You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2041 lines
67KB

  1. /*
  2. * QDM2 compatible decoder
  3. * Copyright (c) 2003 Ewald Snel
  4. * Copyright (c) 2005 Benjamin Larsson
  5. * Copyright (c) 2005 Alex Beregszaszi
  6. * Copyright (c) 2005 Roberto Togni
  7. *
  8. * This library is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2 of the License, or (at your option) any later version.
  12. *
  13. * This library is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with this library; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. /**
  24. * @file qdm2.c
  25. * QDM2 decoder
  26. * @author Ewald Snel, Benjamin Larsson, Alex Beregszaszi, Roberto Togni
  27. * The decoder is not perfect yet, there are still some distortions
  28. * especially on files encoded with 16 or 8 subbands.
  29. */
  30. #include <math.h>
  31. #include <stddef.h>
  32. #include <stdio.h>
  33. #define ALT_BITSTREAM_READER_LE
  34. #include "avcodec.h"
  35. #include "bitstream.h"
  36. #include "dsputil.h"
  37. #ifdef CONFIG_MPEGAUDIO_HP
  38. #define USE_HIGHPRECISION
  39. #endif
  40. #include "mpegaudio.h"
  41. #include "qdm2data.h"
  42. #undef NDEBUG
  43. #include <assert.h>
  44. #define SOFTCLIP_THRESHOLD 27600
  45. #define HARDCLIP_THRESHOLD 35716
  46. #define QDM2_LIST_ADD(list, size, packet) \
  47. do { \
  48. if (size > 0) { \
  49. list[size - 1].next = &list[size]; \
  50. } \
  51. list[size].packet = packet; \
  52. list[size].next = NULL; \
  53. size++; \
  54. } while(0)
  55. // Result is 8, 16 or 30
  56. #define QDM2_SB_USED(sub_sampling) (((sub_sampling) >= 2) ? 30 : 8 << (sub_sampling))
  57. #define FIX_NOISE_IDX(noise_idx) \
  58. if ((noise_idx) >= 3840) \
  59. (noise_idx) -= 3840; \
  60. #define SB_DITHERING_NOISE(sb,noise_idx) (noise_table[(noise_idx)++] * sb_noise_attenuation[(sb)])
  61. #define BITS_LEFT(length,gb) ((length) - get_bits_count ((gb)))
  62. #define SAMPLES_NEEDED \
  63. av_log (NULL,AV_LOG_INFO,"This file triggers some untested code. Please contact the developers.\n");
  64. #define SAMPLES_NEEDED_2(why) \
  65. av_log (NULL,AV_LOG_INFO,"This file triggers some missing code. Please contact the developers.\nPosition: %s\n",why);
  66. typedef int8_t sb_int8_array[2][30][64];
  67. /**
  68. * Subpacket
  69. */
  70. typedef struct {
  71. int type; ///< subpacket type
  72. unsigned int size; ///< subpacket size
  73. const uint8_t *data; ///< pointer to subpacket data (points to input data buffer, it's not a private copy)
  74. } QDM2SubPacket;
  75. /**
  76. * A node in the subpacket list
  77. */
  78. typedef struct _QDM2SubPNode {
  79. QDM2SubPacket *packet; ///< packet
  80. struct _QDM2SubPNode *next; ///< pointer to next packet in the list, NULL if leaf node
  81. } QDM2SubPNode;
  82. typedef struct {
  83. float level;
  84. float *samples_im;
  85. float *samples_re;
  86. float *table;
  87. int phase;
  88. int phase_shift;
  89. int duration;
  90. short time_index;
  91. short cutoff;
  92. } FFTTone;
  93. typedef struct {
  94. int16_t sub_packet;
  95. uint8_t channel;
  96. int16_t offset;
  97. int16_t exp;
  98. uint8_t phase;
  99. } FFTCoefficient;
  100. typedef struct {
  101. float re;
  102. float im;
  103. } QDM2Complex;
  104. typedef struct {
  105. QDM2Complex complex[256 + 1] __attribute__((aligned(16)));
  106. float samples_im[MPA_MAX_CHANNELS][256];
  107. float samples_re[MPA_MAX_CHANNELS][256];
  108. } QDM2FFT;
  109. /**
  110. * QDM2 decoder context
  111. */
  112. typedef struct {
  113. /// Parameters from codec header, do not change during playback
  114. int nb_channels; ///< number of channels
  115. int channels; ///< number of channels
  116. int group_size; ///< size of frame group (16 frames per group)
  117. int fft_size; ///< size of FFT, in complex numbers
  118. int checksum_size; ///< size of data block, used also for checksum
  119. /// Parameters built from header parameters, do not change during playback
  120. int group_order; ///< order of frame group
  121. int fft_order; ///< order of FFT (actually fftorder+1)
  122. int fft_frame_size; ///< size of fft frame, in components (1 comples = re + im)
  123. int frame_size; ///< size of data frame
  124. int frequency_range;
  125. int sub_sampling; ///< subsampling: 0=25%, 1=50%, 2=100% */
  126. int coeff_per_sb_select; ///< selector for "num. of coeffs. per subband" tables. Can be 0, 1, 2
  127. int cm_table_select; ///< selector for "coding method" tables. Can be 0, 1 (from init: 0-4)
  128. /// Packets and packet lists
  129. QDM2SubPacket sub_packets[16]; ///< the packets themselves
  130. QDM2SubPNode sub_packet_list_A[16]; ///< list of all packets
  131. QDM2SubPNode sub_packet_list_B[16]; ///< FFT packets B are on list
  132. int sub_packets_B; ///< number of packets on 'B' list
  133. QDM2SubPNode sub_packet_list_C[16]; ///< packets with errors?
  134. QDM2SubPNode sub_packet_list_D[16]; ///< DCT packets
  135. /// FFT and tones
  136. FFTTone fft_tones[1000];
  137. int fft_tone_start;
  138. int fft_tone_end;
  139. FFTCoefficient fft_coefs[1000];
  140. int fft_coefs_index;
  141. int fft_coefs_min_index[5];
  142. int fft_coefs_max_index[5];
  143. int fft_level_exp[6];
  144. FFTContext fft_ctx;
  145. FFTComplex exptab[128];
  146. QDM2FFT fft;
  147. /// I/O data
  148. uint8_t *compressed_data;
  149. int compressed_size;
  150. float output_buffer[1024];
  151. /// Synthesis filter
  152. MPA_INT synth_buf[MPA_MAX_CHANNELS][512*2] __attribute__((aligned(16)));
  153. int synth_buf_offset[MPA_MAX_CHANNELS];
  154. int32_t sb_samples[MPA_MAX_CHANNELS][128][SBLIMIT] __attribute__((aligned(16)));
  155. /// Mixed temporary data used in decoding
  156. float tone_level[MPA_MAX_CHANNELS][30][64];
  157. int8_t coding_method[MPA_MAX_CHANNELS][30][64];
  158. int8_t quantized_coeffs[MPA_MAX_CHANNELS][10][8];
  159. int8_t tone_level_idx_base[MPA_MAX_CHANNELS][30][8];
  160. int8_t tone_level_idx_hi1[MPA_MAX_CHANNELS][3][8][8];
  161. int8_t tone_level_idx_mid[MPA_MAX_CHANNELS][26][8];
  162. int8_t tone_level_idx_hi2[MPA_MAX_CHANNELS][26];
  163. int8_t tone_level_idx[MPA_MAX_CHANNELS][30][64];
  164. int8_t tone_level_idx_temp[MPA_MAX_CHANNELS][30][64];
  165. // Flags
  166. int has_errors; ///< packet has errors
  167. int superblocktype_2_3; ///< select fft tables and some algorithm based on superblock type
  168. int do_synth_filter; ///< used to perform or skip synthesis filter
  169. int sub_packet;
  170. int noise_idx; ///< index for dithering noise table
  171. } QDM2Context;
  172. static uint8_t empty_buffer[FF_INPUT_BUFFER_PADDING_SIZE];
  173. static VLC vlc_tab_level;
  174. static VLC vlc_tab_diff;
  175. static VLC vlc_tab_run;
  176. static VLC fft_level_exp_alt_vlc;
  177. static VLC fft_level_exp_vlc;
  178. static VLC fft_stereo_exp_vlc;
  179. static VLC fft_stereo_phase_vlc;
  180. static VLC vlc_tab_tone_level_idx_hi1;
  181. static VLC vlc_tab_tone_level_idx_mid;
  182. static VLC vlc_tab_tone_level_idx_hi2;
  183. static VLC vlc_tab_type30;
  184. static VLC vlc_tab_type34;
  185. static VLC vlc_tab_fft_tone_offset[5];
  186. static uint16_t softclip_table[HARDCLIP_THRESHOLD - SOFTCLIP_THRESHOLD + 1];
  187. static float noise_table[4096];
  188. static uint8_t random_dequant_index[256][5];
  189. static uint8_t random_dequant_type24[128][3];
  190. static float noise_samples[128];
  191. static MPA_INT mpa_window[512] __attribute__((aligned(16)));
  192. static void softclip_table_init(void) {
  193. int i;
  194. double dfl = SOFTCLIP_THRESHOLD - 32767;
  195. float delta = 1.0 / -dfl;
  196. for (i = 0; i < HARDCLIP_THRESHOLD - SOFTCLIP_THRESHOLD + 1; i++)
  197. softclip_table[i] = SOFTCLIP_THRESHOLD - ((int)(sin((float)i * delta) * dfl) & 0x0000FFFF);
  198. }
  199. // random generated table
  200. static void rnd_table_init(void) {
  201. int i,j;
  202. uint32_t ldw,hdw;
  203. uint64_t tmp64_1;
  204. uint64_t random_seed = 0;
  205. float delta = 1.0 / 16384.0;
  206. for(i = 0; i < 4096 ;i++) {
  207. random_seed = random_seed * 214013 + 2531011;
  208. noise_table[i] = (delta * (float)(((int32_t)random_seed >> 16) & 0x00007FFF)- 1.0) * 1.3;
  209. }
  210. for (i = 0; i < 256 ;i++) {
  211. random_seed = 81;
  212. ldw = i;
  213. for (j = 0; j < 5 ;j++) {
