You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

921 lines
30KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file ratecontrol.c
  22. * Rate control for video encoders.
  23. */
  24. #include "avcodec.h"
  25. #include "dsputil.h"
  26. #include "mpegvideo.h"
  27. #undef NDEBUG // allways check asserts, the speed effect is far too small to disable them
  28. #include <assert.h>
  29. #ifndef M_E
  30. #define M_E 2.718281828
  31. #endif
  32. static int init_pass2(MpegEncContext *s);
  33. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  34. void ff_write_pass1_stats(MpegEncContext *s){
  35. snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  36. s->current_picture_ptr->display_picture_number, s->current_picture_ptr->coded_picture_number, s->pict_type,
  37. s->current_picture.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  38. s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
  39. }
  40. int ff_rate_control_init(MpegEncContext *s)
  41. {
  42. RateControlContext *rcc= &s->rc_context;
  43. int i;
  44. emms_c();
  45. for(i=0; i<5; i++){
  46. rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
  47. rcc->pred[i].count= 1.0;
  48. rcc->pred[i].decay= 0.4;
  49. rcc->i_cplx_sum [i]=
  50. rcc->p_cplx_sum [i]=
  51. rcc->mv_bits_sum[i]=
  52. rcc->qscale_sum [i]=
  53. rcc->frame_count[i]= 1; // 1 is better cuz of 1/0 and such
  54. rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
  55. }
  56. rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
  57. if(s->flags&CODEC_FLAG_PASS2){
  58. int i;
  59. char *p;
  60. /* find number of pics */
  61. p= s->avctx->stats_in;
  62. for(i=-1; p; i++){
  63. p= strchr(p+1, ';');
  64. }
  65. i+= s->max_b_frames;
  66. if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
  67. return -1;
  68. rcc->entry = (RateControlEntry*)av_mallocz(i*sizeof(RateControlEntry));
  69. rcc->num_entries= i;
  70. /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  71. for(i=0; i<rcc->num_entries; i++){
  72. RateControlEntry *rce= &rcc->entry[i];
  73. rce->pict_type= rce->new_pict_type=P_TYPE;
  74. rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
  75. rce->misc_bits= s->mb_num + 10;
  76. rce->mb_var_sum= s->mb_num*100;
  77. }
  78. /* read stats */
  79. p= s->avctx->stats_in;
  80. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  81. RateControlEntry *rce;
  82. int picture_number;
  83. int e;
  84. char *next;
  85. next= strchr(p, ';');
  86. if(next){
  87. (*next)=0; //sscanf in unbelieavle slow on looong strings //FIXME copy / dont write
  88. next++;
  89. }
  90. e= sscanf(p, " in:%d ", &picture_number);
  91. assert(picture_number >= 0);
  92. assert(picture_number < rcc->num_entries);
  93. rce= &rcc->entry[picture_number];
  94. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  95. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  96. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
  97. if(e!=14){
  98. av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
  99. return -1;
  100. }
  101. p= next;
  102. }
  103. if(init_pass2(s) < 0) return -1;
  104. //FIXME maybe move to end
  105. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  106. #ifdef CONFIG_XVID
  107. return ff_xvid_rate_control_init(s);
  108. #else
  109. av_log(s->avctx, AV_LOG_ERROR, "XviD ratecontrol requires libavcodec compiled with XviD support\n");
  110. return -1;
  111. #endif
  112. }
  113. }
  114. if(!(s->flags&CODEC_FLAG_PASS2)){
  115. rcc->short_term_qsum=0.001;
  116. rcc->short_term_qcount=0.001;
  117. rcc->pass1_rc_eq_output_sum= 0.001;
  118. rcc->pass1_wanted_bits=0.001;
  119. /* init stuff with the user specified complexity */
  120. if(s->avctx->rc_initial_cplx){
  121. for(i=0; i<60*30; i++){
  122. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  123. RateControlEntry rce;
  124. double q;
  125. if (i%((s->gop_size+3)/4)==0) rce.pict_type= I_TYPE;
  126. else if(i%(s->max_b_frames+1)) rce.pict_type= B_TYPE;
