You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2887 lines
85KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "dsputil.h"
  27. /*
  28. * TODO:
  29. * - in low precision mode, use more 16 bit multiplies in synth filter
  30. * - test lsf / mpeg25 extensively.
  31. */
  32. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  33. audio decoder */
  34. #ifdef CONFIG_MPEGAUDIO_HP
  35. #define USE_HIGHPRECISION
  36. #endif
  37. #include "mpegaudio.h"
  38. #define FRAC_ONE (1 << FRAC_BITS)
  39. #define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  40. #define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  41. #define FIX(a) ((int)((a) * FRAC_ONE))
  42. /* WARNING: only correct for posititive numbers */
  43. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  44. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  45. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  46. //#define MULH(a,b) (((int64_t)(a) * (int64_t)(b))>>32) //gcc 3.4 creates an incredibly bloated mess out of this
  47. static always_inline int MULH(int a, int b){
  48. return ((int64_t)(a) * (int64_t)(b))>>32;
  49. }
  50. /****************/
  51. #define HEADER_SIZE 4
  52. #define BACKSTEP_SIZE 512
  53. struct GranuleDef;
  54. typedef struct MPADecodeContext {
  55. uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  56. int inbuf_index;
  57. uint8_t *inbuf_ptr, *inbuf;
  58. int frame_size;
  59. int free_format_frame_size; /* frame size in case of free format
  60. (zero if currently unknown) */
  61. /* next header (used in free format parsing) */
  62. uint32_t free_format_next_header;
  63. int error_protection;
  64. int layer;
  65. int sample_rate;
  66. int sample_rate_index; /* between 0 and 8 */
  67. int bit_rate;
  68. int old_frame_size;
  69. GetBitContext gb;
  70. int nb_channels;
  71. int mode;
  72. int mode_ext;
  73. int lsf;
  74. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  75. int synth_buf_offset[MPA_MAX_CHANNELS];
  76. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  77. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  78. #ifdef DEBUG
  79. int frame_count;
  80. #endif
  81. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  82. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  83. unsigned int dither_state;
  84. } MPADecodeContext;
  85. /**
  86. * Context for MP3On4 decoder
  87. */
  88. typedef struct MP3On4DecodeContext {
  89. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  90. int chan_cfg; ///< channel config number
  91. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  92. } MP3On4DecodeContext;
  93. /* layer 3 "granule" */
  94. typedef struct GranuleDef {
  95. uint8_t scfsi;
  96. int part2_3_length;
  97. int big_values;
  98. int global_gain;
  99. int scalefac_compress;
  100. uint8_t block_type;
  101. uint8_t switch_point;
  102. int table_select[3];
  103. int subblock_gain[3];
  104. uint8_t scalefac_scale;
  105. uint8_t count1table_select;
  106. int region_size[3]; /* number of huffman codes in each region */
  107. int preflag;
  108. int short_start, long_end; /* long/short band indexes */
  109. uint8_t scale_factors[40];
  110. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  111. } GranuleDef;
  112. #define MODE_EXT_MS_STEREO 2
  113. #define MODE_EXT_I_STEREO 1
  114. /* layer 3 huffman tables */
  115. typedef struct HuffTable {
  116. int xsize;
  117. const uint8_t *bits;
  118. const uint16_t *codes;
  119. } HuffTable;
  120. #include "mpegaudiodectab.h"
  121. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  122. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  123. /* vlc structure for decoding layer 3 huffman tables */
  124. static VLC huff_vlc[16];
  125. static uint8_t *huff_code_table[16];
  126. static VLC huff_quad_vlc[2];
  127. /* computed from band_size_long */
  128. static uint16_t band_index_long[9][23];
  129. /* XXX: free when all decoders are closed */
  130. #define TABLE_4_3_SIZE (8191 + 16)*4
  131. static int8_t *table_4_3_exp;
  132. static uint32_t *table_4_3_value;
  133. /* intensity stereo coef table */
  134. static int32_t is_table[2][16];
  135. static int32_t is_table_lsf[2][2][16];
  136. static int32_t csa_table[8][4];
  137. static float csa_table_float[8][4];
  138. static int32_t mdct_win[8][36];
  139. /* lower 2 bits: modulo 3, higher bits: shift */
  140. static uint16_t scale_factor_modshift[64];
  141. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  142. static int32_t scale_factor_mult[15][3];
  143. /* mult table for layer 2 group quantization */
  144. #define SCALE_GEN(v) \
  145. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  146. static const int32_t scale_factor_mult2[3][3] = {
  147. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  148. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  149. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  150. };
  151. void ff_mpa_synth_init(MPA_INT *window);
  152. static MPA_INT window[512] __attribute__((aligned(16)));
  153. /* layer 1 unscaling */
  154. /* n = number of bits of the mantissa minus 1 */
  155. static inline int l1_unscale(int n, int mant, int scale_factor)
  156. {
  157. int shift, mod;
  158. int64_t val;
  159. shift = scale_factor_modshift[scale_factor];
  160. mod = shift & 3;
  161. shift >>= 2;
  162. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  163. shift += n;
  164. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  165. return (int)((val + (1LL << (shift - 1))) >> shift);
  166. }
  167. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  168. {
  169. int shift, mod, val;
  170. shift = scale_factor_modshift[scale_factor];
  171. mod = shift & 3;
  172. shift >>= 2;
  173. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  174. /* NOTE: at this point, 0 <= shift <= 21 */
  175. if (shift > 0)
  176. val = (val + (1 << (shift - 1))) >> shift;
  177. return val;
  178. }
  179. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  180. static inline int l3_unscale(int value, int exponent)
  181. {
  182. unsigned int m;
  183. int e;
  184. e = table_4_3_exp [4*value + (exponent&3)];
  185. m = table_4_3_value[4*value + (exponent&3)];
  186. e -= (exponent >> 2);
  187. assert(e>=1);
  188. if (e > 31)
  189. return 0;
  190. m = (m + (1 << (e-1))) >> e;
  191. return m;
  192. }
  193. /* all integer n^(4/3) computation code */
  194. #define DEV_ORDER 13
  195. #define POW_FRAC_BITS 24
  196. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  197. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  198. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  199. static int dev_4_3_coefs[DEV_ORDER];
  200. #if 0 /* unused */
  201. static int pow_mult3[3] = {
  202. POW_FIX(1.0),
  203. POW_FIX(1.25992104989487316476),
  204. POW_FIX(1.58740105196819947474),
  205. };
  206. #endif
  207. static void int_pow_init(void)
  208. {
  209. int i, a;
  210. a = POW_FIX(1.0);
  211. for(i=0;i<DEV_ORDER;i++) {
  212. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  213. dev_4_3_coefs[i] = a;
  214. }
  215. }
  216. #if 0 /* unused, remove? */
  217. /* return the mantissa and the binary exponent */
  218. static int int_pow(int i, int *exp_ptr)
  219. {
  220. int e, er, eq, j;
  221. int a, a1;
  222. /* renormalize */
  223. a = i;
  224. e = POW_FRAC_BITS;
  225. while (a < (1 << (POW_FRAC_BITS - 1))) {
  226. a = a << 1;
  227. e--;
  228. }