  214. random_dequant_index[i][j] = (uint8_t)((ldw / random_seed) & 0xFF);
  215. ldw = (uint32_t)ldw % (uint32_t)random_seed;
  216. tmp64_1 = (random_seed * 0x55555556);
  217. hdw = (uint32_t)(tmp64_1 >> 32);
  218. random_seed = (uint64_t)(hdw + (ldw >> 31));
  219. }
  220. }
  221. for (i = 0; i < 128 ;i++) {
  222. random_seed = 25;
  223. ldw = i;
  224. for (j = 0; j < 3 ;j++) {
  225. random_dequant_type24[i][j] = (uint8_t)((ldw / random_seed) & 0xFF);
  226. ldw = (uint32_t)ldw % (uint32_t)random_seed;
  227. tmp64_1 = (random_seed * 0x66666667);
  228. hdw = (uint32_t)(tmp64_1 >> 33);
  229. random_seed = hdw + (ldw >> 31);
  230. }
  231. }
  232. }
  233. static void init_noise_samples(void) {
  234. int i;
  235. int random_seed = 0;
  236. float delta = 1.0 / 16384.0;
  237. for (i = 0; i < 128;i++) {
  238. random_seed = random_seed * 214013 + 2531011;
  239. noise_samples[i] = (delta * (float)((random_seed >> 16) & 0x00007fff) - 1.0);
  240. }
  241. }
  242. static void qdm2_init_vlc(void)
  243. {
  244. init_vlc (&vlc_tab_level, 8, 24,
  245. vlc_tab_level_huffbits, 1, 1,
  246. vlc_tab_level_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  247. init_vlc (&vlc_tab_diff, 8, 37,
  248. vlc_tab_diff_huffbits, 1, 1,
  249. vlc_tab_diff_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  250. init_vlc (&vlc_tab_run, 5, 6,
  251. vlc_tab_run_huffbits, 1, 1,
  252. vlc_tab_run_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  253. init_vlc (&fft_level_exp_alt_vlc, 8, 28,
  254. fft_level_exp_alt_huffbits, 1, 1,
  255. fft_level_exp_alt_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  256. init_vlc (&fft_level_exp_vlc, 8, 20,
  257. fft_level_exp_huffbits, 1, 1,
  258. fft_level_exp_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  259. init_vlc (&fft_stereo_exp_vlc, 6, 7,
  260. fft_stereo_exp_huffbits, 1, 1,
  261. fft_stereo_exp_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  262. init_vlc (&fft_stereo_phase_vlc, 6, 9,
  263. fft_stereo_phase_huffbits, 1, 1,
  264. fft_stereo_phase_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  265. init_vlc (&vlc_tab_tone_level_idx_hi1, 8, 20,
  266. vlc_tab_tone_level_idx_hi1_huffbits, 1, 1,
  267. vlc_tab_tone_level_idx_hi1_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  268. init_vlc (&vlc_tab_tone_level_idx_mid, 8, 24,
  269. vlc_tab_tone_level_idx_mid_huffbits, 1, 1,
  270. vlc_tab_tone_level_idx_mid_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  271. init_vlc (&vlc_tab_tone_level_idx_hi2, 8, 24,
  272. vlc_tab_tone_level_idx_hi2_huffbits, 1, 1,
  273. vlc_tab_tone_level_idx_hi2_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  274. init_vlc (&vlc_tab_type30, 6, 9,
  275. vlc_tab_type30_huffbits, 1, 1,
  276. vlc_tab_type30_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  277. init_vlc (&vlc_tab_type34, 5, 10,
  278. vlc_tab_type34_huffbits, 1, 1,
  279. vlc_tab_type34_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  280. init_vlc (&vlc_tab_fft_tone_offset[0], 8, 23,
  281. vlc_tab_fft_tone_offset_0_huffbits, 1, 1,
  282. vlc_tab_fft_tone_offset_0_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  283. init_vlc (&vlc_tab_fft_tone_offset[1], 8, 28,
  284. vlc_tab_fft_tone_offset_1_huffbits, 1, 1,
  285. vlc_tab_fft_tone_offset_1_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  286. init_vlc (&vlc_tab_fft_tone_offset[2], 8, 32,
  287. vlc_tab_fft_tone_offset_2_huffbits, 1, 1,
  288. vlc_tab_fft_tone_offset_2_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  289. init_vlc (&vlc_tab_fft_tone_offset[3], 8, 35,
  290. vlc_tab_fft_tone_offset_3_huffbits, 1, 1,
  291. vlc_tab_fft_tone_offset_3_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  292. init_vlc (&vlc_tab_fft_tone_offset[4], 8, 38,
  293. vlc_tab_fft_tone_offset_4_huffbits, 1, 1,
  294. vlc_tab_fft_tone_offset_4_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  295. }
  296. /* for floating point to fixed point conversion */
  297. static float f2i_scale = (float) (1 << (FRAC_BITS - 15));
  298. static int qdm2_get_vlc (GetBitContext *gb, VLC *vlc, int flag, int depth)
  299. {
  300. int value;
  301. value = get_vlc2(gb, vlc->table, vlc->bits, depth);
  302. /* stage-2, 3 bits exponent escape sequence */
  303. if (value-- == 0)
  304. value = get_bits (gb, get_bits (gb, 3) + 1);
  305. /* stage-3, optional */
  306. if (flag) {
  307. int tmp = vlc_stage3_values[value];
  308. if ((value & ~3) > 0)
  309. tmp += get_bits (gb, (value >> 2));
  310. value = tmp;
  311. }
  312. return value;
  313. }
  314. static int qdm2_get_se_vlc (VLC *vlc, GetBitContext *gb, int depth)
  315. {
  316. int value = qdm2_get_vlc (gb, vlc, 0, depth);
  317. return (value & 1) ? ((value + 1) >> 1) : -(value >> 1);
  318. }
  319. /**
  320. * QDM2 checksum
  321. *
  322. * @param data pointer to data to be checksum'ed
  323. * @param length data length
  324. * @param value checksum value
  325. *
  326. * @return 0 if checksum is OK
  327. */
  328. static uint16_t qdm2_packet_checksum (uint8_t *data, int length, int value) {
  329. int i;
  330. for (i=0; i < length; i++)
  331. value -= data[i];
  332. return (uint16_t)(value & 0xffff);
  333. }
  334. /**
  335. * Fills a QDM2SubPacket structure with packet type, size, and data pointer.
  336. *
  337. * @param gb bitreader context
  338. * @param sub_packet packet under analysis
  339. */
  340. static void qdm2_decode_sub_packet_header (GetBitContext *gb, QDM2SubPacket *sub_packet)
  341. {
  342. sub_packet->type = get_bits (gb, 8);
  343. if (sub_packet->type == 0) {
  344. sub_packet->size = 0;
  345. sub_packet->data = NULL;
  346. } else {
  347. sub_packet->size = get_bits (gb, 8);
  348. if (sub_packet->type & 0x80) {
  349. sub_packet->size <<= 8;
  350. sub_packet->size |= get_bits (gb, 8);
  351. sub_packet->type &= 0x7f;
  352. }
  353. if (sub_packet->type == 0x7f)
  354. sub_packet->type |= (get_bits (gb, 8) << 8);
  355. sub_packet->data = &gb->buffer[get_bits_count(gb) / 8]; // FIXME: this depends on bitreader internal data
  356. }
  357. av_log(NULL,AV_LOG_DEBUG,"Subpacket: type=%d size=%d start_offs=%x\n",
  358. sub_packet->type, sub_packet->size, get_bits_count(gb) / 8);
  359. }
  360. /**
  361. * Return node pointer to first packet of requested type in list.
  362. *
  363. * @param list list of subpackets to be scanned
  364. * @param type type of searched subpacket
  365. * @return node pointer for subpacket if found, else NULL
  366. */
  367. static QDM2SubPNode* qdm2_search_subpacket_type_in_list (QDM2SubPNode *list, int type)
  368. {
  369. while (list != NULL && list->packet != NULL) {
  370. if (list->packet->type == type)
  371. return list;
  372. list = list->next;
  373. }
  374. return NULL;
  375. }
  376. /**
  377. * Replaces 8 elements with their average value.
  378. * Called by qdm2_decode_superblock before starting subblock decoding.
  379. *
  380. * @param q context
  381. */
  382. static void average_quantized_coeffs (QDM2Context *q)
  383. {
  384. int i, j, n, ch, sum;
  385. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  386. for (ch = 0; ch < q->nb_channels; ch++)
  387. for (i = 0; i < n; i++) {
  388. sum = 0;
  389. for (j = 0; j < 8; j++)
  390. sum += q->quantized_coeffs[ch][i][j];
  391. sum /= 8;
  392. if (sum > 0)
  393. sum--;
  394. for (j=0; j < 8; j++)
  395. q->quantized_coeffs[ch][i][j] = sum;
  396. }
  397. }
  398. /**
  399. * Build subband samples with noise weighted by q->tone_level.
  400. * Called by synthfilt_build_sb_samples.
  401. *
  402. * @param q context
  403. * @param sb subband index
  404. */
  405. static void build_sb_samples_from_noise (QDM2Context *q, int sb)
  406. {
  407. int ch, j;
  408. FIX_NOISE_IDX(q->noise_idx);
  409. if (!q->nb_channels)
  410. return;
  411. for (ch = 0; ch < q->nb_channels; ch++)
  412. for (j = 0; j < 64; j++) {
  413. q->sb_samples[ch][j * 2][sb] = (int32_t)(f2i_scale * SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j] + .5);
  414. q->sb_samples[ch][j * 2 + 1][sb] = (int32_t)(f2i_scale * SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j] + .5);
  415. }
  416. }
  417. /**
  418. * Called while processing data from subpackets 11 and 12.
  419. * Used after making changes to coding_method array.