  127. else rce.pict_type= P_TYPE;
  128. rce.new_pict_type= rce.pict_type;
  129. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  130. rce.mb_var_sum = s->mb_num;
  131. rce.qscale = FF_QP2LAMBDA * 2;
  132. rce.f_code = 2;
  133. rce.b_code = 1;
  134. rce.misc_bits= 1;
  135. if(s->pict_type== I_TYPE){
  136. rce.i_count = s->mb_num;
  137. rce.i_tex_bits= bits;
  138. rce.p_tex_bits= 0;
  139. rce.mv_bits= 0;
  140. }else{
  141. rce.i_count = 0; //FIXME we do know this approx
  142. rce.i_tex_bits= 0;
  143. rce.p_tex_bits= bits*0.9;
  144. rce.mv_bits= bits*0.1;
  145. }
  146. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  147. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  148. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  149. rcc->frame_count[rce.pict_type] ++;
  150. bits= rce.i_tex_bits + rce.p_tex_bits;
  151. q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  152. rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME missbehaves a little for variable fps
  153. }
  154. }
  155. }
  156. return 0;
  157. }
  158. void ff_rate_control_uninit(MpegEncContext *s)
  159. {
  160. RateControlContext *rcc= &s->rc_context;
  161. emms_c();
  162. av_freep(&rcc->entry);
  163. #ifdef CONFIG_XVID
  164. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  165. ff_xvid_rate_control_uninit(s);
  166. #endif
  167. }
  168. static inline double qp2bits(RateControlEntry *rce, double qp){
  169. if(qp<=0.0){
  170. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  171. }
  172. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  173. }
  174. static inline double bits2qp(RateControlEntry *rce, double bits){
  175. if(bits<0.9){
  176. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  177. }
  178. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  179. }
  180. int ff_vbv_update(MpegEncContext *s, int frame_size){
  181. RateControlContext *rcc= &s->rc_context;
  182. const double fps= 1/av_q2d(s->avctx->time_base);
  183. const int buffer_size= s->avctx->rc_buffer_size;
  184. const double min_rate= s->avctx->rc_min_rate/fps;
  185. const double max_rate= s->avctx->rc_max_rate/fps;
  186. //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  187. if(buffer_size){
  188. int left;
  189. rcc->buffer_index-= frame_size;
  190. if(rcc->buffer_index < 0){
  191. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  192. rcc->buffer_index= 0;
  193. }
  194. left= buffer_size - rcc->buffer_index - 1;
  195. rcc->buffer_index += clip(left, min_rate, max_rate);
  196. if(rcc->buffer_index > buffer_size){
  197. int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
  198. if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4)
  199. stuffing=4;
  200. rcc->buffer_index -= 8*stuffing;
  201. if(s->avctx->debug & FF_DEBUG_RC)
  202. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  203. return stuffing;
  204. }
  205. }
  206. return 0;
  207. }
  208. /**
  209. * modifies the bitrate curve from pass1 for one frame
  210. */
  211. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  212. RateControlContext *rcc= &s->rc_context;
  213. AVCodecContext *a= s->avctx;
  214. double q, bits;
  215. const int pict_type= rce->new_pict_type;
  216. const double mb_num= s->mb_num;
  217. int i;
  218. double const_values[]={
  219. M_PI,
  220. M_E,
  221. rce->i_tex_bits*rce->qscale,
  222. rce->p_tex_bits*rce->qscale,
  223. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  224. rce->mv_bits/mb_num,
  225. rce->pict_type == B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  226. rce->i_count/mb_num,
  227. rce->mc_mb_var_sum/mb_num,
  228. rce->mb_var_sum/mb_num,
  229. rce->pict_type == I_TYPE,
  230. rce->pict_type == P_TYPE,
  231. rce->pict_type == B_TYPE,
  232. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  233. a->qcompress,
  234. /* rcc->last_qscale_for[I_TYPE],
  235. rcc->last_qscale_for[P_TYPE],
  236. rcc->last_qscale_for[B_TYPE],