  229. a -= (1 << POW_FRAC_BITS);
  230. a1 = 0;
  231. for(j = DEV_ORDER - 1; j >= 0; j--)
  232. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  233. a = (1 << POW_FRAC_BITS) + a1;
  234. /* exponent compute (exact) */
  235. e = e * 4;
  236. er = e % 3;
  237. eq = e / 3;
  238. a = POW_MULL(a, pow_mult3[er]);
  239. while (a >= 2 * POW_FRAC_ONE) {
  240. a = a >> 1;
  241. eq++;
  242. }
  243. /* convert to float */
  244. while (a < POW_FRAC_ONE) {
  245. a = a << 1;
  246. eq--;
  247. }
  248. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  249. #if POW_FRAC_BITS > FRAC_BITS
  250. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  251. /* correct overflow */
  252. if (a >= 2 * (1 << FRAC_BITS)) {
  253. a = a >> 1;
  254. eq++;
  255. }
  256. #endif
  257. *exp_ptr = eq;
  258. return a;
  259. }
  260. #endif
  261. static int decode_init(AVCodecContext * avctx)
  262. {
  263. MPADecodeContext *s = avctx->priv_data;
  264. static int init=0;
  265. int i, j, k;
  266. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  267. avctx->sample_fmt= SAMPLE_FMT_S32;
  268. #else
  269. avctx->sample_fmt= SAMPLE_FMT_S16;
  270. #endif
  271. if(avctx->antialias_algo != FF_AA_FLOAT)
  272. s->compute_antialias= compute_antialias_integer;
  273. else
  274. s->compute_antialias= compute_antialias_float;
  275. if (!init && !avctx->parse_only) {
  276. /* scale factors table for layer 1/2 */
  277. for(i=0;i<64;i++) {
  278. int shift, mod;
  279. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  280. shift = (i / 3);
  281. mod = i % 3;
  282. scale_factor_modshift[i] = mod | (shift << 2);
  283. }
  284. /* scale factor multiply for layer 1 */
  285. for(i=0;i<15;i++) {
  286. int n, norm;
  287. n = i + 2;
  288. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  289. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  290. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  291. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  292. dprintf("%d: norm=%x s=%x %x %x\n",
  293. i, norm,
  294. scale_factor_mult[i][0],
  295. scale_factor_mult[i][1],
  296. scale_factor_mult[i][2]);
  297. }
  298. ff_mpa_synth_init(window);
  299. /* huffman decode tables */
  300. huff_code_table[0] = NULL;
  301. for(i=1;i<16;i++) {
  302. const HuffTable *h = &mpa_huff_tables[i];
  303. int xsize, x, y;
  304. unsigned int n;
  305. uint8_t *code_table;
  306. xsize = h->xsize;
  307. n = xsize * xsize;
  308. /* XXX: fail test */
  309. init_vlc(&huff_vlc[i], 8, n,
  310. h->bits, 1, 1, h->codes, 2, 2, 1);
  311. code_table = av_mallocz(n);
  312. j = 0;
  313. for(x=0;x<xsize;x++) {
  314. for(y=0;y<xsize;y++)
  315. code_table[j++] = (x << 4) | y;
  316. }
  317. huff_code_table[i] = code_table;
  318. }
  319. for(i=0;i<2;i++) {
  320. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  321. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  322. }
  323. for(i=0;i<9;i++) {
  324. k = 0;
  325. for(j=0;j<22;j++) {
  326. band_index_long[i][j] = k;
  327. k += band_size_long[i][j];
  328. }
  329. band_index_long[i][22] = k;
  330. }
  331. /* compute n ^ (4/3) and store it in mantissa/exp format */
  332. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  333. if(!table_4_3_exp)
  334. return -1;
  335. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  336. if(!table_4_3_value)
  337. return -1;
  338. int_pow_init();
  339. for(i=1;i<TABLE_4_3_SIZE;i++) {
  340. double f, fm;
  341. int e, m;
  342. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  343. fm = frexp(f, &e);
  344. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  345. e+= FRAC_BITS - 31 + 5;
  346. /* normalized to FRAC_BITS */
  347. table_4_3_value[i] = m;
  348. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  349. table_4_3_exp[i] = -e;
  350. }
  351. for(i=0;i<7;i++) {
  352. float f;
  353. int v;
  354. if (i != 6) {
  355. f = tan((double)i * M_PI / 12.0);
  356. v = FIXR(f / (1.0 + f));
  357. } else {
  358. v = FIXR(1.0);
  359. }
  360. is_table[0][i] = v;
  361. is_table[1][6 - i] = v;
  362. }
  363. /* invalid values */
  364. for(i=7;i<16;i++)
  365. is_table[0][i] = is_table[1][i] = 0.0;
  366. for(i=0;i<16;i++) {
  367. double f;
  368. int e, k;
  369. for(j=0;j<2;j++) {
  370. e = -(j + 1) * ((i + 1) >> 1);
  371. f = pow(2.0, e / 4.0);
  372. k = i & 1;
  373. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  374. is_table_lsf[j][k][i] = FIXR(1.0);
  375. dprintf("is_table_lsf %d %d: %x %x\n",
  376. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  377. }
  378. }
  379. for(i=0;i<8;i++) {
  380. float ci, cs, ca;
  381. ci = ci_table[i];
  382. cs = 1.0 / sqrt(1.0 + ci * ci);
  383. ca = cs * ci;
  384. csa_table[i][0] = FIXHR(cs/4);
  385. csa_table[i][1] = FIXHR(ca/4);
  386. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  387. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  388. csa_table_float[i][0] = cs;
  389. csa_table_float[i][1] = ca;
  390. csa_table_float[i][2] = ca + cs;
  391. csa_table_float[i][3] = ca - cs;
  392. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  393. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  394. }
  395. /* compute mdct windows */
  396. for(i=0;i<36;i++) {
  397. for(j=0; j<4; j++){
  398. double d;
  399. if(j==2 && i%3 != 1)
  400. continue;
  401. d= sin(M_PI * (i + 0.5) / 36.0);
  402. if(j==1){
  403. if (i>=30) d= 0;
  404. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  405. else if(i>=18) d= 1;
  406. }else if(j==3){
  407. if (i< 6) d= 0;
  408. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  409. else if(i< 18) d= 1;
  410. }
  411. //merge last stage of imdct into the window coefficients
  412. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  413. if(j==2)
  414. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  415. else
  416. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  417. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  418. }
  419. }
  420. /* NOTE: we do frequency inversion adter the MDCT by changing
  421. the sign of the right window coefs */
  422. for(j=0;j<4;j++) {
  423. for(i=0;i<36;i+=2) {
  424. mdct_win[j + 4][i] = mdct_win[j][i];
  425. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  426. }
  427. }
  428. #if defined(DEBUG)
  429. for(j=0;j<8;j++) {
  430. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  431. for(i=0;i<36;i++)
  432. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  433. av_log(avctx, AV_LOG_DEBUG, "\n");
  434. }
  435. #endif
  436. init = 1;
  437. }
  438. s->inbuf_index = 0;
  439. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  440. s->inbuf_ptr = s->inbuf;
  441. #ifdef DEBUG
  442. s->frame_count = 0;
  443. #endif
  444. if (avctx->codec_id == CODEC_ID_MP3ADU)
  445. s->adu_mode = 1;
  446. return 0;
  447. }
  448. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  449. /* cos(i*pi/64) */
  450. #define COS0_0 FIXR(0.50060299823519630134)
  451. #define COS0_1 FIXR(0.50547095989754365998)
  452. #define COS0_2 FIXR(0.51544730992262454697)
  453. #define COS0_3 FIXR(0.53104259108978417447)
  454. #define COS0_4 FIXR(0.55310389603444452782)
  455. #define COS0_5 FIXR(0.58293496820613387367)
  456. #define COS0_6 FIXR(0.62250412303566481615)
  457. #define COS0_7 FIXR(0.67480834145500574602)
  458. #define COS0_8 FIXR(0.74453627100229844977)
  459. #define COS0_9 FIXR(0.83934964541552703873)
  460. #define COS0_10 FIXR(0.97256823786196069369)