  420. *
  421. * @param sb subband index
  422. * @param channels number of channels
  423. * @param coding_method q->coding_method[0][0][0]
  424. */
  425. static void fix_coding_method_array (int sb, int channels, sb_int8_array coding_method)
  426. {
  427. int j,k;
  428. int ch;
  429. int run, case_val;
  430. int switchtable[23] = {0,5,1,5,5,5,5,5,2,5,5,5,5,5,5,5,3,5,5,5,5,5,4};
  431. for (ch = 0; ch < channels; ch++) {
  432. for (j = 0; j < 64; ) {
  433. if((coding_method[ch][sb][j] - 8) > 22) {
  434. run = 1;
  435. case_val = 8;
  436. } else {
  437. switch (switchtable[coding_method[ch][sb][j]]) {
  438. case 0: run = 10; case_val = 10; break;
  439. case 1: run = 1; case_val = 16; break;
  440. case 2: run = 5; case_val = 24; break;
  441. case 3: run = 3; case_val = 30; break;
  442. case 4: run = 1; case_val = 30; break;
  443. case 5: run = 1; case_val = 8; break;
  444. default: run = 1; case_val = 8; break;
  445. }
  446. }
  447. for (k = 0; k < run; k++)
  448. if (j + k < 128)
  449. if (coding_method[ch][sb + (j + k) / 64][(j + k) % 64] > coding_method[ch][sb][j])
  450. if (k > 0) {
  451. SAMPLES_NEEDED
  452. //not debugged, almost never used
  453. memset(&coding_method[ch][sb][j + k], case_val, k * sizeof(int8_t));
  454. memset(&coding_method[ch][sb][j + k], case_val, 3 * sizeof(int8_t));
  455. }
  456. j += run;
  457. }
  458. }
  459. }
  460. /**
  461. * Related to synthesis filter
  462. * Called by process_subpacket_10
  463. *
  464. * @param q context
  465. * @param flag 1 if called after getting data from subpacket 10, 0 if no subpacket 10
  466. */
  467. static void fill_tone_level_array (QDM2Context *q, int flag)
  468. {
  469. int i, sb, ch, sb_used;
  470. int tmp, tab;
  471. // This should never happen
  472. if (q->nb_channels <= 0)
  473. return;
  474. for (ch = 0; ch < q->nb_channels; ch++)
  475. for (sb = 0; sb < 30; sb++)
  476. for (i = 0; i < 8; i++) {
  477. if ((tab=coeff_per_sb_for_dequant[q->coeff_per_sb_select][sb]) < (last_coeff[q->coeff_per_sb_select] - 1))
  478. tmp = q->quantized_coeffs[ch][tab + 1][i] * dequant_table[q->coeff_per_sb_select][tab + 1][sb]+
  479. q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  480. else
  481. tmp = q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  482. if(tmp < 0)
  483. tmp += 0xff;
  484. q->tone_level_idx_base[ch][sb][i] = (tmp / 256) & 0xff;
  485. }
  486. sb_used = QDM2_SB_USED(q->sub_sampling);
  487. if ((q->superblocktype_2_3 != 0) && !flag) {
  488. for (sb = 0; sb < sb_used; sb++)
  489. for (ch = 0; ch < q->nb_channels; ch++)
  490. for (i = 0; i < 64; i++) {
  491. q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  492. if (q->tone_level_idx[ch][sb][i] < 0)
  493. q->tone_level[ch][sb][i] = 0;
  494. else
  495. q->tone_level[ch][sb][i] = fft_tone_level_table[0][q->tone_level_idx[ch][sb][i] & 0x3f];
  496. }
  497. } else {
  498. tab = q->superblocktype_2_3 ? 0 : 1;
  499. for (sb = 0; sb < sb_used; sb++) {
  500. if ((sb >= 4) && (sb <= 23)) {
  501. for (ch = 0; ch < q->nb_channels; ch++)
  502. for (i = 0; i < 64; i++) {
  503. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  504. q->tone_level_idx_hi1[ch][sb / 8][i / 8][i % 8] -
  505. q->tone_level_idx_mid[ch][sb - 4][i / 8] -
  506. q->tone_level_idx_hi2[ch][sb - 4];
  507. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  508. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  509. q->tone_level[ch][sb][i] = 0;
  510. else
  511. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  512. }
  513. } else {
  514. if (sb > 4) {
  515. for (ch = 0; ch < q->nb_channels; ch++)
  516. for (i = 0; i < 64; i++) {
  517. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  518. q->tone_level_idx_hi1[ch][2][i / 8][i % 8] -
  519. q->tone_level_idx_hi2[ch][sb - 4];
  520. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  521. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  522. q->tone_level[ch][sb][i] = 0;
  523. else
  524. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  525. }
  526. } else {
  527. for (ch = 0; ch < q->nb_channels; ch++)
  528. for (i = 0; i < 64; i++) {
  529. tmp = q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  530. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  531. q->tone_level[ch][sb][i] = 0;
  532. else
  533. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  534. }
  535. }
  536. }
  537. }
  538. }
  539. return;
  540. }
  541. /**
  542. * Related to synthesis filter
  543. * Called by process_subpacket_11
  544. * c is built with data from subpacket 11
  545. * Most of this function is used only if superblock_type_2_3 == 0, never seen it in samples
  546. *
  547. * @param tone_level_idx
  548. * @param tone_level_idx_temp
  549. * @param coding_method q->coding_method[0][0][0]
  550. * @param nb_channels number of channels
  551. * @param c coming from subpacket 11, passed as 8*c
  552. * @param superblocktype_2_3 flag based on superblock packet type
  553. * @param cm_table_select q->cm_table_select
  554. */
  555. static void fill_coding_method_array (sb_int8_array tone_level_idx, sb_int8_array tone_level_idx_temp,
  556. sb_int8_array coding_method, int nb_channels,
  557. int c, int superblocktype_2_3, int cm_table_select)
  558. {
  559. int ch, sb, j;
  560. int tmp, acc, esp_40, comp;
  561. int add1, add2, add3, add4;
  562. int64_t multres;
  563. // This should never happen
  564. if (nb_channels <= 0)
  565. return;
  566. if (!superblocktype_2_3) {
  567. /* This case is untested, no samples available */
  568. SAMPLES_NEEDED
  569. for (ch = 0; ch < nb_channels; ch++)
  570. for (sb = 0; sb < 30; sb++) {
  571. for (j = 1; j < 64; j++) {
  572. add1 = tone_level_idx[ch][sb][j] - 10;
  573. if (add1 < 0)
  574. add1 = 0;
  575. add2 = add3 = add4 = 0;
  576. if (sb > 1) {
  577. add2 = tone_level_idx[ch][sb - 2][j] + tone_level_idx_offset_table[sb][0] - 6;
  578. if (add2 < 0)
  579. add2 = 0;
  580. }
  581. if (sb > 0) {
  582. add3 = tone_level_idx[ch][sb - 1][j] + tone_level_idx_offset_table[sb][1] - 6;
  583. if (add3 < 0)
  584. add3 = 0;
  585. }
  586. if (sb < 29) {
  587. add4 = tone_level_idx[ch][sb + 1][j] + tone_level_idx_offset_table[sb][3] - 6;
  588. if (add4 < 0)
  589. add4 = 0;
  590. }
  591. tmp = tone_level_idx[ch][sb][j + 1] * 2 - add4 - add3 - add2 - add1;
  592. if (tmp < 0)
  593. tmp = 0;
  594. tone_level_idx_temp[ch][sb][j + 1] = tmp & 0xff;
  595. }
  596. tone_level_idx_temp[ch][sb][0] = tone_level_idx_temp[ch][sb][1];
  597. }
  598. acc = 0;
  599. for (ch = 0; ch < nb_channels; ch++)
  600. for (sb = 0; sb < 30; sb++)
  601. for (j = 0; j < 64; j++)
  602. acc += tone_level_idx_temp[ch][sb][j];
  603. if (acc)
  604. tmp = c * 256 / (acc & 0xffff);
  605. multres = 0x66666667 * (acc * 10);
  606. esp_40 = (multres >> 32) / 8 + ((multres & 0xffffffff) >> 31);
  607. for (ch = 0; ch < nb_channels; ch++)
  608. for (sb = 0; sb < 30; sb++)
  609. for (j = 0; j < 64; j++) {
  610. comp = tone_level_idx_temp[ch][sb][j]* esp_40 * 10;
  611. if (comp < 0)
  612. comp += 0xff;
  613. comp /= 256; // signed shift
  614. switch(sb) {
  615. case 0:
  616. if (comp < 30)
  617. comp = 30;
  618. comp += 15;
  619. break;
  620. case 1:
  621. if (comp < 24)
  622. comp = 24;
  623. comp += 10;
  624. break;
  625. case 2:
  626. case 3:
  627. case 4:
  628. if (comp < 16)
  629. comp = 16;
  630. }
  631. if (comp <= 5)
  632. tmp = 0;
  633. else if (comp <= 10)
  634. tmp = 10;
  635. else if (comp <= 16)
  636. tmp = 16;
  637. else if (comp <= 24)
  638. tmp = -1;
  639. else
  640. tmp = 0;
  641. coding_method[ch][sb][j] = ((tmp & 0xfffa) + 30 )& 0xff;
  642. }
  643. for (sb = 0; sb < 30; sb++)
  644. fix_coding_method_array(sb, nb_channels, coding_method);
  645. for (ch = 0; ch < nb_channels; ch++)
  646. for (sb = 0; sb < 30; sb++)
  647. for (j = 0; j < 64; j++)
  648. if (sb >= 10) {
  649. if (coding_method[ch][sb][j] < 10)
  650. coding_method[ch][sb][j] = 10;
  651. } else {
  652. if (sb >= 2) {
  653. if (coding_method[ch][sb][j] < 16)
  654. coding_method[ch][sb][j] = 16;
  655. } else {
  656. if (coding_method[ch][sb][j] < 30)
  657. coding_method[ch][sb][j] = 30;
  658. }