  237. rcc->next_non_b_qscale,*/
  238. rcc->i_cplx_sum[I_TYPE] / (double)rcc->frame_count[I_TYPE],
  239. rcc->i_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  240. rcc->p_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  241. rcc->p_cplx_sum[B_TYPE] / (double)rcc->frame_count[B_TYPE],
  242. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  243. 0
  244. };
  245. static const char *const_names[]={
  246. "PI",
  247. "E",
  248. "iTex",
  249. "pTex",
  250. "tex",
  251. "mv",
  252. "fCode",
  253. "iCount",
  254. "mcVar",
  255. "var",
  256. "isI",
  257. "isP",
  258. "isB",
  259. "avgQP",
  260. "qComp",
  261. /* "lastIQP",
  262. "lastPQP",
  263. "lastBQP",
  264. "nextNonBQP",*/
  265. "avgIITex",
  266. "avgPITex",
  267. "avgPPTex",
  268. "avgBPTex",
  269. "avgTex",
  270. NULL
  271. };
  272. static double (*func1[])(void *, double)={
  273. (void *)bits2qp,
  274. (void *)qp2bits,
  275. NULL
  276. };
  277. static const char *func1_names[]={
  278. "bits2qp",
  279. "qp2bits",
  280. NULL
  281. };
  282. bits= ff_eval(s->avctx->rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce);
  283. rcc->pass1_rc_eq_output_sum+= bits;
  284. bits*=rate_factor;
  285. if(bits<0.0) bits=0.0;
  286. bits+= 1.0; //avoid 1/0 issues
  287. /* user override */
  288. for(i=0; i<s->avctx->rc_override_count; i++){
  289. RcOverride *rco= s->avctx->rc_override;
  290. if(rco[i].start_frame > frame_num) continue;
  291. if(rco[i].end_frame < frame_num) continue;
  292. if(rco[i].qscale)
  293. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  294. else
  295. bits*= rco[i].quality_factor;
  296. }
  297. q= bits2qp(rce, bits);
  298. /* I/B difference */
  299. if (pict_type==I_TYPE && s->avctx->i_quant_factor<0.0)
  300. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  301. else if(pict_type==B_TYPE && s->avctx->b_quant_factor<0.0)
  302. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  303. return q;
  304. }
  305. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  306. RateControlContext *rcc= &s->rc_context;
  307. AVCodecContext *a= s->avctx;
  308. const int pict_type= rce->new_pict_type;
  309. const double last_p_q = rcc->last_qscale_for[P_TYPE];
  310. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  311. if (pict_type==I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==P_TYPE))
  312. q= last_p_q *ABS(a->i_quant_factor) + a->i_quant_offset;
  313. else if(pict_type==B_TYPE && a->b_quant_factor>0.0)
  314. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  315. /* last qscale / qdiff stuff */
  316. if(rcc->last_non_b_pict_type==pict_type || pict_type!=I_TYPE){
  317. double last_q= rcc->last_qscale_for[pict_type];
  318. const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
  319. if (q > last_q + maxdiff) q= last_q + maxdiff;
  320. else if(q < last_q - maxdiff) q= last_q - maxdiff;
  321. }
  322. rcc->last_qscale_for[pict_type]= q; //Note we cant do that after blurring
  323. if(pict_type!=B_TYPE)
  324. rcc->last_non_b_pict_type= pict_type;
  325. return q;
  326. }
  327. /**
  328. * gets the qmin & qmax for pict_type
  329. */
  330. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  331. int qmin= s->avctx->lmin;
  332. int qmax= s->avctx->lmax;
  333. assert(qmin <= qmax);
  334. if(pict_type==B_TYPE){
  335. qmin= (int)(qmin*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  336. qmax= (int)(qmax*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  337. }else if(pict_type==I_TYPE){
  338. qmin= (int)(qmin*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  339. qmax= (int)(qmax*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  340. }
  341. qmin= clip(qmin, 1, FF_LAMBDA_MAX);
  342. qmax= clip(qmax, 1, FF_LAMBDA_MAX);
  343. if(qmax<qmin) qmax= qmin;
  344. *qmin_ret= qmin;
  345. *qmax_ret= qmax;
  346. }
  347. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  348. RateControlContext *rcc= &s->rc_context;
