 1 << s->prev_block_len_bits;
  977. next_block_len = 1 << s->next_block_len_bits;
  978. /* right part */
  979. wptr = window + block_len;
  980. if (block_len <= next_block_len) {
  981. for(i=0;i<block_len;i++)
  982. *wptr++ = s->windows[bsize][i];
  983. } else {
  984. /* overlap */
  985. n = (block_len / 2) - (next_block_len / 2);
  986. for(i=0;i<n;i++)
  987. *wptr++ = 1.0;
  988. for(i=0;i<next_block_len;i++)
  989. *wptr++ = s->windows[s->frame_len_bits - s->next_block_len_bits][i];
  990. for(i=0;i<n;i++)
  991. *wptr++ = 0.0;
  992. }
  993. /* left part */
  994. wptr = window + block_len;
  995. if (block_len <= prev_block_len) {
  996. for(i=0;i<block_len;i++)
  997. *--wptr = s->windows[bsize][i];
  998. } else {
  999. /* overlap */
  1000. n = (block_len / 2) - (prev_block_len / 2);
  1001. for(i=0;i<n;i++)
  1002. *--wptr = 1.0;
  1003. for(i=0;i<prev_block_len;i++)
  1004. *--wptr = s->windows[s->frame_len_bits - s->prev_block_len_bits][i];
  1005. for(i=0;i<n;i++)
  1006. *--wptr = 0.0;
  1007. }
  1008. }
  1009. for(ch = 0; ch < s->nb_channels; ch++) {
  1010. if (s->channel_coded[ch]) {
  1011. DECLARE_ALIGNED_16(FFTSample, output[BLOCK_MAX_SIZE * 2]);
  1012. float *ptr;
  1013. int i, n4, index, n;
  1014. n = s->block_len;
  1015. n4 = s->block_len / 2;
  1016. ff_imdct_calc(&s->mdct_ctx[bsize],
  1017. output, s->coefs[ch], s->mdct_tmp);
  1018. /* XXX: optimize all that by build the window and
  1019. multipying/adding at the same time */
  1020. /* multiply by the window */
  1021. for(i=0;i<n * 2;i++) {
  1022. output[i] *= window[i];
  1023. }
  1024. /* add in the frame */
  1025. index = (s->frame_len / 2) + s->block_pos - n4;
  1026. ptr = &s->frame_out[ch][index];
  1027. for(i=0;i<n * 2;i++) {
  1028. *ptr += output[i];
  1029. ptr++;
  1030. }
  1031. /* specific fast case for ms-stereo : add to second
  1032. channel if it is not coded */
  1033. if (s->ms_stereo && !s->channel_coded[1]) {
  1034. ptr = &s->frame_out[1][index];
  1035. for(i=0;i<n * 2;i++) {
  1036. *ptr += output[i];
  1037. ptr++;
  1038. }
  1039. }
  1040. }
  1041. }
  1042. next:
  1043. /* update block number */
  1044. s->block_num++;
  1045. s->block_pos += s->block_len;
  1046. if (s->block_pos >= s->frame_len)
  1047. return 1;
  1048. else
  1049. return 0;
  1050. }
  1051. /* decode a frame of frame_len samples */
  1052. static int wma_decode_frame(WMADecodeContext *s, int16_t *samples)
  1053. {
  1054. int ret, i, n, a, ch, incr;
  1055. int16_t *ptr;
  1056. float *iptr;
  1057. #ifdef TRACE
  1058. tprintf("***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  1059. #endif
  1060. /* read each block */
  1061. s->block_num = 0;
  1062. s->block_pos = 0;
  1063. for(;;) {
  1064. ret = wma_decode_block(s);
  1065. if (ret < 0)
  1066. return -1;
  1067. if (ret)
  1068. break;
  1069. }
  1070. /* convert frame to integer */
  1071. n = s->frame_len;
  1072. incr = s->nb_channels;
  1073. for(ch = 0; ch < s->nb_channels; ch++) {
  1074. ptr = samples + ch;
  1075. iptr = s->frame_out[ch];
  1076. for(i=0;i<n;i++) {
  1077. a = lrintf(*iptr++);
  1078. if (a > 32767)
  1079. a = 32767;
  1080. else if (a < -32768)
  1081. a = -32768;
  1082. *ptr = a;
  1083. ptr += incr;
  1084. }
  1085. /* prepare for next block */
  1086. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  1087. s->frame_len * sizeof(float));
  1088. /* XXX: suppress this */
  1089. memset(&s->frame_out[ch][s->frame_len], 0,
  1090. s->frame_len * sizeof(float));
  1091. }
  1092. #ifdef TRACE
  1093. dump_shorts("samples", samples, n * s->nb_channels);
  1094. #endif
  1095. return 0;
  1096. }
  1097. static int wma_decode_superframe(AVCodecContext *avctx,
  1098. void *data, int *data_size,
  1099. uint8_t *buf, int buf_size)
  1100. {
  1101. WMADecodeContext *s = avctx->priv_data;