  659. }
  660. } else { // superblocktype_2_3 != 0
  661. for (ch = 0; ch < nb_channels; ch++)
  662. for (sb = 0; sb < 30; sb++)
  663. for (j = 0; j < 64; j++)
  664. coding_method[ch][sb][j] = coding_method_table[cm_table_select][sb];
  665. }
  666. return;
  667. }
  668. /**
  669. *
  670. * Called by process_subpacket_11 to process more data from subpacket 11 with sb 0-8
  671. * Called by process_subpacket_12 to process data from subpacket 12 with sb 8-sb_used
  672. *
  673. * @param q context
  674. * @param gb bitreader context
  675. * @param length packet length in bits
  676. * @param sb_min lower subband processed (sb_min included)
  677. * @param sb_max higher subband processed (sb_max excluded)
  678. */
  679. static void synthfilt_build_sb_samples (QDM2Context *q, GetBitContext *gb, int length, int sb_min, int sb_max)
  680. {
  681. int sb, j, k, n, ch, run, channels;
  682. int joined_stereo, zero_encoding, chs;
  683. int type34_first;
  684. float type34_div = 0;
  685. float type34_predictor;
  686. float samples[10], sign_bits[16];
  687. if (length == 0) {
  688. // If no data use noise
  689. for (sb=sb_min; sb < sb_max; sb++)
  690. build_sb_samples_from_noise (q, sb);
  691. return;
  692. }
  693. for (sb = sb_min; sb < sb_max; sb++) {
  694. FIX_NOISE_IDX(q->noise_idx);
  695. channels = q->nb_channels;
  696. if (q->nb_channels <= 1 || sb < 12)
  697. joined_stereo = 0;
  698. else if (sb >= 24)
  699. joined_stereo = 1;
  700. else
  701. joined_stereo = (BITS_LEFT(length,gb) >= 1) ? get_bits1 (gb) : 0;
  702. if (joined_stereo) {
  703. if (BITS_LEFT(length,gb) >= 16)
  704. for (j = 0; j < 16; j++)
  705. sign_bits[j] = get_bits1 (gb);
  706. for (j = 0; j < 64; j++)
  707. if (q->coding_method[1][sb][j] > q->coding_method[0][sb][j])
  708. q->coding_method[0][sb][j] = q->coding_method[1][sb][j];
  709. fix_coding_method_array(sb, q->nb_channels, q->coding_method);
  710. channels = 1;
  711. }
  712. for (ch = 0; ch < channels; ch++) {
  713. zero_encoding = (BITS_LEFT(length,gb) >= 1) ? get_bits1(gb) : 0;
  714. type34_predictor = 0.0;
  715. type34_first = 1;
  716. for (j = 0; j < 128; ) {
  717. switch (q->coding_method[ch][sb][j / 2]) {
  718. case 8:
  719. if (BITS_LEFT(length,gb) >= 10) {
  720. if (zero_encoding) {
  721. for (k = 0; k < 5; k++) {
  722. if ((j + 2 * k) >= 128)
  723. break;
  724. samples[2 * k] = get_bits1(gb) ? dequant_1bit[joined_stereo][2 * get_bits1(gb)] : 0;
  725. }
  726. } else {
  727. n = get_bits(gb, 8);
  728. for (k = 0; k < 5; k++)
  729. samples[2 * k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  730. }
  731. for (k = 0; k < 5; k++)
  732. samples[2 * k + 1] = SB_DITHERING_NOISE(sb,q->noise_idx);
  733. } else {
  734. for (k = 0; k < 10; k++)
  735. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  736. }
  737. run = 10;
  738. break;
  739. case 10:
  740. if (BITS_LEFT(length,gb) >= 1) {
  741. float f = 0.81;
  742. if (get_bits1(gb))
  743. f = -f;
  744. f -= noise_samples[((sb + 1) * (j +5 * ch + 1)) & 127] * 9.0 / 40.0;
  745. samples[0] = f;
  746. } else {
  747. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  748. }
  749. run = 1;
  750. break;
  751. case 16:
  752. if (BITS_LEFT(length,gb) >= 10) {
  753. if (zero_encoding) {
  754. for (k = 0; k < 5; k++) {
  755. if ((j + k) >= 128)
  756. break;
  757. samples[k] = (get_bits1(gb) == 0) ? 0 : dequant_1bit[joined_stereo][2 * get_bits1(gb)];
  758. }
  759. } else {
  760. n = get_bits (gb, 8);
  761. for (k = 0; k < 5; k++)
  762. samples[k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  763. }
  764. } else {
  765. for (k = 0; k < 5; k++)
  766. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  767. }
  768. run = 5;
  769. break;
  770. case 24:
  771. if (BITS_LEFT(length,gb) >= 7) {
  772. n = get_bits(gb, 7);
  773. for (k = 0; k < 3; k++)
  774. samples[k] = (random_dequant_type24[n][k] - 2.0) * 0.5;
  775. } else {
  776. for (k = 0; k < 3; k++)
  777. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  778. }
  779. run = 3;
  780. break;
  781. case 30:
  782. if (BITS_LEFT(length,gb) >= 4)
  783. samples[0] = type30_dequant[qdm2_get_vlc(gb, &vlc_tab_type30, 0, 1)];
  784. else
  785. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  786. run = 1;
  787. break;
  788. case 34:
  789. if (BITS_LEFT(length,gb) >= 7) {
  790. if (type34_first) {
  791. type34_div = (float)(1 << get_bits(gb, 2));
  792. samples[0] = ((float)get_bits(gb, 5) - 16.0) / 15.0;
  793. type34_predictor = samples[0];
  794. type34_first = 0;
  795. } else {
  796. samples[0] = type34_delta[qdm2_get_vlc(gb, &vlc_tab_type34, 0, 1)] / type34_div + type34_predictor;
  797. type34_predictor = samples[0];
  798. }
  799. } else {
  800. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  801. }
  802. run = 1;
  803. break;
  804. default:
  805. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  806. run = 1;
  807. break;
  808. }
  809. if (joined_stereo) {
  810. float tmp[10][MPA_MAX_CHANNELS];
  811. for (k = 0; k < run; k++) {
  812. tmp[k][0] = samples[k];
  813. tmp[k][1] = (sign_bits[(j + k) / 8]) ? -samples[k] : samples[k];
  814. }
  815. for (chs = 0; chs < q->nb_channels; chs++)
  816. for (k = 0; k < run; k++)
  817. if ((j + k) < 128)
  818. q->sb_samples[chs][j + k][sb] = (int32_t)(f2i_scale * q->tone_level[chs][sb][((j + k)/2)] * tmp[k][chs] + .5);
  819. } else {
  820. for (k = 0; k < run; k++)
  821. if ((j + k) < 128)
  822. q->sb_samples[ch][j + k][sb] = (int32_t)(f2i_scale * q->tone_level[ch][sb][(j + k)/2] * samples[k] + .5);
  823. }
  824. j += run;
  825. } // j loop
  826. } // channel loop
  827. } // subband loop
  828. }
  829. /**
  830. * Init the first element of a channel in quantized_coeffs with data from packet 10 (quantized_coeffs[ch][0]).
  831. * This is similar to process_subpacket_9, but for a single channel and for element [0]
  832. * same VLC tables as process_subpacket_9 are used.
  833. *
  834. * @param q context
  835. * @param quantized_coeffs pointer to quantized_coeffs[ch][0]
  836. * @param gb bitreader context
  837. * @param length packet length in bits
  838. */
  839. static void init_quantized_coeffs_elem0 (int8_t *quantized_coeffs, GetBitContext *gb, int length)
  840. {
  841. int i, k, run, level, diff;
  842. if (BITS_LEFT(length,gb) < 16)
  843. return;
  844. level = qdm2_get_vlc(gb, &vlc_tab_level, 0, 2);
  845. quantized_coeffs[0] = level;
  846. for (i = 0; i < 7; ) {
  847. if (BITS_LEFT(length,gb) < 16)
  848. break;
  849. run = qdm2_get_vlc(gb, &vlc_tab_run, 0, 1) + 1;
  850. if (BITS_LEFT(length,gb) < 16)
  851. break;
  852. diff = qdm2_get_se_vlc(&vlc_tab_diff, gb, 2);
  853. for (k = 1; k <= run; k++)
  854. quantized_coeffs[i + k] = (level + ((k * diff) / run));
  855. level += diff;
  856. i += run;
  857. }
  858. }
  859. /**
  860. * Related to synthesis filter, process data from packet 10
  861. * Init part of quantized_coeffs via function init_quantized_coeffs_elem0
  862. * Init tone_level_idx_hi1, tone_level_idx_hi2, tone_level_idx_mid with data from packet 10
  863. *
  864. * @param q context
  865. * @param gb bitreader context
  866. * @param length packet length in bits
  867. */
  868. static void init_tone_level_dequantization (QDM2Context *q, GetBitContext *gb, int length)
  869. {
  870. int sb, j, k, n, ch;
  871. for (ch = 0; ch < q->nb_channels; ch++) {
  872. init_quantized_coeffs_elem0(q->quantized_coeffs[ch][0], gb, length);
  873. if (BITS_LEFT(length,gb) < 16) {
  874. memset(q->quantized_coeffs[ch][0], 0, 8);
  875. break;
  876. }
  877. }
  878. n = q->sub_sampling + 1;
  879. for (sb = 0; sb < n; sb++)
  880. for (ch = 0; ch < q->nb_channels; ch++)
  881. for (j = 0; j < 8; j++) {
  882. if (BITS_LEFT(length,gb) < 1)
  883. break;
  884. if (get_bits1(gb)) {
  885. for (k=0; k < 8; k++) {
  886. if (BITS_LEFT(length,gb) < 16)
  887. break;
  888. q->tone_level_idx_hi1[ch][sb][j][k] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi1, 0, 2);
  889. }
  890. } else {
  891. for (k=0; k < 8; k++)
  892. q->tone_level_idx_hi1[ch][sb][j][k] = 0;
  893. }
  894. }
  895. n = QDM2_SB_USED(q->sub_sampling) - 4;
  896. for (sb = 0; sb < n; sb++)