  349. int qmin, qmax;
  350. double bits;
  351. const int pict_type= rce->new_pict_type;
  352. const double buffer_size= s->avctx->rc_buffer_size;
  353. const double fps= 1/av_q2d(s->avctx->time_base);
  354. const double min_rate= s->avctx->rc_min_rate / fps;
  355. const double max_rate= s->avctx->rc_max_rate / fps;
  356. get_qminmax(&qmin, &qmax, s, pict_type);
  357. /* modulation */
  358. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==P_TYPE)
  359. q*= s->avctx->rc_qmod_amp;
  360. bits= qp2bits(rce, q);
  361. //printf("q:%f\n", q);
  362. /* buffer overflow/underflow protection */
  363. if(buffer_size){
  364. double expected_size= rcc->buffer_index;
  365. double q_limit;
  366. if(min_rate){
  367. double d= 2*(buffer_size - expected_size)/buffer_size;
  368. if(d>1.0) d=1.0;
  369. else if(d<0.0001) d=0.0001;
  370. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  371. q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index)*3, 1));
  372. if(q > q_limit){
  373. if(s->avctx->debug&FF_DEBUG_RC){
  374. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  375. }
  376. q= q_limit;
  377. }
  378. }
  379. if(max_rate){
  380. double d= 2*expected_size/buffer_size;
  381. if(d>1.0) d=1.0;
  382. else if(d<0.0001) d=0.0001;
  383. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  384. q_limit= bits2qp(rce, FFMAX(rcc->buffer_index/3, 1));
  385. if(q < q_limit){
  386. if(s->avctx->debug&FF_DEBUG_RC){
  387. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  388. }
  389. q= q_limit;
  390. }
  391. }
  392. }
  393. //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
  394. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  395. if (q<qmin) q=qmin;
  396. else if(q>qmax) q=qmax;
  397. }else{
  398. double min2= log(qmin);
  399. double max2= log(qmax);
  400. q= log(q);
  401. q= (q - min2)/(max2-min2) - 0.5;
  402. q*= -4.0;
  403. q= 1.0/(1.0 + exp(q));
  404. q= q*(max2-min2) + min2;
  405. q= exp(q);
  406. }
  407. return q;
  408. }
  409. //----------------------------------
  410. // 1 Pass Code
  411. static double predict_size(Predictor *p, double q, double var)
  412. {
  413. return p->coeff*var / (q*p->count);
  414. }
  415. /*
  416. static double predict_qp(Predictor *p, double size, double var)
  417. {
  418. //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
  419. return p->coeff*var / (size*p->count);
  420. }
  421. */
  422. static void update_predictor(Predictor *p, double q, double var, double size)
  423. {
  424. double new_coeff= size*q / (var + 1);
  425. if(var<10) return;
  426. p->count*= p->decay;
  427. p->coeff*= p->decay;
  428. p->count++;
  429. p->coeff+= new_coeff;
  430. }
  431. static void adaptive_quantization(MpegEncContext *s, double q){
  432. int i;
  433. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  434. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  435. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  436. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  437. const float p_masking = s->avctx->p_masking;
  438. const float border_masking = s->avctx->border_masking;
  439. float bits_sum= 0.0;
  440. float cplx_sum= 0.0;
  441. float cplx_tab[s->mb_num];
  442. float bits_tab[s->mb_num];
  443. const int qmin= s->avctx->mb_lmin;
  444. const int qmax= s->avctx->mb_lmax;
  445. Picture * const pic= &s->current_picture;
  446. const int mb_width = s->mb_width;
  447. const int mb_height = s->mb_height;
  448. for(i=0; i<s->mb_num; i++){
  449. const int mb_xy= s->mb_index2xy[i];
  450. float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
  451. float spat_cplx= sqrt(pic->mb_var[mb_xy]);
  452. const int lumi= pic->mb_mean[mb_xy];
  453. float bits, cplx, factor;
  454. int mb_x = mb_xy % s->mb_stride;
  455. int mb_y = mb_xy / s->mb_stride;
  456. int mb_distance;
  457. float mb_factor = 0.0;
  458. #if 0
  459. if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
  460. if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