  461. #define COS0_11 FIXR(1.16943993343288495515)
  462. #define COS0_12 FIXR(1.48416461631416627724)
  463. #define COS0_13 FIXR(2.05778100995341155085)
  464. #define COS0_14 FIXR(3.40760841846871878570)
  465. #define COS0_15 FIXR(10.19000812354805681150)
  466. #define COS1_0 FIXR(0.50241928618815570551)
  467. #define COS1_1 FIXR(0.52249861493968888062)
  468. #define COS1_2 FIXR(0.56694403481635770368)
  469. #define COS1_3 FIXR(0.64682178335999012954)
  470. #define COS1_4 FIXR(0.78815462345125022473)
  471. #define COS1_5 FIXR(1.06067768599034747134)
  472. #define COS1_6 FIXR(1.72244709823833392782)
  473. #define COS1_7 FIXR(5.10114861868916385802)
  474. #define COS2_0 FIXR(0.50979557910415916894)
  475. #define COS2_1 FIXR(0.60134488693504528054)
  476. #define COS2_2 FIXR(0.89997622313641570463)
  477. #define COS2_3 FIXR(2.56291544774150617881)
  478. #define COS3_0 FIXR(0.54119610014619698439)
  479. #define COS3_1 FIXR(1.30656296487637652785)
  480. #define COS4_0 FIXR(0.70710678118654752439)
  481. /* butterfly operator */
  482. #define BF(a, b, c)\
  483. {\
  484. tmp0 = tab[a] + tab[b];\
  485. tmp1 = tab[a] - tab[b];\
  486. tab[a] = tmp0;\
  487. tab[b] = MULL(tmp1, c);\
  488. }
  489. #define BF1(a, b, c, d)\
  490. {\
  491. BF(a, b, COS4_0);\
  492. BF(c, d, -COS4_0);\
  493. tab[c] += tab[d];\
  494. }
  495. #define BF2(a, b, c, d)\
  496. {\
  497. BF(a, b, COS4_0);\
  498. BF(c, d, -COS4_0);\
  499. tab[c] += tab[d];\
  500. tab[a] += tab[c];\
  501. tab[c] += tab[b];\
  502. tab[b] += tab[d];\
  503. }
  504. #define ADD(a, b) tab[a] += tab[b]
  505. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  506. static void dct32(int32_t *out, int32_t *tab)
  507. {
  508. int tmp0, tmp1;
  509. /* pass 1 */
  510. BF(0, 31, COS0_0);
  511. BF(1, 30, COS0_1);
  512. BF(2, 29, COS0_2);
  513. BF(3, 28, COS0_3);
  514. BF(4, 27, COS0_4);
  515. BF(5, 26, COS0_5);
  516. BF(6, 25, COS0_6);
  517. BF(7, 24, COS0_7);
  518. BF(8, 23, COS0_8);
  519. BF(9, 22, COS0_9);
  520. BF(10, 21, COS0_10);
  521. BF(11, 20, COS0_11);
  522. BF(12, 19, COS0_12);
  523. BF(13, 18, COS0_13);
  524. BF(14, 17, COS0_14);
  525. BF(15, 16, COS0_15);
  526. /* pass 2 */
  527. BF(0, 15, COS1_0);
  528. BF(1, 14, COS1_1);
  529. BF(2, 13, COS1_2);
  530. BF(3, 12, COS1_3);
  531. BF(4, 11, COS1_4);
  532. BF(5, 10, COS1_5);
  533. BF(6, 9, COS1_6);
  534. BF(7, 8, COS1_7);
  535. BF(16, 31, -COS1_0);
  536. BF(17, 30, -COS1_1);
  537. BF(18, 29, -COS1_2);
  538. BF(19, 28, -COS1_3);
  539. BF(20, 27, -COS1_4);
  540. BF(21, 26, -COS1_5);
  541. BF(22, 25, -COS1_6);
  542. BF(23, 24, -COS1_7);
  543. /* pass 3 */
  544. BF(0, 7, COS2_0);
  545. BF(1, 6, COS2_1);
  546. BF(2, 5, COS2_2);
  547. BF(3, 4, COS2_3);
  548. BF(8, 15, -COS2_0);
  549. BF(9, 14, -COS2_1);
  550. BF(10, 13, -COS2_2);
  551. BF(11, 12, -COS2_3);
  552. BF(16, 23, COS2_0);
  553. BF(17, 22, COS2_1);
  554. BF(18, 21, COS2_2);
  555. BF(19, 20, COS2_3);
  556. BF(24, 31, -COS2_0);
  557. BF(25, 30, -COS2_1);
  558. BF(26, 29, -COS2_2);
  559. BF(27, 28, -COS2_3);
  560. /* pass 4 */
  561. BF(0, 3, COS3_0);
  562. BF(1, 2, COS3_1);
  563. BF(4, 7, -COS3_0);
  564. BF(5, 6, -COS3_1);
  565. BF(8, 11, COS3_0);
  566. BF(9, 10, COS3_1);
  567. BF(12, 15, -COS3_0);
  568. BF(13, 14, -COS3_1);
  569. BF(16, 19, COS3_0);
  570. BF(17, 18, COS3_1);
  571. BF(20, 23, -COS3_0);
  572. BF(21, 22, -COS3_1);
  573. BF(24, 27, COS3_0);
  574. BF(25, 26, COS3_1);
  575. BF(28, 31, -COS3_0);
  576. BF(29, 30, -COS3_1);
  577. /* pass 5 */
  578. BF1(0, 1, 2, 3);
  579. BF2(4, 5, 6, 7);
  580. BF1(8, 9, 10, 11);
  581. BF2(12, 13, 14, 15);
  582. BF1(16, 17, 18, 19);
  583. BF2(20, 21, 22, 23);
  584. BF1(24, 25, 26, 27);
  585. BF2(28, 29, 30, 31);
  586. /* pass 6 */
  587. ADD( 8, 12);
  588. ADD(12, 10);
  589. ADD(10, 14);
  590. ADD(14, 9);
  591. ADD( 9, 13);
  592. ADD(13, 11);
  593. ADD(11, 15);
  594. out[ 0] = tab[0];
  595. out[16] = tab[1];
  596. out[ 8] = tab[2];
  597. out[24] = tab[3];
  598. out[ 4] = tab[4];
  599. out[20] = tab[5];
  600. out[12] = tab[6];
  601. out[28] = tab[7];
  602. out[ 2] = tab[8];
  603. out[18] = tab[9];
  604. out[10] = tab[10];
  605. out[26] = tab[11];
  606. out[ 6] = tab[12];
  607. out[22] = tab[13];
  608. out[14] = tab[14];
  609. out[30] = tab[15];
  610. ADD(24, 28);
  611. ADD(28, 26);
  612. ADD(26, 30);
  613. ADD(30, 25);
  614. ADD(25, 29);
  615. ADD(29, 27);
  616. ADD(27, 31);
  617. out[ 1] = tab[16] + tab[24];
  618. out[17] = tab[17] + tab[25];
  619. out[ 9] = tab[18] + tab[26];
  620. out[25] = tab[19] + tab[27];
  621. out[ 5] = tab[20] + tab[28];
  622. out[21] = tab[21] + tab[29];
  623. out[13] = tab[22] + tab[30];
  624. out[29] = tab[23] + tab[31];
  625. out[ 3] = tab[24] + tab[20];
  626. out[19] = tab[25] + tab[21];
  627. out[11] = tab[26] + tab[22];
  628. out[27] = tab[27] + tab[23];
  629. out[ 7] = tab[28] + tab[18];
  630. out[23] = tab[29] + tab[19];
  631. out[15] = tab[30] + tab[17];
  632. out[31] = tab[31];
  633. }
  634. #if FRAC_BITS <= 15
  635. static inline int round_sample(int *sum)
  636. {
  637. int sum1;
  638. sum1 = (*sum) >> OUT_SHIFT;
  639. *sum &= (1<<OUT_SHIFT)-1;
  640. if (sum1 < OUT_MIN)
  641. sum1 = OUT_MIN;
  642. else if (sum1 > OUT_MAX)
  643. sum1 = OUT_MAX;
  644. return sum1;
  645. }
  646. #if defined(ARCH_POWERPC_405)
  647. /* signed 16x16 -> 32 multiply add accumulate */
  648. #define MACS(rt, ra, rb) \
  649. asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  650. /* signed 16x16 -> 32 multiply */
  651. #define MULS(ra, rb) \
  652. ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  653. #else
  654. /* signed 16x16 -> 32 multiply add accumulate */
  655. #define MACS(rt, ra, rb) rt += (ra) * (rb)
  656. /* signed 16x16 -> 32 multiply */
  657. #define MULS(ra, rb) ((ra) * (rb))
  658. #endif
  659. #else
  660. static inline int round_sample(int64_t *sum)
  661. {
  662. int sum1;
  663. sum1 = (int)((*sum) >> OUT_SHIFT);
  664. *sum &= (1<<OUT_SHIFT)-1;
  665. if (sum1 < OUT_MIN)
  666. sum1 = OUT_MIN;
  667. else if (sum1 > OUT_MAX)
  668. sum1 = OUT_MAX;
  669. return sum1;
  670. }
  671. #define MULS(ra, rb) MUL64(ra, rb)
  672. #endif
  673. #define SUM8(sum, op, w, p) \
  674. { \
  675. sum op MULS((w)[0 * 64], p[0 * 64]);\
  676. sum op MULS((w)[1 * 64], p[1 * 64]);\
  677. sum op MULS((w)[2 * 64], p[2 * 64]);\
  678. sum op MULS((w)[3 * 64], p[3 * 64]);\
  679. sum op MULS((w)[4 * 64], p[4 * 64]);\
  680. sum op MULS((w)[5 * 64], p[5 * 64]);\
  681. sum op MULS((w)[6 * 64], p[6 * 64]);\
  682. sum op MULS((w)[7 * 64], p[7 * 64]);\
  683. }
  684. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  685. { \
  686. int tmp;\
  687. tmp = p[0 * 64];\
  688. sum1 op1 MULS((w1)[0 * 64], tmp);\
  689. sum2 op2 MULS((w2)[0 * 64], tmp);\
  690. tmp = p[1 * 64];\
  691. sum1 op1 MULS((w1)[1 * 64], tmp);\
  692. sum2 op2 MULS((w2)[1 * 64], tmp);\
  693. tmp = p[2 * 64];\
  694. sum1 op1 MULS((w1)[2 * 64], tmp);\
  695. sum2 op2 MULS((w2)[2 * 64], tmp);\
  696. tmp = p[3 * 64];\
  697. sum1 op1 MULS((w1)[3 * 64], tmp);\
  698. sum2 op2 MULS((w2)[3 * 64], tmp);\
  699. tmp = p[4 * 64];\
  700. sum1 op1 MULS((w1)[4 * 64], tmp);\
  701. sum2 op2 MULS((w2)[4 * 64], tmp);\
  702. tmp = p[5 * 64];\
  703. sum1 op1 MULS((w1)[5 * 64], tmp);\
  704. sum2 op2 MULS((w2)[5 * 64], tmp);\
  705. tmp = p[6 * 64];\
  706. sum1 op1 MULS((w1)[6 * 64], tmp);\