  897. for (ch = 0; ch < q->nb_channels; ch++) {
  898. if (BITS_LEFT(length,gb) < 16)
  899. break;
  900. q->tone_level_idx_hi2[ch][sb] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi2, 0, 2);
  901. if (sb > 19)
  902. q->tone_level_idx_hi2[ch][sb] -= 16;
  903. else
  904. for (j = 0; j < 8; j++)
  905. q->tone_level_idx_mid[ch][sb][j] = -16;
  906. }
  907. n = QDM2_SB_USED(q->sub_sampling) - 5;
  908. for (sb = 0; sb < n; sb++)
  909. for (ch = 0; ch < q->nb_channels; ch++)
  910. for (j = 0; j < 8; j++) {
  911. if (BITS_LEFT(length,gb) < 16)
  912. break;
  913. q->tone_level_idx_mid[ch][sb][j] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_mid, 0, 2) - 32;
  914. }
  915. }
  916. /**
  917. * Process subpacket 9, init quantized_coeffs with data from it
  918. *
  919. * @param q context
  920. * @param node pointer to node with packet
  921. */
  922. static void process_subpacket_9 (QDM2Context *q, QDM2SubPNode *node)
  923. {
  924. GetBitContext gb;
  925. int i, j, k, n, ch, run, level, diff;
  926. init_get_bits(&gb, node->packet->data, node->packet->size*8);
  927. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1; // same as averagesomething function
  928. for (i = 1; i < n; i++)
  929. for (ch=0; ch < q->nb_channels; ch++) {
  930. level = qdm2_get_vlc(&gb, &vlc_tab_level, 0, 2);
  931. q->quantized_coeffs[ch][i][0] = level;
  932. for (j = 0; j < (8 - 1); ) {
  933. run = qdm2_get_vlc(&gb, &vlc_tab_run, 0, 1) + 1;
  934. diff = qdm2_get_se_vlc(&vlc_tab_diff, &gb, 2);
  935. for (k = 1; k <= run; k++)
  936. q->quantized_coeffs[ch][i][j + k] = (level + ((k*diff) / run));
  937. level += diff;
  938. j += run;
  939. }
  940. }
  941. for (ch = 0; ch < q->nb_channels; ch++)
  942. for (i = 0; i < 8; i++)
  943. q->quantized_coeffs[ch][0][i] = 0;
  944. }
  945. /**
  946. * Process subpacket 10 if not null, else
  947. *
  948. * @param q context
  949. * @param node pointer to node with packet
  950. * @param length packet length in bits
  951. */
  952. static void process_subpacket_10 (QDM2Context *q, QDM2SubPNode *node, int length)
  953. {
  954. GetBitContext gb;
  955. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  956. if (length != 0) {
  957. init_tone_level_dequantization(q, &gb, length);
  958. fill_tone_level_array(q, 1);
  959. } else {
  960. fill_tone_level_array(q, 0);
  961. }
  962. }
  963. /**
  964. * Process subpacket 11
  965. *
  966. * @param q context
  967. * @param node pointer to node with packet
  968. * @param length packet length in bit
  969. */
  970. static void process_subpacket_11 (QDM2Context *q, QDM2SubPNode *node, int length)
  971. {
  972. GetBitContext gb;
  973. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  974. if (length >= 32) {
  975. int c = get_bits (&gb, 13);
  976. if (c > 3)
  977. fill_coding_method_array (q->tone_level_idx, q->tone_level_idx_temp, q->coding_method,
  978. q->nb_channels, 8*c, q->superblocktype_2_3, q->cm_table_select);
  979. }
  980. synthfilt_build_sb_samples(q, &gb, length, 0, 8);
  981. }
  982. /**
  983. * Process subpacket 12
  984. *
  985. * @param q context
  986. * @param node pointer to node with packet
  987. * @param length packet length in bits
  988. */
  989. static void process_subpacket_12 (QDM2Context *q, QDM2SubPNode *node, int length)
  990. {
  991. GetBitContext gb;
  992. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  993. synthfilt_build_sb_samples(q, &gb, length, 8, QDM2_SB_USED(q->sub_sampling));
  994. }
  995. /*
  996. * Process new subpackets for synthesis filter
  997. *
  998. * @param q context
  999. * @param list list with synthesis filter packets (list D)
  1000. */
  1001. static void process_synthesis_subpackets (QDM2Context *q, QDM2SubPNode *list)
  1002. {
  1003. QDM2SubPNode *nodes[4];
  1004. nodes[0] = qdm2_search_subpacket_type_in_list(list, 9);
  1005. if (nodes[0] != NULL)
  1006. process_subpacket_9(q, nodes[0]);
  1007. nodes[1] = qdm2_search_subpacket_type_in_list(list, 10);
  1008. if (nodes[1] != NULL)
  1009. process_subpacket_10(q, nodes[1], nodes[1]->packet->size << 3);
  1010. else
  1011. process_subpacket_10(q, NULL, 0);
  1012. nodes[2] = qdm2_search_subpacket_type_in_list(list, 11);
  1013. if (nodes[0] != NULL && nodes[1] != NULL && nodes[2] != NULL)
  1014. process_subpacket_11(q, nodes[2], (nodes[2]->packet->size << 3));
  1015. else
  1016. process_subpacket_11(q, NULL, 0);
  1017. nodes[3] = qdm2_search_subpacket_type_in_list(list, 12);
  1018. if (nodes[0] != NULL && nodes[1] != NULL && nodes[3] != NULL)
  1019. process_subpacket_12(q, nodes[3], (nodes[3]->packet->size << 3));
  1020. else
  1021. process_subpacket_12(q, NULL, 0);
  1022. }
  1023. /*
  1024. * Decode superblock, fill packet lists.
  1025. *
  1026. * @param q context
  1027. */
  1028. static void qdm2_decode_super_block (QDM2Context *q)
  1029. {
  1030. GetBitContext gb;
  1031. QDM2SubPacket header, *packet;
  1032. int i, packet_bytes, sub_packet_size, sub_packets_D;
  1033. unsigned int next_index = 0;
  1034. memset(q->tone_level_idx_hi1, 0, sizeof(q->tone_level_idx_hi1));
  1035. memset(q->tone_level_idx_mid, 0, sizeof(q->tone_level_idx_mid));
  1036. memset(q->tone_level_idx_hi2, 0, sizeof(q->tone_level_idx_hi2));
  1037. q->sub_packets_B = 0;
  1038. sub_packets_D = 0;
  1039. average_quantized_coeffs(q); // average elements in quantized_coeffs[max_ch][10][8]
  1040. init_get_bits(&gb, q->compressed_data, q->compressed_size*8);
  1041. qdm2_decode_sub_packet_header(&gb, &header);
  1042. if (header.type < 2 || header.type >= 8) {
  1043. q->has_errors = 1;
  1044. av_log(NULL,AV_LOG_ERROR,"bad superblock type\n");
  1045. return;
  1046. }
  1047. q->superblocktype_2_3 = (header.type == 2 || header.type == 3);
  1048. packet_bytes = (q->compressed_size - get_bits_count(&gb) / 8);
  1049. init_get_bits(&gb, header.data, header.size*8);
  1050. if (header.type == 2 || header.type == 4 || header.type == 5) {
  1051. int csum = 257 * get_bits(&gb, 8) + 2 * get_bits(&gb, 8);
  1052. csum = qdm2_packet_checksum(q->compressed_data, q->checksum_size, csum);
  1053. if (csum != 0) {
  1054. q->has_errors = 1;
  1055. av_log(NULL,AV_LOG_ERROR,"bad packet checksum\n");
  1056. return;
  1057. }
  1058. }
  1059. q->sub_packet_list_B[0].packet = NULL;
  1060. q->sub_packet_list_D[0].packet = NULL;
  1061. for (i = 0; i < 6; i++)
  1062. if (--q->fft_level_exp[i] < 0)
  1063. q->fft_level_exp[i] = 0;
  1064. for (i = 0; packet_bytes > 0; i++) {
  1065. int j;
  1066. q->sub_packet_list_A[i].next = NULL;
  1067. if (i > 0) {
  1068. q->sub_packet_list_A[i - 1].next = &q->sub_packet_list_A[i];
  1069. /* seek to next block */
  1070. init_get_bits(&gb, header.data, header.size*8);
  1071. skip_bits(&gb, next_index*8);
  1072. if (next_index >= header.size)
  1073. break;
  1074. }
  1075. /* decode subpacket */
  1076. packet = &q->sub_packets[i];
  1077. qdm2_decode_sub_packet_header(&gb, packet);
  1078. next_index = packet->size + get_bits_count(&gb) / 8;
  1079. sub_packet_size = ((packet->size > 0xff) ? 1 : 0) + packet->size + 2;
  1080. if (packet->type == 0)
  1081. break;
  1082. if (sub_packet_size > packet_bytes) {
  1083. if (packet->type != 10 && packet->type != 11 && packet->type != 12)
  1084. break;
  1085. packet->size += packet_bytes - sub_packet_size;
  1086. }
  1087. packet_bytes -= sub_packet_size;
  1088. /* add subpacket to 'all subpackets' list */
  1089. q->sub_packet_list_A[i].packet = packet;
  1090. /* add subpacket to related list */
  1091. if (packet->type == 8) {
  1092. SAMPLES_NEEDED_2("packet type 8");
  1093. return;
  1094. } else if (packet->type >= 9 && packet->type <= 12) {
  1095. /* packets for MPEG Audio like Synthesis Filter */
  1096. QDM2_LIST_ADD(q->sub_packet_list_D, sub_packets_D, packet);
  1097. } else if (packet->type == 13) {
  1098. for (j = 0; j < 6; j++)
  1099. q->fft_level_exp[j] = get_bits(&gb, 6);
  1100. } else if (packet->type == 14) {
  1101. for (j = 0; j < 6; j++)
  1102. q->fft_level_exp[j] = qdm2_get_vlc(&gb, &fft_level_exp_vlc, 0, 2);
  1103. } else if (packet->type == 15) {
  1104. SAMPLES_NEEDED_2("packet type 15")
  1105. return;