  461. #endif
  462. if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
  463. if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
  464. if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
  465. cplx= spat_cplx;
  466. factor= 1.0 + p_masking;
  467. }else{
  468. cplx= temp_cplx;
  469. factor= pow(temp_cplx, - temp_cplx_masking);
  470. }
  471. factor*=pow(spat_cplx, - spatial_cplx_masking);
  472. if(lumi>127)
  473. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  474. else
  475. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  476. if(mb_x < mb_width/5){
  477. mb_distance = mb_width/5 - mb_x;
  478. mb_factor = (float)mb_distance / (float)(mb_width/5);
  479. }else if(mb_x > 4*mb_width/5){
  480. mb_distance = mb_x - 4*mb_width/5;
  481. mb_factor = (float)mb_distance / (float)(mb_width/5);
  482. }
  483. if(mb_y < mb_height/5){
  484. mb_distance = mb_height/5 - mb_y;
  485. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  486. }else if(mb_y > 4*mb_height/5){
  487. mb_distance = mb_y - 4*mb_height/5;
  488. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  489. }
  490. factor*= 1.0 - border_masking*mb_factor;
  491. if(factor<0.00001) factor= 0.00001;
  492. bits= cplx*factor;
  493. cplx_sum+= cplx;
  494. bits_sum+= bits;
  495. cplx_tab[i]= cplx;
  496. bits_tab[i]= bits;
  497. }
  498. /* handle qmin/qmax cliping */
  499. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  500. float factor= bits_sum/cplx_sum;
  501. for(i=0; i<s->mb_num; i++){
  502. float newq= q*cplx_tab[i]/bits_tab[i];
  503. newq*= factor;
  504. if (newq > qmax){
  505. bits_sum -= bits_tab[i];
  506. cplx_sum -= cplx_tab[i]*q/qmax;
  507. }
  508. else if(newq < qmin){
  509. bits_sum -= bits_tab[i];
  510. cplx_sum -= cplx_tab[i]*q/qmin;
  511. }
  512. }
  513. if(bits_sum < 0.001) bits_sum= 0.001;
  514. if(cplx_sum < 0.001) cplx_sum= 0.001;
  515. }
  516. for(i=0; i<s->mb_num; i++){
  517. const int mb_xy= s->mb_index2xy[i];
  518. float newq= q*cplx_tab[i]/bits_tab[i];
  519. int intq;
  520. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  521. newq*= bits_sum/cplx_sum;
  522. }
  523. intq= (int)(newq + 0.5);
  524. if (intq > qmax) intq= qmax;
  525. else if(intq < qmin) intq= qmin;
  526. //if(i%s->mb_width==0) printf("\n");
  527. //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
  528. s->lambda_table[mb_xy]= intq;
  529. }
  530. }
  531. void ff_get_2pass_fcode(MpegEncContext *s){
  532. RateControlContext *rcc= &s->rc_context;
  533. int picture_number= s->picture_number;
  534. RateControlEntry *rce;
  535. rce= &rcc->entry[picture_number];
  536. s->f_code= rce->f_code;
  537. s->b_code= rce->b_code;
  538. }
  539. //FIXME rd or at least approx for dquant
  540. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  541. {
  542. float q;
  543. int qmin, qmax;
  544. float br_compensation;
  545. double diff;
  546. double short_term_q;
  547. double fps;
  548. int picture_number= s->picture_number;
  549. int64_t wanted_bits;
  550. RateControlContext *rcc= &s->rc_context;
  551. AVCodecContext *a= s->avctx;
  552. RateControlEntry local_rce, *rce;
  553. double bits;
  554. double rate_factor;
  555. int var;
  556. const int pict_type= s->pict_type;
  557. Picture * const pic= &s->current_picture;
  558. emms_c();
  559. #ifdef CONFIG_XVID
  560. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  561. return ff_xvid_rate_estimate_qscale(s, dry_run);
  562. #endif
  563. get_qminmax(&qmin, &qmax, s, pict_type);
  564. fps= 1/av_q2d(s->avctx->time_base);
  565. //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
  566. /* update predictors */
  567. if(picture_number>2 && !dry_run){
  568. const int last_var= s->last_pict_type == I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  569. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  570. }
  571. if(s->flags&CODEC_FLAG_PASS2){
  572. assert(picture_number>=0);