  707. sum2 op2 MULS((w2)[6 * 64], tmp);\
  708. tmp = p[7 * 64];\
  709. sum1 op1 MULS((w1)[7 * 64], tmp);\
  710. sum2 op2 MULS((w2)[7 * 64], tmp);\
  711. }
  712. void ff_mpa_synth_init(MPA_INT *window)
  713. {
  714. int i;
  715. /* max = 18760, max sum over all 16 coefs : 44736 */
  716. for(i=0;i<257;i++) {
  717. int v;
  718. v = mpa_enwindow[i];
  719. #if WFRAC_BITS < 16
  720. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  721. #endif
  722. window[i] = v;
  723. if ((i & 63) != 0)
  724. v = -v;
  725. if (i != 0)
  726. window[512 - i] = v;
  727. }
  728. }
  729. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  730. 32 samples. */
  731. /* XXX: optimize by avoiding ring buffer usage */
  732. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  733. MPA_INT *window, int *dither_state,
  734. OUT_INT *samples, int incr,
  735. int32_t sb_samples[SBLIMIT])
  736. {
  737. int32_t tmp[32];
  738. register MPA_INT *synth_buf;
  739. register const MPA_INT *w, *w2, *p;
  740. int j, offset, v;
  741. OUT_INT *samples2;
  742. #if FRAC_BITS <= 15
  743. int sum, sum2;
  744. #else
  745. int64_t sum, sum2;
  746. #endif
  747. dct32(tmp, sb_samples);
  748. offset = *synth_buf_offset;
  749. synth_buf = synth_buf_ptr + offset;
  750. for(j=0;j<32;j++) {
  751. v = tmp[j];
  752. #if FRAC_BITS <= 15
  753. /* NOTE: can cause a loss in precision if very high amplitude
  754. sound */
  755. if (v > 32767)
  756. v = 32767;
  757. else if (v < -32768)
  758. v = -32768;
  759. #endif
  760. synth_buf[j] = v;
  761. }
  762. /* copy to avoid wrap */
  763. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  764. samples2 = samples + 31 * incr;
  765. w = window;
  766. w2 = window + 31;
  767. sum = *dither_state;
  768. p = synth_buf + 16;
  769. SUM8(sum, +=, w, p);
  770. p = synth_buf + 48;
  771. SUM8(sum, -=, w + 32, p);
  772. *samples = round_sample(&sum);
  773. samples += incr;
  774. w++;
  775. /* we calculate two samples at the same time to avoid one memory
  776. access per two sample */
  777. for(j=1;j<16;j++) {
  778. sum2 = 0;
  779. p = synth_buf + 16 + j;
  780. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  781. p = synth_buf + 48 - j;
  782. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  783. *samples = round_sample(&sum);
  784. samples += incr;
  785. sum += sum2;
  786. *samples2 = round_sample(&sum);
  787. samples2 -= incr;
  788. w++;
  789. w2--;
  790. }
  791. p = synth_buf + 32;
  792. SUM8(sum, -=, w + 32, p);
  793. *samples = round_sample(&sum);
  794. *dither_state= sum;
  795. offset = (offset - 32) & 511;
  796. *synth_buf_offset = offset;
  797. }
  798. #define C3 FIXHR(0.86602540378443864676/2)
  799. /* 0.5 / cos(pi*(2*i+1)/36) */
  800. static const int icos36[9] = {
  801. FIXR(0.50190991877167369479),
  802. FIXR(0.51763809020504152469), //0
  803. FIXR(0.55168895948124587824),
  804. FIXR(0.61038729438072803416),
  805. FIXR(0.70710678118654752439), //1
  806. FIXR(0.87172339781054900991),
  807. FIXR(1.18310079157624925896),
  808. FIXR(1.93185165257813657349), //2
  809. FIXR(5.73685662283492756461),
  810. };
  811. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  812. cases. */
  813. static void imdct12(int *out, int *in)
  814. {
  815. int in0, in1, in2, in3, in4, in5, t1, t2;
  816. in0= in[0*3];
  817. in1= in[1*3] + in[0*3];
  818. in2= in[2*3] + in[1*3];
  819. in3= in[3*3] + in[2*3];
  820. in4= in[4*3] + in[3*3];
  821. in5= in[5*3] + in[4*3];
  822. in5 += in3;
  823. in3 += in1;
  824. in2= MULH(2*in2, C3);
  825. in3= MULH(2*in3, C3);
  826. t1 = in0 - in4;
  827. t2 = MULL(in1 - in5, icos36[4]);
  828. out[ 7]=
  829. out[10]= t1 + t2;
  830. out[ 1]=
  831. out[ 4]= t1 - t2;
  832. in0 += in4>>1;
  833. in4 = in0 + in2;
  834. in1 += in5>>1;
  835. in5 = MULL(in1 + in3, icos36[1]);
  836. out[ 8]=
  837. out[ 9]= in4 + in5;
  838. out[ 2]=
  839. out[ 3]= in4 - in5;
  840. in0 -= in2;
  841. in1 = MULL(in1 - in3, icos36[7]);
  842. out[ 0]=
  843. out[ 5]= in0 - in1;
  844. out[ 6]=
  845. out[11]= in0 + in1;
  846. }
  847. /* cos(pi*i/18) */
  848. #define C1 FIXHR(0.98480775301220805936/2)
  849. #define C2 FIXHR(0.93969262078590838405/2)
  850. #define C3 FIXHR(0.86602540378443864676/2)
  851. #define C4 FIXHR(0.76604444311897803520/2)
  852. #define C5 FIXHR(0.64278760968653932632/2)
  853. #define C6 FIXHR(0.5/2)
  854. #define C7 FIXHR(0.34202014332566873304/2)
  855. #define C8 FIXHR(0.17364817766693034885/2)
  856. /* using Lee like decomposition followed by hand coded 9 points DCT */
  857. static void imdct36(int *out, int *buf, int *in, int *win)
  858. {
  859. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  860. int tmp[18], *tmp1, *in1;
  861. for(i=17;i>=1;i--)
  862. in[i] += in[i-1];
  863. for(i=17;i>=3;i-=2)
  864. in[i] += in[i-2];
  865. for(j=0;j<2;j++) {
  866. tmp1 = tmp + j;
  867. in1 = in + j;
  868. #if 0
  869. //more accurate but slower
  870. int64_t t0, t1, t2, t3;
  871. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  872. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  873. t1 = in1[2*0] - in1[2*6];
  874. tmp1[ 6] = t1 - (t2>>1);
  875. tmp1[16] = t1 + t2;
  876. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  877. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  878. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  879. tmp1[10] = (t3 - t0 - t2) >> 32;
  880. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  881. tmp1[14] = (t3 + t2 - t1) >> 32;
  882. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  883. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  884. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  885. t0 = MUL64(2*in1[2*3], C3);
  886. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  887. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  888. tmp1[12] = (t2 + t1 - t0) >> 32;
  889. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  890. #else
  891. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  892. t3 = in1[2*0] + (in1[2*6]>>1);
  893. t1 = in1[2*0] - in1[2*6];
  894. tmp1[ 6] = t1 - (t2>>1);
  895. tmp1[16] = t1 + t2;
  896. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  897. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  898. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  899. tmp1[10] = t3 - t0 - t2;
  900. tmp1[ 2] = t3 + t0 + t1;
  901. tmp1[14] = t3 + t2 - t1;
  902. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  903. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  904. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  905. t0 = MULH(2*in1[2*3], C3);
  906. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  907. tmp1[ 0] = t2 + t3 + t0;
  908. tmp1[12] = t2 + t1 - t0;
  909. tmp1[ 8] = t3 - t1 - t0;
  910. #endif
  911. }
  912. i = 0;
  913. for(j=0;j<4;j++) {
  914. t0 = tmp[i];
  915. t1 = tmp[i + 2];
  916. s0 = t1 + t0;
  917. s2 = t1 - t0;
  918. t2 = tmp[i + 1];
  919. t3 = tmp[i + 3];
  920. s1 = MULL(t3 + t2, icos36[j]);
  921. s3 = MULL(t3 - t2, icos36[8 - j]);
  922. t0 = s0 + s1;
  923. t1 = s0 - s1;
  924. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  925. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  926. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  927. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  928. t0 = s2 + s3;
  929. t1 = s2 - s3;