  1106. } else if (packet->type >= 16 && packet->type < 48 && !fft_subpackets[packet->type - 16]) {
  1107. /* packets for FFT */
  1108. QDM2_LIST_ADD(q->sub_packet_list_B, q->sub_packets_B, packet);
  1109. }
  1110. } // Packet bytes loop
  1111. /* **************************************************************** */
  1112. if (q->sub_packet_list_D[0].packet != NULL) {
  1113. process_synthesis_subpackets(q, q->sub_packet_list_D);
  1114. q->do_synth_filter = 1;
  1115. } else if (q->do_synth_filter) {
  1116. process_subpacket_10(q, NULL, 0);
  1117. process_subpacket_11(q, NULL, 0);
  1118. process_subpacket_12(q, NULL, 0);
  1119. }
  1120. /* **************************************************************** */
  1121. }
  1122. static void qdm2_fft_init_coefficient (QDM2Context *q, int sub_packet,
  1123. int offset, int duration, int channel,
  1124. int exp, int phase)
  1125. {
  1126. if (q->fft_coefs_min_index[duration] < 0)
  1127. q->fft_coefs_min_index[duration] = q->fft_coefs_index;
  1128. q->fft_coefs[q->fft_coefs_index].sub_packet = ((sub_packet >= 16) ? (sub_packet - 16) : sub_packet);
  1129. q->fft_coefs[q->fft_coefs_index].channel = channel;
  1130. q->fft_coefs[q->fft_coefs_index].offset = offset;
  1131. q->fft_coefs[q->fft_coefs_index].exp = exp;
  1132. q->fft_coefs[q->fft_coefs_index].phase = phase;
  1133. q->fft_coefs_index++;
  1134. }
  1135. static void qdm2_fft_decode_tones (QDM2Context *q, int duration, GetBitContext *gb, int b)
  1136. {
  1137. int channel, stereo, phase, exp;
  1138. int local_int_4, local_int_8, stereo_phase, local_int_10;
  1139. int local_int_14, stereo_exp, local_int_20, local_int_28;
  1140. int n, offset;
  1141. local_int_4 = 0;
  1142. local_int_28 = 0;
  1143. local_int_20 = 2;
  1144. local_int_8 = (4 - duration);
  1145. local_int_10 = 1 << (q->group_order - duration - 1);
  1146. offset = 1;
  1147. while (1) {
  1148. if (q->superblocktype_2_3) {
  1149. while ((n = qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2)) < 2) {
  1150. offset = 1;
  1151. if (n == 0) {
  1152. local_int_4 += local_int_10;
  1153. local_int_28 += (1 << local_int_8);
  1154. } else {
  1155. local_int_4 += 8*local_int_10;
  1156. local_int_28 += (8 << local_int_8);
  1157. }
  1158. }
  1159. offset += (n - 2);
  1160. } else {
  1161. offset += qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2);
  1162. while (offset >= (local_int_10 - 1)) {
  1163. offset += (1 - (local_int_10 - 1));
  1164. local_int_4 += local_int_10;
  1165. local_int_28 += (1 << local_int_8);
  1166. }
  1167. }
  1168. if (local_int_4 >= q->group_size)
  1169. return;
  1170. local_int_14 = (offset >> local_int_8);
  1171. if (q->nb_channels > 1) {
  1172. channel = get_bits1(gb);
  1173. stereo = get_bits1(gb);
  1174. } else {
  1175. channel = 0;
  1176. stereo = 0;
  1177. }
  1178. exp = qdm2_get_vlc(gb, (b ? &fft_level_exp_vlc : &fft_level_exp_alt_vlc), 0, 2);
  1179. exp += q->fft_level_exp[fft_level_index_table[local_int_14]];
  1180. exp = (exp < 0) ? 0 : exp;
  1181. phase = get_bits(gb, 3);
  1182. stereo_exp = 0;
  1183. stereo_phase = 0;
  1184. if (stereo) {
  1185. stereo_exp = (exp - qdm2_get_vlc(gb, &fft_stereo_exp_vlc, 0, 1));
  1186. stereo_phase = (phase - qdm2_get_vlc(gb, &fft_stereo_phase_vlc, 0, 1));
  1187. if (stereo_phase < 0)
  1188. stereo_phase += 8;
  1189. }
  1190. if (q->frequency_range > (local_int_14 + 1)) {
  1191. int sub_packet = (local_int_20 + local_int_28);
  1192. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, channel, exp, phase);
  1193. if (stereo)
  1194. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, (1 - channel), stereo_exp, stereo_phase);
  1195. }
  1196. offset++;
  1197. }
  1198. }
  1199. static void qdm2_decode_fft_packets (QDM2Context *q)
  1200. {
  1201. int i, j, min, max, value, type, unknown_flag;
  1202. GetBitContext gb;
  1203. if (q->sub_packet_list_B[0].packet == NULL)
  1204. return;
  1205. /* reset minimum indices for FFT coefficients */
  1206. q->fft_coefs_index = 0;
  1207. for (i=0; i < 5; i++)
  1208. q->fft_coefs_min_index[i] = -1;
  1209. /* process subpackets ordered by type, largest type first */
  1210. for (i = 0, max = 256; i < q->sub_packets_B; i++) {
  1211. QDM2SubPacket *packet;
  1212. /* find subpacket with largest type less than max */
  1213. for (j = 0, min = 0, packet = NULL; j < q->sub_packets_B; j++) {
  1214. value = q->sub_packet_list_B[j].packet->type;
  1215. if (value > min && value < max) {
  1216. min = value;
  1217. packet = q->sub_packet_list_B[j].packet;
  1218. }
  1219. }
  1220. max = min;
  1221. /* check for errors (?) */
  1222. if (i == 0 && (packet->type < 16 || packet->type >= 48 || fft_subpackets[packet->type - 16]))
  1223. return;
  1224. /* decode FFT tones */
  1225. init_get_bits (&gb, packet->data, packet->size*8);
  1226. if (packet->type >= 32 && packet->type < 48 && !fft_subpackets[packet->type - 16])
  1227. unknown_flag = 1;
  1228. else
  1229. unknown_flag = 0;
  1230. type = packet->type;
  1231. if ((type >= 17 && type < 24) || (type >= 33 && type < 40)) {
  1232. int duration = q->sub_sampling + 5 - (type & 15);
  1233. if (duration >= 0 && duration < 4)
  1234. qdm2_fft_decode_tones(q, duration, &gb, unknown_flag);
  1235. } else if (type == 31) {
  1236. for (i=0; i < 4; i++)
  1237. qdm2_fft_decode_tones(q, i, &gb, unknown_flag);
  1238. } else if (type == 46) {
  1239. for (i=0; i < 6; i++)
  1240. q->fft_level_exp[i] = get_bits(&gb, 6);
  1241. for (i=0; i < 4; i++)
  1242. qdm2_fft_decode_tones(q, i, &gb, unknown_flag);
  1243. }
  1244. } // Loop on B packets
  1245. /* calculate maximum indices for FFT coefficients */
  1246. for (i = 0, j = -1; i < 5; i++)
  1247. if (q->fft_coefs_min_index[i] >= 0) {
  1248. if (j >= 0)
  1249. q->fft_coefs_max_index[j] = q->fft_coefs_min_index[i];
  1250. j = i;
  1251. }
  1252. if (j >= 0)
  1253. q->fft_coefs_max_index[j] = q->fft_coefs_index;
  1254. }
  1255. static void qdm2_fft_generate_tone (QDM2Context *q, FFTTone *tone)
  1256. {
  1257. float level, f[6];
  1258. int i;
  1259. QDM2Complex c;
  1260. const double iscale = 2.0*M_PI / 512.0;
  1261. tone->phase += tone->phase_shift;
  1262. /* calculate current level (maximum amplitude) of tone */
  1263. level = fft_tone_envelope_table[tone->duration][tone->time_index] * tone->level;
  1264. c.im = level * sin(tone->phase*iscale);
  1265. c.re = level * cos(tone->phase*iscale);
  1266. /* generate FFT coefficients for tone */
  1267. if (tone->duration >= 3 || tone->cutoff >= 3) {
  1268. tone->samples_im[0] += c.im;
  1269. tone->samples_re[0] += c.re;
  1270. tone->samples_im[1] -= c.im;
  1271. tone->samples_re[1] -= c.re;
  1272. } else {
  1273. f[1] = -tone->table[4];
  1274. f[0] = tone->table[3] - tone->table[0];
  1275. f[2] = 1.0 - tone->table[2] - tone->table[3];
  1276. f[3] = tone->table[1] + tone->table[4] - 1.0;
  1277. f[4] = tone->table[0] - tone->table[1];
  1278. f[5] = tone->table[2];
  1279. for (i = 0; i < 2; i++) {
  1280. tone->samples_re[fft_cutoff_index_table[tone->cutoff][i]] += c.re * f[i];
  1281. tone->samples_im[fft_cutoff_index_table[tone->cutoff][i]] += c.im *((tone->cutoff <= i) ? -f[i] : f[i]);
  1282. }
  1283. for (i = 0; i < 4; i++) {
  1284. tone->samples_re[i] += c.re * f[i+2];
  1285. tone->samples_im[i] += c.im * f[i+2];
  1286. }
  1287. }
  1288. /* copy the tone if it has not yet died out */
  1289. if (++tone->time_index < ((1 << (5 - tone->duration)) - 1)) {
  1290. memcpy(&q->fft_tones[q->fft_tone_end], tone, sizeof(FFTTone));
  1291. q->fft_tone_end = (q->fft_tone_end + 1) % 1000;
  1292. }
  1293. }
  1294. static void qdm2_fft_tone_synthesizer (QDM2Context *q, int sub_packet)
  1295. {
  1296. int i, j, ch;
  1297. const double iscale = 0.25 * M_PI;
  1298. for (ch = 0; ch < q->channels; ch++) {
  1299. memset(q->fft.samples_im[ch], 0, q->fft_size * sizeof(float));
  1300. memset(q->fft.samples_re[ch], 0, q->fft_size * sizeof(float));
  1301. }
  1302. /* apply FFT tones with duration 4 (1 FFT period) */
  1303. if (q->fft_coefs_min_index[4] >= 0)
  1304. for (i = q->fft_coefs_min_index[4]; i < q->fft_coefs_max_index[4]; i++) {
  1305. float level;
  1306. QDM2Complex c;
  1307. if (q->fft_coefs[i].sub_packet != sub_packet)