  573. assert(picture_number<rcc->num_entries);
  574. rce= &rcc->entry[picture_number];
  575. wanted_bits= rce->expected_bits;
  576. }else{
  577. rce= &local_rce;
  578. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  579. }
  580. diff= s->total_bits - wanted_bits;
  581. br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
  582. if(br_compensation<=0.0) br_compensation=0.001;
  583. var= pict_type == I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
  584. short_term_q = 0; /* avoid warning */
  585. if(s->flags&CODEC_FLAG_PASS2){
  586. if(pict_type!=I_TYPE)
  587. assert(pict_type == rce->new_pict_type);
  588. q= rce->new_qscale / br_compensation;
  589. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  590. }else{
  591. rce->pict_type=
  592. rce->new_pict_type= pict_type;
  593. rce->mc_mb_var_sum= pic->mc_mb_var_sum;
  594. rce->mb_var_sum = pic-> mb_var_sum;
  595. rce->qscale = FF_QP2LAMBDA * 2;
  596. rce->f_code = s->f_code;
  597. rce->b_code = s->b_code;
  598. rce->misc_bits= 1;
  599. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  600. if(pict_type== I_TYPE){
  601. rce->i_count = s->mb_num;
  602. rce->i_tex_bits= bits;
  603. rce->p_tex_bits= 0;
  604. rce->mv_bits= 0;
  605. }else{
  606. rce->i_count = 0; //FIXME we do know this approx
  607. rce->i_tex_bits= 0;
  608. rce->p_tex_bits= bits*0.9;
  609. rce->mv_bits= bits*0.1;
  610. }
  611. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  612. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  613. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  614. rcc->frame_count[pict_type] ++;
  615. bits= rce->i_tex_bits + rce->p_tex_bits;
  616. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  617. q= get_qscale(s, rce, rate_factor, picture_number);
  618. assert(q>0.0);
  619. //printf("%f ", q);
  620. q= get_diff_limited_q(s, rce, q);
  621. //printf("%f ", q);
  622. assert(q>0.0);
  623. if(pict_type==P_TYPE || s->intra_only){ //FIXME type dependant blur like in 2-pass
  624. rcc->short_term_qsum*=a->qblur;
  625. rcc->short_term_qcount*=a->qblur;
  626. rcc->short_term_qsum+= q;
  627. rcc->short_term_qcount++;
  628. //printf("%f ", q);
  629. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  630. //printf("%f ", q);
  631. }
  632. assert(q>0.0);
  633. q= modify_qscale(s, rce, q, picture_number);
  634. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  635. assert(q>0.0);
  636. }
  637. if(s->avctx->debug&FF_DEBUG_RC){
  638. av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
  639. av_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
  640. br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
  641. );
  642. }
  643. if (q<qmin) q=qmin;
  644. else if(q>qmax) q=qmax;
  645. if(s->adaptive_quant)
  646. adaptive_quantization(s, q);
  647. else
  648. q= (int)(q + 0.5);
  649. if(!dry_run){
  650. rcc->last_qscale= q;
  651. rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
  652. rcc->last_mb_var_sum= pic->mb_var_sum;
  653. }
  654. #if 0
  655. {
  656. static int mvsum=0, texsum=0;
  657. mvsum += s->mv_bits;
  658. texsum += s->i_tex_bits + s->p_tex_bits;
  659. printf("%d %d//\n\n", mvsum, texsum);
  660. }
  661. #endif
  662. return q;
  663. }
  664. //----------------------------------------------
  665. // 2-Pass code
  666. static int init_pass2(MpegEncContext *s)
  667. {
  668. RateControlContext *rcc= &s->rc_context;
  669. AVCodecContext *a= s->avctx;
  670. int i;
  671. double fps= 1/av_q2d(s->avctx->time_base);
  672. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  673. double avg_quantizer[5];
  674. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits
  675. uint64_t available_bits[5];
  676. uint64_t all_const_bits;
  677. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  678. double rate_factor=0;
  679. double step;
  680. //int last_i_frame=-10000000;
  681. const int filter_size= (int)(a->qblur*4) | 1;
  682. double expected_bits;