  930. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  931. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  932. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  933. buf[ + j] = MULH(t0, win[18 + j]);
  934. i += 4;
  935. }
  936. s0 = tmp[16];
  937. s1 = MULL(tmp[17], icos36[4]);
  938. t0 = s0 + s1;
  939. t1 = s0 - s1;
  940. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  941. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  942. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  943. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  944. }
  945. /* header decoding. MUST check the header before because no
  946. consistency check is done there. Return 1 if free format found and
  947. that the frame size must be computed externally */
  948. static int decode_header(MPADecodeContext *s, uint32_t header)
  949. {
  950. int sample_rate, frame_size, mpeg25, padding;
  951. int sample_rate_index, bitrate_index;
  952. if (header & (1<<20)) {
  953. s->lsf = (header & (1<<19)) ? 0 : 1;
  954. mpeg25 = 0;
  955. } else {
  956. s->lsf = 1;
  957. mpeg25 = 1;
  958. }
  959. s->layer = 4 - ((header >> 17) & 3);
  960. /* extract frequency */
  961. sample_rate_index = (header >> 10) & 3;
  962. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  963. sample_rate_index += 3 * (s->lsf + mpeg25);
  964. s->sample_rate_index = sample_rate_index;
  965. s->error_protection = ((header >> 16) & 1) ^ 1;
  966. s->sample_rate = sample_rate;
  967. bitrate_index = (header >> 12) & 0xf;
  968. padding = (header >> 9) & 1;
  969. //extension = (header >> 8) & 1;
  970. s->mode = (header >> 6) & 3;
  971. s->mode_ext = (header >> 4) & 3;
  972. //copyright = (header >> 3) & 1;
  973. //original = (header >> 2) & 1;
  974. //emphasis = header & 3;
  975. if (s->mode == MPA_MONO)
  976. s->nb_channels = 1;
  977. else
  978. s->nb_channels = 2;
  979. if (bitrate_index != 0) {
  980. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  981. s->bit_rate = frame_size * 1000;
  982. switch(s->layer) {
  983. case 1:
  984. frame_size = (frame_size * 12000) / sample_rate;
  985. frame_size = (frame_size + padding) * 4;
  986. break;
  987. case 2:
  988. frame_size = (frame_size * 144000) / sample_rate;
  989. frame_size += padding;
  990. break;
  991. default:
  992. case 3:
  993. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  994. frame_size += padding;
  995. break;
  996. }
  997. s->frame_size = frame_size;
  998. } else {
  999. /* if no frame size computed, signal it */
  1000. if (!s->free_format_frame_size)
  1001. return 1;
  1002. /* free format: compute bitrate and real frame size from the
  1003. frame size we extracted by reading the bitstream */
  1004. s->frame_size = s->free_format_frame_size;
  1005. switch(s->layer) {
  1006. case 1:
  1007. s->frame_size += padding * 4;
  1008. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  1009. break;
  1010. case 2:
  1011. s->frame_size += padding;
  1012. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  1013. break;
  1014. default:
  1015. case 3:
  1016. s->frame_size += padding;
  1017. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1018. break;
  1019. }
  1020. }
  1021. #if defined(DEBUG)
  1022. dprintf("layer%d, %d Hz, %d kbits/s, ",
  1023. s->layer, s->sample_rate, s->bit_rate);
  1024. if (s->nb_channels == 2) {
  1025. if (s->layer == 3) {
  1026. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1027. dprintf("ms-");
  1028. if (s->mode_ext & MODE_EXT_I_STEREO)
  1029. dprintf("i-");
  1030. }
  1031. dprintf("stereo");
  1032. } else {
  1033. dprintf("mono");
  1034. }
  1035. dprintf("\n");
  1036. #endif
  1037. return 0;
  1038. }
  1039. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1040. header, otherwise the coded frame size in bytes */
  1041. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1042. {
  1043. MPADecodeContext s1, *s = &s1;
  1044. memset( s, 0, sizeof(MPADecodeContext) );
  1045. if (ff_mpa_check_header(head) != 0)
  1046. return -1;
  1047. if (decode_header(s, head) != 0) {
  1048. return -1;
  1049. }
  1050. switch(s->layer) {
  1051. case 1:
  1052. avctx->frame_size = 384;
  1053. break;
  1054. case 2:
  1055. avctx->frame_size = 1152;
  1056. break;
  1057. default:
  1058. case 3:
  1059. if (s->lsf)
  1060. avctx->frame_size = 576;
  1061. else
  1062. avctx->frame_size = 1152;
  1063. break;
  1064. }
  1065. avctx->sample_rate = s->sample_rate;
  1066. avctx->channels = s->nb_channels;
  1067. avctx->bit_rate = s->bit_rate;
  1068. avctx->sub_id = s->layer;
  1069. return s->frame_size;
  1070. }
  1071. /* return the number of decoded frames */
  1072. static int mp_decode_layer1(MPADecodeContext *s)
  1073. {
  1074. int bound, i, v, n, ch, j, mant;
  1075. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1076. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1077. if (s->mode == MPA_JSTEREO)
  1078. bound = (s->mode_ext + 1) * 4;
  1079. else
  1080. bound = SBLIMIT;
  1081. /* allocation bits */
  1082. for(i=0;i<bound;i++) {
  1083. for(ch=0;ch<s->nb_channels;ch++) {
  1084. allocation[ch][i] = get_bits(&s->gb, 4);
  1085. }
  1086. }
  1087. for(i=bound;i<SBLIMIT;i++) {
  1088. allocation[0][i] = get_bits(&s->gb, 4);
  1089. }
  1090. /* scale factors */
  1091. for(i=0;i<bound;i++) {
  1092. for(ch=0;ch<s->nb_channels;ch++) {
  1093. if (allocation[ch][i])
  1094. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1095. }
  1096. }
  1097. for(i=bound;i<SBLIMIT;i++) {
  1098. if (allocation[0][i]) {
  1099. scale_factors[0][i] = get_bits(&s->gb, 6);
  1100. scale_factors[1][i] = get_bits(&s->gb, 6);
  1101. }
  1102. }
  1103. /* compute samples */
  1104. for(j=0;j<12;j++) {
  1105. for(i=0;i<bound;i++) {
  1106. for(ch=0;ch<s->nb_channels;ch++) {
  1107. n = allocation[ch][i];
  1108. if (n) {
  1109. mant = get_bits(&s->gb, n + 1);
  1110. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1111. } else {
  1112. v = 0;
  1113. }
  1114. s->sb_samples[ch][j][i] = v;
  1115. }
  1116. }
  1117. for(i=bound;i<SBLIMIT;i++) {
  1118. n = allocation[0][i];
  1119. if (n) {
  1120. mant = get_bits(&s->gb, n + 1);
  1121. v = l1_unscale(n, mant, scale_factors[0][i]);
  1122. s->sb_samples[0][j][i] = v;
  1123. v = l1_unscale(n, mant, scale_factors[1][i]);
  1124. s->sb_samples[1][j][i] = v;
  1125. } else {
  1126. s->sb_samples[0][j][i] = 0;
  1127. s->sb_samples[1][j][i] = 0;
  1128. }
  1129. }
  1130. }
  1131. return 12;
  1132. }
  1133. /* bitrate is in kb/s */
  1134. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1135. {
  1136. int ch_bitrate, table;
  1137. ch_bitrate = bitrate / nb_channels;
  1138. if (!lsf) {
  1139. if ((freq == 48000 && ch_bitrate >= 56) ||
  1140. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1141. table = 0;
  1142. else if (freq != 48000 && ch_bitrate >= 96)
  1143. table = 1;
  1144. else if (freq != 32000 && ch_bitrate <= 48)
  1145. table = 2;
  1146. else
  1147. table = 3;
  1148. } else {
  1149. table = 4;
  1150. }
  1151. return table;
  1152. }
  1153. static int mp_decode_layer2(MPADecodeContext *s)
  1154. {
  1155. int sblimit; /* number of used subbands */
  1156. const unsigned char *alloc_table;
  1157. int table, bit_alloc_bits, i, j, ch, bound, v;
  1158. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1159. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1160. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1161. int scale, qindex, bits, steps, k, l, m, b;
  1162. /* select decoding table */