  1308. break;
  1309. ch = (q->channels == 1) ? 0 : q->fft_coefs[i].channel;
  1310. level = (q->fft_coefs[i].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[i].exp & 63];
  1311. c.re = level * cos(q->fft_coefs[i].phase * iscale);
  1312. c.im = level * sin(q->fft_coefs[i].phase * iscale);
  1313. q->fft.samples_re[ch][q->fft_coefs[i].offset + 0] += c.re;
  1314. q->fft.samples_im[ch][q->fft_coefs[i].offset + 0] += c.im;
  1315. q->fft.samples_re[ch][q->fft_coefs[i].offset + 1] -= c.re;
  1316. q->fft.samples_im[ch][q->fft_coefs[i].offset + 1] -= c.im;
  1317. }
  1318. /* generate existing FFT tones */
  1319. for (i = q->fft_tone_end; i != q->fft_tone_start; ) {
  1320. qdm2_fft_generate_tone(q, &q->fft_tones[q->fft_tone_start]);
  1321. q->fft_tone_start = (q->fft_tone_start + 1) % 1000;
  1322. }
  1323. /* create and generate new FFT tones with duration 0 (long) to 3 (short) */
  1324. for (i = 0; i < 4; i++)
  1325. if (q->fft_coefs_min_index[i] >= 0) {
  1326. for (j = q->fft_coefs_min_index[i]; j < q->fft_coefs_max_index[i]; j++) {
  1327. int offset, four_i;
  1328. FFTTone tone;
  1329. if (q->fft_coefs[j].sub_packet != sub_packet)
  1330. break;
  1331. four_i = (4 - i);
  1332. offset = q->fft_coefs[j].offset >> four_i;
  1333. ch = (q->channels == 1) ? 0 : q->fft_coefs[j].channel;
  1334. if (offset < q->frequency_range) {
  1335. if (offset < 2)
  1336. tone.cutoff = offset;
  1337. else
  1338. tone.cutoff = (offset >= 60) ? 3 : 2;
  1339. tone.level = (q->fft_coefs[j].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[j].exp & 63];
  1340. tone.samples_im = &q->fft.samples_im[ch][offset];
  1341. tone.samples_re = &q->fft.samples_re[ch][offset];
  1342. tone.table = (float*)fft_tone_sample_table[i][q->fft_coefs[j].offset - (offset << four_i)];
  1343. tone.phase = 64 * q->fft_coefs[j].phase - (offset << 8) - 128;
  1344. tone.phase_shift = (2 * q->fft_coefs[j].offset + 1) << (7 - four_i);
  1345. tone.duration = i;
  1346. tone.time_index = 0;
  1347. qdm2_fft_generate_tone(q, &tone);
  1348. }
  1349. }
  1350. q->fft_coefs_min_index[i] = j;
  1351. }
  1352. }
  1353. static void qdm2_calculate_fft (QDM2Context *q, int channel, int sub_packet)
  1354. {
  1355. const int n = 1 << (q->fft_order - 1);
  1356. const int n2 = n >> 1;
  1357. const float gain = (q->channels == 1 && q->nb_channels == 2) ? 0.25f : 0.50f;
  1358. float c, s, f0, f1, f2, f3;
  1359. int i, j;
  1360. /* prerotation (or something like that) */
  1361. for (i=1; i < n2; i++) {
  1362. j = (n - i);
  1363. c = q->exptab[i].re;
  1364. s = -q->exptab[i].im;
  1365. f0 = (q->fft.samples_re[channel][i] - q->fft.samples_re[channel][j]) * gain;
  1366. f1 = (q->fft.samples_im[channel][i] + q->fft.samples_im[channel][j]) * gain;
  1367. f2 = (q->fft.samples_re[channel][i] + q->fft.samples_re[channel][j]) * gain;
  1368. f3 = (q->fft.samples_im[channel][i] - q->fft.samples_im[channel][j]) * gain;
  1369. q->fft.complex[i].re = s * f0 - c * f1 + f2;
  1370. q->fft.complex[i].im = c * f0 + s * f1 + f3;
  1371. q->fft.complex[j].re = -s * f0 + c * f1 + f2;
  1372. q->fft.complex[j].im = c * f0 + s * f1 - f3;
  1373. }
  1374. q->fft.complex[ 0].re = q->fft.samples_re[channel][ 0] * gain * 2.0;
  1375. q->fft.complex[ 0].im = q->fft.samples_re[channel][ 0] * gain * 2.0;
  1376. q->fft.complex[n2].re = q->fft.samples_re[channel][n2] * gain * 2.0;
  1377. q->fft.complex[n2].im = -q->fft.samples_im[channel][n2] * gain * 2.0;
  1378. ff_fft_permute(&q->fft_ctx, (FFTComplex *) q->fft.complex);
  1379. ff_fft_calc (&q->fft_ctx, (FFTComplex *) q->fft.complex);
  1380. /* add samples to output buffer */
  1381. for (i = 0; i < ((q->fft_frame_size + 15) & ~15); i++)
  1382. q->output_buffer[q->channels * i + channel] += ((float *) q->fft.complex)[i];
  1383. }
  1384. /**
  1385. * @param q context
  1386. * @param index subpacket number
  1387. */
  1388. static void qdm2_synthesis_filter (QDM2Context *q, int index)
  1389. {
  1390. OUT_INT samples[MPA_MAX_CHANNELS * MPA_FRAME_SIZE];
  1391. int i, k, ch, sb_used, sub_sampling, dither_state = 0;
  1392. /* copy sb_samples */
  1393. sb_used = QDM2_SB_USED(q->sub_sampling);
  1394. for (ch = 0; ch < q->channels; ch++)
  1395. for (i = 0; i < 8; i++)
  1396. for (k=sb_used; k < SBLIMIT; k++)
  1397. q->sb_samples[ch][(8 * index) + i][k] = 0;
  1398. for (ch = 0; ch < q->nb_channels; ch++) {
  1399. OUT_INT *samples_ptr = samples + ch;
  1400. for (i = 0; i < 8; i++) {
  1401. ff_mpa_synth_filter(q->synth_buf[ch], &(q->synth_buf_offset[ch]),
  1402. mpa_window, &dither_state,
  1403. samples_ptr, q->nb_channels,
  1404. q->sb_samples[ch][(8 * index) + i]);
  1405. samples_ptr += 32 * q->nb_channels;
  1406. }
  1407. }
  1408. /* add samples to output buffer */
  1409. sub_sampling = (4 >> q->sub_sampling);
  1410. for (ch = 0; ch < q->channels; ch++)
  1411. for (i = 0; i < q->frame_size; i++)
  1412. q->output_buffer[q->channels * i + ch] += (float)(samples[q->nb_channels * sub_sampling * i + ch] >> (sizeof(OUT_INT)*8-16));
  1413. }
  1414. /**
  1415. * Init static data (does not depend on specific file)
  1416. *
  1417. * @param q context
  1418. */
  1419. static void qdm2_init(QDM2Context *q) {
  1420. static int inited = 0;
  1421. if (inited != 0)
  1422. return;
  1423. inited = 1;
  1424. qdm2_init_vlc();
  1425. ff_mpa_synth_init(mpa_window);
  1426. softclip_table_init();
  1427. rnd_table_init();
  1428. init_noise_samples();
  1429. av_log(NULL, AV_LOG_DEBUG, "init done\n");
  1430. }
  1431. #if 0
  1432. static void dump_context(QDM2Context *q)
  1433. {
  1434. int i;
  1435. #define PRINT(a,b) av_log(NULL,AV_LOG_DEBUG," %s = %d\n", a, b);
  1436. PRINT("compressed_data",q->compressed_data);
  1437. PRINT("compressed_size",q->compressed_size);
  1438. PRINT("frame_size",q->frame_size);
  1439. PRINT("checksum_size",q->checksum_size);
  1440. PRINT("channels",q->channels);
  1441. PRINT("nb_channels",q->nb_channels);
  1442. PRINT("fft_frame_size",q->fft_frame_size);
  1443. PRINT("fft_size",q->fft_size);
  1444. PRINT("sub_sampling",q->sub_sampling);
  1445. PRINT("fft_order",q->fft_order);
  1446. PRINT("group_order",q->group_order);
  1447. PRINT("group_size",q->group_size);
  1448. PRINT("sub_packet",q->sub_packet);
  1449. PRINT("frequency_range",q->frequency_range);
  1450. PRINT("has_errors",q->has_errors);
  1451. PRINT("fft_tone_end",q->fft_tone_end);
  1452. PRINT("fft_tone_start",q->fft_tone_start);
  1453. PRINT("fft_coefs_index",q->fft_coefs_index);
  1454. PRINT("coeff_per_sb_select",q->coeff_per_sb_select);
  1455. PRINT("cm_table_select",q->cm_table_select);
  1456. PRINT("noise_idx",q->noise_idx);
  1457. for (i = q->fft_tone_start; i < q->fft_tone_end; i++)
  1458. {
  1459. FFTTone *t = &q->fft_tones[i];
  1460. av_log(NULL,AV_LOG_DEBUG,"Tone (%d) dump:\n", i);
  1461. av_log(NULL,AV_LOG_DEBUG," level = %f\n", t->level);
  1462. // PRINT(" level", t->level);
  1463. PRINT(" phase", t->phase);
  1464. PRINT(" phase_shift", t->phase_shift);
  1465. PRINT(" duration", t->duration);
  1466. PRINT(" samples_im", t->samples_im);
  1467. PRINT(" samples_re", t->samples_re);
  1468. PRINT(" table", t->table);
  1469. }
  1470. }
  1471. #endif
  1472. /**
  1473. * Init parameters from codec extradata
  1474. */
  1475. static int qdm2_decode_init(AVCodecContext *avctx)
  1476. {
  1477. QDM2Context *s = avctx->priv_data;
  1478. uint8_t *extradata;
  1479. int extradata_size;
  1480. int tmp_val, tmp, size;
  1481. int i;
  1482. float alpha;
  1483. /* extradata parsing
  1484. Structure:
  1485. wave {
  1486. frma (QDM2)
  1487. QDCA
  1488. QDCP
  1489. }
  1490. 32 size (including this field)
  1491. 32 tag (=frma)
  1492. 32 type (=QDM2 or QDMC)
  1493. 32 size (including this field, in bytes)
  1494. 32 tag (=QDCA) // maybe mandatory parameters
  1495. 32 unknown (=1)
  1496. 32 channels (=2)
  1497. 32 samplerate (=44100)
  1498. 32 bitrate (=96000)
  1499. 32 block size (=4096)
  1500. 32 frame size (=256) (for one channel)
  1501. 32 packet size (=1300)
  1502. 32 size (including this field, in bytes)
  1503. 32 tag (=QDCP) // maybe some tuneable parameters
  1504. 32 float1 (=1.0)
  1505. 32 zero ?