  683. double *qscale, *blured_qscale;
  684. /* find complexity & const_bits & decide the pict_types */
  685. for(i=0; i<rcc->num_entries; i++){
  686. RateControlEntry *rce= &rcc->entry[i];
  687. rce->new_pict_type= rce->pict_type;
  688. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  689. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  690. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  691. rcc->frame_count[rce->pict_type] ++;
  692. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  693. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  694. }
  695. all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE];
  696. if(all_available_bits < all_const_bits){
  697. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is to low\n");
  698. return -1;
  699. }
  700. /* find average quantizers */
  701. avg_quantizer[P_TYPE]=0;
  702. for(step=256*256; step>0.0000001; step*=0.5){
  703. double expected_bits=0;
  704. avg_quantizer[P_TYPE]+= step;
  705. avg_quantizer[I_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset;
  706. avg_quantizer[B_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset;
  707. expected_bits=
  708. + all_const_bits
  709. + complexity[I_TYPE]/avg_quantizer[I_TYPE]
  710. + complexity[P_TYPE]/avg_quantizer[P_TYPE]
  711. + complexity[B_TYPE]/avg_quantizer[B_TYPE];
  712. if(expected_bits < all_available_bits) avg_quantizer[P_TYPE]-= step;
  713. //printf("%f %lld %f\n", expected_bits, all_available_bits, avg_quantizer[P_TYPE]);
  714. }
  715. //printf("qp_i:%f, qp_p:%f, qp_b:%f\n", avg_quantizer[I_TYPE],avg_quantizer[P_TYPE],avg_quantizer[B_TYPE]);
  716. for(i=0; i<5; i++){
  717. available_bits[i]= const_bits[i] + complexity[i]/avg_quantizer[i];
  718. }
  719. //printf("%lld %lld %lld %lld\n", available_bits[I_TYPE], available_bits[P_TYPE], available_bits[B_TYPE], all_available_bits);
  720. qscale= av_malloc(sizeof(double)*rcc->num_entries);
  721. blured_qscale= av_malloc(sizeof(double)*rcc->num_entries);
  722. for(step=256*256; step>0.0000001; step*=0.5){
  723. expected_bits=0;
  724. rate_factor+= step;
  725. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  726. /* find qscale */
  727. for(i=0; i<rcc->num_entries; i++){
  728. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  729. }
  730. assert(filter_size%2==1);
  731. /* fixed I/B QP relative to P mode */
  732. for(i=rcc->num_entries-1; i>=0; i--){
  733. RateControlEntry *rce= &rcc->entry[i];
  734. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  735. }
  736. /* smooth curve */
  737. for(i=0; i<rcc->num_entries; i++){
  738. RateControlEntry *rce= &rcc->entry[i];
  739. const int pict_type= rce->new_pict_type;
  740. int j;
  741. double q=0.0, sum=0.0;
  742. for(j=0; j<filter_size; j++){
  743. int index= i+j-filter_size/2;
  744. double d= index-i;
  745. double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
  746. if(index < 0 || index >= rcc->num_entries) continue;
  747. if(pict_type != rcc->entry[index].new_pict_type) continue;
  748. q+= qscale[index] * coeff;
  749. sum+= coeff;
  750. }
  751. blured_qscale[i]= q/sum;
  752. }
  753. /* find expected bits */
  754. for(i=0; i<rcc->num_entries; i++){
  755. RateControlEntry *rce= &rcc->entry[i];
  756. double bits;
  757. rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i);
  758. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  759. //printf("%d %f\n", rce->new_bits, blured_qscale[i]);
  760. bits += 8*ff_vbv_update(s, bits);
  761. rce->expected_bits= expected_bits;
  762. expected_bits += bits;
  763. }
  764. // printf("%f %d %f\n", expected_bits, (int)all_available_bits, rate_factor);
  765. if(expected_bits > all_available_bits) rate_factor-= step;
  766. }
  767. av_free(qscale);
  768. av_free(blured_qscale);
  769. if(abs(expected_bits/all_available_bits - 1.0) > 0.01 ){
  770. av_log(s->avctx, AV_LOG_ERROR, "Error: 2pass curve failed to converge\n");
  771. return -1;
  772. }
  773. return 0;
  774. }