  1163. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1164. s->sample_rate, s->lsf);
  1165. sblimit = sblimit_table[table];
  1166. alloc_table = alloc_tables[table];
  1167. if (s->mode == MPA_JSTEREO)
  1168. bound = (s->mode_ext + 1) * 4;
  1169. else
  1170. bound = sblimit;
  1171. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1172. /* sanity check */
  1173. if( bound > sblimit ) bound = sblimit;
  1174. /* parse bit allocation */
  1175. j = 0;
  1176. for(i=0;i<bound;i++) {
  1177. bit_alloc_bits = alloc_table[j];
  1178. for(ch=0;ch<s->nb_channels;ch++) {
  1179. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1180. }
  1181. j += 1 << bit_alloc_bits;
  1182. }
  1183. for(i=bound;i<sblimit;i++) {
  1184. bit_alloc_bits = alloc_table[j];
  1185. v = get_bits(&s->gb, bit_alloc_bits);
  1186. bit_alloc[0][i] = v;
  1187. bit_alloc[1][i] = v;
  1188. j += 1 << bit_alloc_bits;
  1189. }
  1190. #ifdef DEBUG
  1191. {
  1192. for(ch=0;ch<s->nb_channels;ch++) {
  1193. for(i=0;i<sblimit;i++)
  1194. dprintf(" %d", bit_alloc[ch][i]);
  1195. dprintf("\n");
  1196. }
  1197. }
  1198. #endif
  1199. /* scale codes */
  1200. for(i=0;i<sblimit;i++) {
  1201. for(ch=0;ch<s->nb_channels;ch++) {
  1202. if (bit_alloc[ch][i])
  1203. scale_code[ch][i] = get_bits(&s->gb, 2);
  1204. }
  1205. }
  1206. /* scale factors */
  1207. for(i=0;i<sblimit;i++) {
  1208. for(ch=0;ch<s->nb_channels;ch++) {
  1209. if (bit_alloc[ch][i]) {
  1210. sf = scale_factors[ch][i];
  1211. switch(scale_code[ch][i]) {
  1212. default:
  1213. case 0:
  1214. sf[0] = get_bits(&s->gb, 6);
  1215. sf[1] = get_bits(&s->gb, 6);
  1216. sf[2] = get_bits(&s->gb, 6);
  1217. break;
  1218. case 2:
  1219. sf[0] = get_bits(&s->gb, 6);
  1220. sf[1] = sf[0];
  1221. sf[2] = sf[0];
  1222. break;
  1223. case 1:
  1224. sf[0] = get_bits(&s->gb, 6);
  1225. sf[2] = get_bits(&s->gb, 6);
  1226. sf[1] = sf[0];
  1227. break;
  1228. case 3:
  1229. sf[0] = get_bits(&s->gb, 6);
  1230. sf[2] = get_bits(&s->gb, 6);
  1231. sf[1] = sf[2];
  1232. break;
  1233. }
  1234. }
  1235. }
  1236. }
  1237. #ifdef DEBUG
  1238. for(ch=0;ch<s->nb_channels;ch++) {
  1239. for(i=0;i<sblimit;i++) {
  1240. if (bit_alloc[ch][i]) {
  1241. sf = scale_factors[ch][i];
  1242. dprintf(" %d %d %d", sf[0], sf[1], sf[2]);
  1243. } else {
  1244. dprintf(" -");
  1245. }
  1246. }
  1247. dprintf("\n");
  1248. }
  1249. #endif
  1250. /* samples */
  1251. for(k=0;k<3;k++) {
  1252. for(l=0;l<12;l+=3) {
  1253. j = 0;
  1254. for(i=0;i<bound;i++) {
  1255. bit_alloc_bits = alloc_table[j];
  1256. for(ch=0;ch<s->nb_channels;ch++) {
  1257. b = bit_alloc[ch][i];
  1258. if (b) {
  1259. scale = scale_factors[ch][i][k];
  1260. qindex = alloc_table[j+b];
  1261. bits = quant_bits[qindex];
  1262. if (bits < 0) {
  1263. /* 3 values at the same time */
  1264. v = get_bits(&s->gb, -bits);
  1265. steps = quant_steps[qindex];
  1266. s->sb_samples[ch][k * 12 + l + 0][i] =
  1267. l2_unscale_group(steps, v % steps, scale);
  1268. v = v / steps;
  1269. s->sb_samples[ch][k * 12 + l + 1][i] =
  1270. l2_unscale_group(steps, v % steps, scale);
  1271. v = v / steps;
  1272. s->sb_samples[ch][k * 12 + l + 2][i] =
  1273. l2_unscale_group(steps, v, scale);
  1274. } else {
  1275. for(m=0;m<3;m++) {
  1276. v = get_bits(&s->gb, bits);
  1277. v = l1_unscale(bits - 1, v, scale);
  1278. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1279. }
  1280. }
  1281. } else {
  1282. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1283. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1284. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1285. }
  1286. }
  1287. /* next subband in alloc table */
  1288. j += 1 << bit_alloc_bits;
  1289. }
  1290. /* XXX: find a way to avoid this duplication of code */
  1291. for(i=bound;i<sblimit;i++) {
  1292. bit_alloc_bits = alloc_table[j];
  1293. b = bit_alloc[0][i];
  1294. if (b) {
  1295. int mant, scale0, scale1;
  1296. scale0 = scale_factors[0][i][k];
  1297. scale1 = scale_factors[1][i][k];
  1298. qindex = alloc_table[j+b];
  1299. bits = quant_bits[qindex];
  1300. if (bits < 0) {
  1301. /* 3 values at the same time */
  1302. v = get_bits(&s->gb, -bits);
  1303. steps = quant_steps[qindex];
  1304. mant = v % steps;
  1305. v = v / steps;
  1306. s->sb_samples[0][k * 12 + l + 0][i] =
  1307. l2_unscale_group(steps, mant, scale0);
  1308. s->sb_samples[1][k * 12 + l + 0][i] =
  1309. l2_unscale_group(steps, mant, scale1);
  1310. mant = v % steps;
  1311. v = v / steps;
  1312. s->sb_samples[0][k * 12 + l + 1][i] =
  1313. l2_unscale_group(steps, mant, scale0);
  1314. s->sb_samples[1][k * 12 + l + 1][i] =
  1315. l2_unscale_group(steps, mant, scale1);
  1316. s->sb_samples[0][k * 12 + l + 2][i] =
  1317. l2_unscale_group(steps, v, scale0);
  1318. s->sb_samples[1][k * 12 + l + 2][i] =
  1319. l2_unscale_group(steps, v, scale1);
  1320. } else {
  1321. for(m=0;m<3;m++) {
  1322. mant = get_bits(&s->gb, bits);
  1323. s->sb_samples[0][k * 12 + l + m][i] =
  1324. l1_unscale(bits - 1, mant, scale0);
  1325. s->sb_samples[1][k * 12 + l + m][i] =
  1326. l1_unscale(bits - 1, mant, scale1);
  1327. }
  1328. }
  1329. } else {
  1330. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1331. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1332. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1333. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1334. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1335. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1336. }
  1337. /* next subband in alloc table */
  1338. j += 1 << bit_alloc_bits;
  1339. }
  1340. /* fill remaining samples to zero */
  1341. for(i=sblimit;i<SBLIMIT;i++) {
  1342. for(ch=0;ch<s->nb_channels;ch++) {
  1343. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1344. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1345. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1346. }
  1347. }
  1348. }
  1349. }
  1350. return 3 * 12;
  1351. }
  1352. /*
  1353. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1354. */
  1355. static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
  1356. {
  1357. uint8_t *ptr;
  1358. /* compute current position in stream */
  1359. ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
  1360. /* copy old data before current one */
  1361. ptr -= backstep;
  1362. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1363. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1364. /* init get bits again */
  1365. init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
  1366. /* prepare next buffer */
  1367. s->inbuf_index ^= 1;
  1368. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1369. s->old_frame_size = s->frame_size;
  1370. }
  1371. static inline void lsf_sf_expand(int *slen,
  1372. int sf, int n1, int n2, int n3)
  1373. {
  1374. if (n3) {
  1375. slen[3] = sf % n3;
  1376. sf /= n3;
  1377. } else {
  1378. slen[3] = 0;
  1379. }
  1380. if (n2) {
  1381. slen[2] = sf % n2;
  1382. sf /= n2;
  1383. } else {
  1384. slen[2] = 0;
  1385. }
  1386. slen[1] = sf % n1;
  1387. sf /= n1;
  1388. slen[0] = sf;
  1389. }
  1390. static void exponents_from_scale_factors(MPADecodeContext *s,
  1391. GranuleDef *g,
  1392. int16_t *exponents)
  1393. {
  1394. const uint8_t *bstab, *pretab;
  1395. int len, i, j, k, l, v0, shift, gain, gains[3];
  1396. int16_t *exp_ptr;
  1397. exp_ptr = exponents;