  1506. 32 float2 (=1.0)
  1507. 32 float3 (=1.0)
  1508. 32 unknown (27)
  1509. 32 unknown (8)
  1510. 32 zero ?
  1511. */
  1512. if (!avctx->extradata || (avctx->extradata_size < 48)) {
  1513. av_log(avctx, AV_LOG_ERROR, "extradata missing or truncated\n");
  1514. return -1;
  1515. }
  1516. extradata = avctx->extradata;
  1517. extradata_size = avctx->extradata_size;
  1518. while (extradata_size > 7) {
  1519. if (!memcmp(extradata, "frmaQDM", 7))
  1520. break;
  1521. extradata++;
  1522. extradata_size--;
  1523. }
  1524. if (extradata_size < 12) {
  1525. av_log(avctx, AV_LOG_ERROR, "not enough extradata (%i)\n",
  1526. extradata_size);
  1527. return -1;
  1528. }
  1529. if (memcmp(extradata, "frmaQDM", 7)) {
  1530. av_log(avctx, AV_LOG_ERROR, "invalid headers, QDM? not found\n");
  1531. return -1;
  1532. }
  1533. if (extradata[7] == 'C') {
  1534. // s->is_qdmc = 1;
  1535. av_log(avctx, AV_LOG_ERROR, "stream is QDMC version 1, which is not supported\n");
  1536. return -1;
  1537. }
  1538. extradata += 8;
  1539. extradata_size -= 8;
  1540. size = BE_32(extradata);
  1541. if(size > extradata_size){
  1542. av_log(avctx, AV_LOG_ERROR, "extradata size too small, %i < %i\n",
  1543. extradata_size, size);
  1544. return -1;
  1545. }
  1546. extradata += 4;
  1547. av_log(avctx, AV_LOG_DEBUG, "size: %d\n", size);
  1548. if (BE_32(extradata) != MKBETAG('Q','D','C','A')) {
  1549. av_log(avctx, AV_LOG_ERROR, "invalid extradata, expecting QDCA\n");
  1550. return -1;
  1551. }
  1552. extradata += 8;
  1553. avctx->channels = s->nb_channels = s->channels = BE_32(extradata);
  1554. extradata += 4;
  1555. avctx->sample_rate = BE_32(extradata);
  1556. extradata += 4;
  1557. avctx->bit_rate = BE_32(extradata);
  1558. extradata += 4;
  1559. s->group_size = BE_32(extradata);
  1560. extradata += 4;
  1561. s->fft_size = BE_32(extradata);
  1562. extradata += 4;
  1563. s->checksum_size = BE_32(extradata);
  1564. extradata += 4;
  1565. s->fft_order = av_log2(s->fft_size) + 1;
  1566. s->fft_frame_size = 2 * s->fft_size; // complex has two floats
  1567. // something like max decodable tones
  1568. s->group_order = av_log2(s->group_size) + 1;
  1569. s->frame_size = s->group_size / 16; // 16 iterations per super block
  1570. s->sub_sampling = s->fft_order - 7;
  1571. s->frequency_range = 255 / (1 << (2 - s->sub_sampling));
  1572. switch ((s->sub_sampling * 2 + s->channels - 1)) {
  1573. case 0: tmp = 40; break;
  1574. case 1: tmp = 48; break;
  1575. case 2: tmp = 56; break;
  1576. case 3: tmp = 72; break;
  1577. case 4: tmp = 80; break;
  1578. case 5: tmp = 100;break;
  1579. default: tmp=s->sub_sampling; break;
  1580. }
  1581. tmp_val = 0;
  1582. if ((tmp * 1000) < avctx->bit_rate) tmp_val = 1;
  1583. if ((tmp * 1440) < avctx->bit_rate) tmp_val = 2;
  1584. if ((tmp * 1760) < avctx->bit_rate) tmp_val = 3;
  1585. if ((tmp * 2240) < avctx->bit_rate) tmp_val = 4;
  1586. s->cm_table_select = tmp_val;
  1587. if (s->sub_sampling == 0)
  1588. tmp = 7999;
  1589. else
  1590. tmp = ((-(s->sub_sampling -1)) & 8000) + 20000;
  1591. /*
  1592. 0: 7999 -> 0
  1593. 1: 20000 -> 2
  1594. 2: 28000 -> 2
  1595. */
  1596. if (tmp < 8000)
  1597. s->coeff_per_sb_select = 0;
  1598. else if (tmp <= 16000)
  1599. s->coeff_per_sb_select = 1;
  1600. else
  1601. s->coeff_per_sb_select = 2;
  1602. // Fail on unknown fft order, if it's > 9 it can overflow s->exptab[]
  1603. if ((s->fft_order < 7) || (s->fft_order > 9)) {
  1604. av_log(avctx, AV_LOG_ERROR, "Unknown FFT order (%d), contact the developers!\n", s->fft_order);
  1605. return -1;
  1606. }
  1607. ff_fft_init(&s->fft_ctx, s->fft_order - 1, 1);
  1608. for (i = 1; i < (1 << (s->fft_order - 2)); i++) {
  1609. alpha = 2 * M_PI * (float)i / (float)(1 << (s->fft_order - 1));
  1610. s->exptab[i].re = cos(alpha);
  1611. s->exptab[i].im = sin(alpha);
  1612. }
  1613. qdm2_init(s);
  1614. // dump_context(s);
  1615. return 0;
  1616. }
  1617. static int qdm2_decode_close(AVCodecContext *avctx)
  1618. {
  1619. QDM2Context *s = avctx->priv_data;
  1620. ff_fft_end(&s->fft_ctx);
  1621. return 0;
  1622. }
  1623. static void qdm2_decode (QDM2Context *q, uint8_t *in, int16_t *out)
  1624. {
  1625. int ch, i;
  1626. const int frame_size = (q->frame_size * q->channels);
  1627. /* select input buffer */
  1628. q->compressed_data = in;
  1629. q->compressed_size = q->checksum_size;
  1630. // dump_context(q);
  1631. /* copy old block, clear new block of output samples */
  1632. memmove(q->output_buffer, &q->output_buffer[frame_size], frame_size * sizeof(float));
  1633. memset(&q->output_buffer[frame_size], 0, frame_size * sizeof(float));
  1634. /* decode block of QDM2 compressed data */
  1635. if (q->sub_packet == 0) {
  1636. q->has_errors = 0; // zero it for a new super block
  1637. av_log(NULL,AV_LOG_DEBUG,"Superblock follows\n");
  1638. qdm2_decode_super_block(q);
  1639. }
  1640. /* parse subpackets */
  1641. if (!q->has_errors) {
  1642. if (q->sub_packet == 2)
  1643. qdm2_decode_fft_packets(q);
  1644. qdm2_fft_tone_synthesizer(q, q->sub_packet);
  1645. }
  1646. /* sound synthesis stage 1 (FFT) */
  1647. for (ch = 0; ch < q->channels; ch++) {
  1648. qdm2_calculate_fft(q, ch, q->sub_packet);
  1649. if (!q->has_errors && q->sub_packet_list_C[0].packet != NULL) {
  1650. SAMPLES_NEEDED_2("has errors, and C list is not empty")
  1651. return;
  1652. }
  1653. }
  1654. /* sound synthesis stage 2 (MPEG audio like synthesis filter) */
  1655. if (!q->has_errors && q->do_synth_filter)
  1656. qdm2_synthesis_filter(q, q->sub_packet);
  1657. q->sub_packet = (q->sub_packet + 1) % 16;
  1658. /* clip and convert output float[] to 16bit signed samples */
  1659. for (i = 0; i < frame_size; i++) {
  1660. int value = (int)q->output_buffer[i];
  1661. if (value > SOFTCLIP_THRESHOLD)
  1662. value = (value > HARDCLIP_THRESHOLD) ? 32767 : softclip_table[ value - SOFTCLIP_THRESHOLD];
  1663. else if (value < -SOFTCLIP_THRESHOLD)
  1664. value = (value < -HARDCLIP_THRESHOLD) ? -32767 : -softclip_table[-value - SOFTCLIP_THRESHOLD];
  1665. out[i] = value;
  1666. }
  1667. }
  1668. static int qdm2_decode_frame(AVCodecContext *avctx,
  1669. void *data, int *data_size,
  1670. uint8_t *buf, int buf_size)
  1671. {
  1672. QDM2Context *s = avctx->priv_data;
  1673. if(!buf)
  1674. return 0;
  1675. if(buf_size < s->checksum_size)
  1676. return -1;
  1677. *data_size = s->channels * s->frame_size * sizeof(int16_t);
  1678. av_log(avctx, AV_LOG_DEBUG, "decode(%d): %p[%d] -> %p[%d]\n",
  1679. buf_size, buf, s->checksum_size, data, *data_size);
  1680. qdm2_decode(s, buf, data);
  1681. // reading only when next superblock found
  1682. if (s->sub_packet == 0) {
  1683. return s->checksum_size;
  1684. }
  1685. return 0;
  1686. }
  1687. AVCodec qdm2_decoder =
  1688. {
  1689. .name = "qdm2",
  1690. .type = CODEC_TYPE_AUDIO,
  1691. .id = CODEC_ID_QDM2,
  1692. .priv_data_size = sizeof(QDM2Context),
  1693. .init = qdm2_decode_init,
  1694. .close = qdm2_decode_close,
  1695. .decode = qdm2_decode_frame,
  1696. };