  1102. int nb_frames, bit_offset, i, pos, len;
  1103. uint8_t *q;
  1104. int16_t *samples;
  1105. tprintf("***decode_superframe:\n");
  1106. if(buf_size==0){
  1107. s->last_superframe_len = 0;
  1108. return 0;
  1109. }
  1110. samples = data;
  1111. init_get_bits(&s->gb, buf, buf_size*8);
  1112. if (s->use_bit_reservoir) {
  1113. /* read super frame header */
  1114. get_bits(&s->gb, 4); /* super frame index */
  1115. nb_frames = get_bits(&s->gb, 4) - 1;
  1116. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  1117. if (s->last_superframe_len > 0) {
  1118. // printf("skip=%d\n", s->last_bitoffset);
  1119. /* add bit_offset bits to last frame */
  1120. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  1121. MAX_CODED_SUPERFRAME_SIZE)
  1122. goto fail;
  1123. q = s->last_superframe + s->last_superframe_len;
  1124. len = bit_offset;
  1125. while (len > 0) {
  1126. *q++ = (get_bits)(&s->gb, 8);
  1127. len -= 8;
  1128. }
  1129. if (len > 0) {
  1130. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  1131. }
  1132. /* XXX: bit_offset bits into last frame */
  1133. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  1134. /* skip unused bits */
  1135. if (s->last_bitoffset > 0)
  1136. skip_bits(&s->gb, s->last_bitoffset);
  1137. /* this frame is stored in the last superframe and in the
  1138. current one */
  1139. if (wma_decode_frame(s, samples) < 0)
  1140. goto fail;
  1141. samples += s->nb_channels * s->frame_len;
  1142. }
  1143. /* read each frame starting from bit_offset */
  1144. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  1145. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  1146. len = pos & 7;
  1147. if (len > 0)
  1148. skip_bits(&s->gb, len);
  1149. s->reset_block_lengths = 1;
  1150. for(i=0;i<nb_frames;i++) {
  1151. if (wma_decode_frame(s, samples) < 0)
  1152. goto fail;
  1153. samples += s->nb_channels * s->frame_len;
  1154. }
  1155. /* we copy the end of the frame in the last frame buffer */
  1156. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  1157. s->last_bitoffset = pos & 7;
  1158. pos >>= 3;
  1159. len = buf_size - pos;
  1160. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  1161. goto fail;
  1162. }
  1163. s->last_superframe_len = len;
  1164. memcpy(s->last_superframe, buf + pos, len);
  1165. } else {
  1166. /* single frame decode */
  1167. if (wma_decode_frame(s, samples) < 0)
  1168. goto fail;
  1169. samples += s->nb_channels * s->frame_len;
  1170. }
  1171. *data_size = (int8_t *)samples - (int8_t *)data;
  1172. return s->block_align;
  1173. fail:
  1174. /* when error, we reset the bit reservoir */
  1175. s->last_superframe_len = 0;
  1176. return -1;
  1177. }
  1178. static int wma_decode_end(AVCodecContext *avctx)
  1179. {
  1180. WMADecodeContext *s = avctx->priv_data;
  1181. int i;
  1182. for(i = 0; i < s->nb_block_sizes; i++)
  1183. ff_mdct_end(&s->mdct_ctx[i]);
  1184. for(i = 0; i < s->nb_block_sizes; i++)
  1185. av_free(s->windows[i]);
  1186. if (s->use_exp_vlc) {
  1187. free_vlc(&s->exp_vlc);
  1188. }
  1189. if (s->use_noise_coding) {
  1190. free_vlc(&s->hgain_vlc);
  1191. }
  1192. for(i = 0;i < 2; i++) {
  1193. free_vlc(&s->coef_vlc[i]);
  1194. av_free(s->run_table[i]);
  1195. av_free(s->level_table[i]);
  1196. }
  1197. return 0;
  1198. }
  1199. AVCodec wmav1_decoder =
  1200. {
  1201. "wmav1",
  1202. CODEC_TYPE_AUDIO,
  1203. CODEC_ID_WMAV1,
  1204. sizeof(WMADecodeContext),
  1205. wma_decode_init,
  1206. NULL,
  1207. wma_decode_end,
  1208. wma_decode_superframe,
  1209. };
  1210. AVCodec wmav2_decoder =
  1211. {
  1212. "wmav2",
  1213. CODEC_TYPE_AUDIO,
  1214. CODEC_ID_WMAV2,
  1215. sizeof(WMADecodeContext),
  1216. wma_decode_init,
  1217. NULL,
  1218. wma_decode_end,
  1219. wma_decode_superframe,
  1220. };