  1398. gain = g->global_gain - 210;
  1399. shift = g->scalefac_scale + 1;
  1400. bstab = band_size_long[s->sample_rate_index];
  1401. pretab = mpa_pretab[g->preflag];
  1402. for(i=0;i<g->long_end;i++) {
  1403. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1404. len = bstab[i];
  1405. for(j=len;j>0;j--)
  1406. *exp_ptr++ = v0;
  1407. }
  1408. if (g->short_start < 13) {
  1409. bstab = band_size_short[s->sample_rate_index];
  1410. gains[0] = gain - (g->subblock_gain[0] << 3);
  1411. gains[1] = gain - (g->subblock_gain[1] << 3);
  1412. gains[2] = gain - (g->subblock_gain[2] << 3);
  1413. k = g->long_end;
  1414. for(i=g->short_start;i<13;i++) {
  1415. len = bstab[i];
  1416. for(l=0;l<3;l++) {
  1417. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1418. for(j=len;j>0;j--)
  1419. *exp_ptr++ = v0;
  1420. }
  1421. }
  1422. }
  1423. }
  1424. /* handle n = 0 too */
  1425. static inline int get_bitsz(GetBitContext *s, int n)
  1426. {
  1427. if (n == 0)
  1428. return 0;
  1429. else
  1430. return get_bits(s, n);
  1431. }
  1432. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1433. int16_t *exponents, int end_pos)
  1434. {
  1435. int s_index;
  1436. int linbits, code, x, y, l, v, i, j, k, pos;
  1437. GetBitContext last_gb;
  1438. VLC *vlc;
  1439. uint8_t *code_table;
  1440. /* low frequencies (called big values) */
  1441. s_index = 0;
  1442. for(i=0;i<3;i++) {
  1443. j = g->region_size[i];
  1444. if (j == 0)
  1445. continue;
  1446. /* select vlc table */
  1447. k = g->table_select[i];
  1448. l = mpa_huff_data[k][0];
  1449. linbits = mpa_huff_data[k][1];
  1450. vlc = &huff_vlc[l];
  1451. code_table = huff_code_table[l];
  1452. /* read huffcode and compute each couple */
  1453. for(;j>0;j--) {
  1454. if (get_bits_count(&s->gb) >= end_pos)
  1455. break;
  1456. if (code_table) {
  1457. code = get_vlc2(&s->gb, vlc->table, 8, 2);
  1458. if (code < 0)
  1459. return -1;
  1460. y = code_table[code];
  1461. x = y >> 4;
  1462. y = y & 0x0f;
  1463. } else {
  1464. x = 0;
  1465. y = 0;
  1466. }
  1467. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1468. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1469. if (x) {
  1470. if (x == 15)
  1471. x += get_bitsz(&s->gb, linbits);
  1472. v = l3_unscale(x, exponents[s_index]);
  1473. if (get_bits1(&s->gb))
  1474. v = -v;
  1475. } else {
  1476. v = 0;
  1477. }
  1478. g->sb_hybrid[s_index++] = v;
  1479. if (y) {
  1480. if (y == 15)
  1481. y += get_bitsz(&s->gb, linbits);
  1482. v = l3_unscale(y, exponents[s_index]);
  1483. if (get_bits1(&s->gb))
  1484. v = -v;
  1485. } else {
  1486. v = 0;
  1487. }
  1488. g->sb_hybrid[s_index++] = v;
  1489. }
  1490. }
  1491. /* high frequencies */
  1492. vlc = &huff_quad_vlc[g->count1table_select];
  1493. last_gb.buffer = NULL;
  1494. while (s_index <= 572) {
  1495. pos = get_bits_count(&s->gb);
  1496. if (pos >= end_pos) {
  1497. if (pos > end_pos && last_gb.buffer != NULL) {
  1498. /* some encoders generate an incorrect size for this
  1499. part. We must go back into the data */
  1500. s_index -= 4;
  1501. s->gb = last_gb;
  1502. }
  1503. break;
  1504. }
  1505. last_gb= s->gb;
  1506. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 2);
  1507. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1508. if (code < 0)
  1509. return -1;
  1510. for(i=0;i<4;i++) {
  1511. if (code & (8 >> i)) {
  1512. /* non zero value. Could use a hand coded function for
  1513. 'one' value */
  1514. v = l3_unscale(1, exponents[s_index]);
  1515. if(get_bits1(&s->gb))
  1516. v = -v;
  1517. } else {
  1518. v = 0;
  1519. }
  1520. g->sb_hybrid[s_index++] = v;
  1521. }
  1522. }
  1523. while (s_index < 576)
  1524. g->sb_hybrid[s_index++] = 0;
  1525. return 0;
  1526. }
  1527. /* Reorder short blocks from bitstream order to interleaved order. It
  1528. would be faster to do it in parsing, but the code would be far more
  1529. complicated */
  1530. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1531. {
  1532. int i, j, k, len;
  1533. int32_t *ptr, *dst, *ptr1;
  1534. int32_t tmp[576];
  1535. if (g->block_type != 2)
  1536. return;
  1537. if (g->switch_point) {
  1538. if (s->sample_rate_index != 8) {
  1539. ptr = g->sb_hybrid + 36;
  1540. } else {
  1541. ptr = g->sb_hybrid + 48;
  1542. }
  1543. } else {
  1544. ptr = g->sb_hybrid;
  1545. }
  1546. for(i=g->short_start;i<13;i++) {
  1547. len = band_size_short[s->sample_rate_index][i];
  1548. ptr1 = ptr;
  1549. for(k=0;k<3;k++) {
  1550. dst = tmp + k;
  1551. for(j=len;j>0;j--) {
  1552. *dst = *ptr++;
  1553. dst += 3;
  1554. }
  1555. }
  1556. memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
  1557. }
  1558. }
  1559. #define ISQRT2 FIXR(0.70710678118654752440)
  1560. static void compute_stereo(MPADecodeContext *s,
  1561. GranuleDef *g0, GranuleDef *g1)
  1562. {
  1563. int i, j, k, l;
  1564. int32_t v1, v2;
  1565. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1566. int32_t (*is_tab)[16];
  1567. int32_t *tab0, *tab1;
  1568. int non_zero_found_short[3];
  1569. /* intensity stereo */
  1570. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1571. if (!s->lsf) {
  1572. is_tab = is_table;
  1573. sf_max = 7;
  1574. } else {
  1575. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1576. sf_max = 16;
  1577. }
  1578. tab0 = g0->sb_hybrid + 576;
  1579. tab1 = g1->sb_hybrid + 576;
  1580. non_zero_found_short[0] = 0;
  1581. non_zero_found_short[1] = 0;
  1582. non_zero_found_short[2] = 0;
  1583. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1584. for(i = 12;i >= g1->short_start;i--) {
  1585. /* for last band, use previous scale factor */
  1586. if (i != 11)
  1587. k -= 3;
  1588. len = band_size_short[s->sample_rate_index][i];
  1589. for(l=2;l>=0;l--) {
  1590. tab0 -= len;
  1591. tab1 -= len;
  1592. if (!non_zero_found_short[l]) {
  1593. /* test if non zero band. if so, stop doing i-stereo */
  1594. for(j=0;j<len;j++) {
  1595. if (tab1[j] != 0) {
  1596. non_zero_found_short[l] = 1;
  1597. goto found1;
  1598. }
  1599. }
  1600. sf = g1->scale_factors[k + l];
  1601. if (sf >= sf_max)
  1602. goto found1;
  1603. v1 = is_tab[0][sf];
  1604. v2 = is_tab[1][sf];
  1605. for(j=0;j<len;j++) {
  1606. tmp0 = tab0[j];
  1607. tab0[j] = MULL(tmp0, v1);
  1608. tab1[j] = MULL(tmp0, v2);
  1609. }
  1610. } else {
  1611. found1:
  1612. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1613. /* lower part of the spectrum : do ms stereo
  1614. if enabled */
  1615. for(j=0;j<len;j++) {
  1616. tmp0 = tab0[j];
  1617. tmp1 = tab1[j];
  1618. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1619. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1620. }
  1621. }
  1622. }
  1623. }
  1624. }
  1625. non_zero_found = non_zero_found_short[0] |
  1626. non_zero_found_short[1] |
  1627. non_zero_found_short[2];
  1628. for(i = g1->long_end - 1;i >= 0;i--) {
  1629. len = band_size_long[s->sample_rate_index][i];
  1630. tab0 -= len;
  1631. tab1 -= len;
  1632. /* test if non zero band. if so, stop doing i-stereo */
  1633. if (!non_zero_found) {
  1634. for(j=0;j<len;j++) {
  1635. if (tab1[j] != 0) {
  1636. non_zero_found = 1;
  1637. goto found2;
  1638. }
  1639. }
  1640. /* for last band, use previous scale factor */
  1641. k = (i == 21) ? 20 : i;
  1642. sf = g1->scale_factors[k];
  1643. if (sf >= sf_max)
  1644. goto found2;
  1645. v1 = is_tab[0][sf];
  1646. v2 = is_tab[1][sf];
  1647. for(j=0;j<len;j++) {
  1648. tmp0 = tab0[j];
  1649. tab0[j] = MULL(tmp0, v1);
  1650. tab1[j] = MULL(tmp0, v2);
  1651. }
  1652. } else {
  1653. found2:
  1654. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1655. /* lower part of the spectrum : do ms stereo
  1656. if enabled */
  1657. for(j=0;j<len;j++) {
  1658. tmp0 = tab0[j];
  1659. tmp1 = tab1[j];
  1660. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1661. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1662. }
  1663. }
  1664. }
  1665. }
  1666. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1667. /* ms stereo ONLY */
  1668. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1669. global gain */
  1670. tab0 = g0->sb_hybrid;
  1671. tab1 = g1->sb_hybrid;
  1672. for(i=0;i<576;i++) {
  1673. tmp0 = tab0[i];
  1674. tmp1 = tab1[i];
  1675. tab0[i] = tmp0 + tmp1;
  1676. tab1[i] = tmp0 - tmp1;
  1677. }
  1678. }
  1679. }
  1680. static void compute_antialias_integer(MPADecodeContext *s,
  1681. GranuleDef *g)
  1682. {
  1683. int32_t *ptr, *csa;
  1684. int n, i;
  1685. /* we antialias only "long" bands */
  1686. if (g->block_type == 2) {
  1687. if (!g->switch_point)
  1688. return;
  1689. /* XXX: check this for 8000Hz case */
  1690. n = 1;
  1691. } else {
  1692. n = SBLIMIT - 1;
  1693. }
  1694. ptr = g->sb_hybrid + 18;
  1695. for(i = n;i > 0;i--) {
  1696. int tmp0, tmp1, tmp2;
  1697. csa = &csa_table[0][0];
  1698. #define INT_AA(j) \
  1699. tmp0 = ptr[-1-j];\
  1700. tmp1 = ptr[ j];\
  1701. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1702. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1703. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1704. INT_AA(0)
  1705. INT_AA(1)
  1706. INT_AA(2)
  1707. INT_AA(3)
  1708. INT_AA(4)
  1709. INT_AA(5)
  1710. INT_AA(6)
  1711. INT_AA(7)
  1712. ptr += 18;
  1713. }
  1714. }
  1715. static void compute_antialias_float(MPADecodeContext *s,
  1716. GranuleDef *g)
  1717. {
  1718. int32_t *ptr;
  1719. int n, i;
  1720. /* we antialias only "long" bands */
  1721. if (g->block_type == 2) {
  1722. if (!g->switch_point)
  1723. return;
  1724. /* XXX: check this for 8000Hz case */
  1725. n = 1;
  1726. } else {
  1727. n = SBLIMIT - 1;
  1728. }
  1729. ptr = g->sb_hybrid + 18;
  1730. for(i = n;i > 0;i--) {
  1731. float tmp0, tmp1;
  1732. float *csa = &csa_table_float[0][0];
  1733. #define FLOAT_AA(j)\
  1734. tmp0= ptr[-1-j];\
  1735. tmp1= ptr[ j];\
  1736. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1737. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1738. FLOAT_AA(0)
  1739. FLOAT_AA(1)
  1740. FLOAT_AA(2)
  1741. FLOAT_AA(3)
  1742. FLOAT_AA(4)
  1743. FLOAT_AA(5)
  1744. FLOAT_AA(6)
  1745. FLOAT_AA(7)
  1746. ptr += 18;
  1747. }
  1748. }
  1749. static void compute_imdct(MPADecodeContext *s,
  1750. GranuleDef *g,
  1751. int32_t *sb_samples,
  1752. int32_t *mdct_buf)
  1753. {
  1754. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1755. int32_t out2[12];
  1756. int i, j, mdct_long_end, v, sblimit;
  1757. /* find last non zero block */
  1758. ptr = g->sb_hybrid + 576;
  1759. ptr1 = g->sb_hybrid + 2 * 18;
  1760. while (ptr >= ptr1) {
  1761. ptr -= 6;
  1762. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1763. if (v != 0)
  1764. break;
  1765. }
  1766. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1767. if (g->block_type == 2) {
  1768. /* XXX: check for 8000 Hz */
  1769. if (g->switch_point)
  1770. mdct_long_end = 2;
  1771. else
  1772. mdct_long_end = 0;
  1773. } else {
  1774. mdct_long_end = sblimit;
  1775. }
  1776. buf = mdct_buf;
  1777. ptr = g->sb_hybrid;
  1778. for(j=0;j<mdct_long_end;j++) {
  1779. /* apply window & overlap with previous buffer */
  1780. out_ptr = sb_samples + j;
  1781. /* select window */
  1782. if (g->switch_point && j < 2)
  1783. win1 = mdct_win[0];
  1784. else
  1785. win1 = mdct_win[g->block_type];
  1786. /* select frequency inversion */
  1787. win = win1 + ((4 * 36) & -(j & 1));
  1788. imdct36(out_ptr, buf, ptr, win);
  1789. out_ptr += 18*SBLIMIT;
  1790. ptr += 18;
  1791. buf += 18;
  1792. }
  1793. for(j=mdct_long_end;j<sblimit;j++) {
  1794. /* select frequency inversion */
  1795. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1796. out_ptr = sb_samples + j;
  1797. for(i=0; i<6; i++){
  1798. *out_ptr = buf[i];
  1799. out_ptr += SBLIMIT;
  1800. }
  1801. imdct12(out2, ptr + 0);
  1802. for(i=0;i<6;i++) {
  1803. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1804. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1805. out_ptr += SBLIMIT;
  1806. }
  1807. imdct12(out2, ptr + 1);
  1808. for(i=0;i<6;i++) {
  1809. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1810. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1811. out_ptr += SBLIMIT;
  1812. }
  1813. imdct12(out2, ptr + 2);
  1814. for(i=0;i<6;i++) {
  1815. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1816. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1817. buf[i + 6*2] = 0;
  1818. }
  1819. ptr += 18;
  1820. buf += 18;
  1821. }
  1822. /* zero bands */
  1823. for(j=sblimit;j<SBLIMIT;j++) {
  1824. /* overlap */
  1825. out_ptr = sb_samples + j;
  1826. for(i=0;i<18;i++) {
  1827. *out_ptr = buf[i];
  1828. buf[i] = 0;
  1829. out_ptr += SBLIMIT;
  1830. }
  1831. buf += 18;
  1832. }
  1833. }
  1834. #if defined(DEBUG)
  1835. void sample_dump(int fnum, int32_t *tab, int n)
  1836. {
  1837. static FILE *files[16], *f;
  1838. char buf[512];
  1839. int i;
  1840. int32_t v;
  1841. f = files[fnum];
  1842. if (!f) {
  1843. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1844. fnum,
  1845. #ifdef USE_HIGHPRECISION
  1846. "hp"
  1847. #else
  1848. "lp"
  1849. #endif
  1850. );
  1851. f = fopen(buf, "w");
  1852. if (!f)
  1853. return;
  1854. files[fnum] = f;
  1855. }
  1856. if (fnum == 0) {
  1857. static int pos = 0;
  1858. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1859. for(i=0;i<n;i++) {
  1860. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1861. if ((i % 18) == 17)
  1862. av_log(NULL, AV_LOG_DEBUG, "\n");
  1863. }
  1864. pos += n;
  1865. }
  1866. for(i=0;i<n;i++) {
  1867. /* normalize to 23 frac bits */
  1868. v = tab[i] << (23 - FRAC_BITS);
  1869. fwrite(&v, 1, sizeof(int32_t), f);
  1870. }
  1871. }
  1872. #endif
  1873. /* main layer3 decoding function */
  1874. static int mp_decode_layer3(MPADecodeContext *s)
  1875. {
  1876. int nb_granules, main_data_begin, private_bits;
  1877. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1878. GranuleDef granules[2][2], *g;
  1879. int16_t exponents[576];
  1880. /* read side info */
  1881. if (s->lsf) {
  1882. main_data_begin = get_bits(&s->gb, 8);
  1883. if (s->nb_channels == 2)
  1884. private_bits = get_bits(&s->gb, 2);
  1885. else
  1886. private_bits = get_bits(&s->gb, 1);
  1887. nb_granules = 1;
  1888. } else {
  1889. main_data_begin = get_bits(&s->gb, 9);
  1890. if (s->nb_channels == 2)
  1891. private_bits = get_bits(&s->gb, 3);
  1892. else
  1893. private_bits = get_bits(&s->gb, 5);
  1894. nb_granules = 2;
  1895. for(ch=0;ch<s->nb_channels;ch++) {
  1896. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1897. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1898. }
  1899. }
  1900. for(gr=0;gr<nb_granules;gr++) {
  1901. for(ch=0;ch<s->nb_channels;ch++) {
  1902. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1903. g = &granules[ch][gr];
  1904. g->part2_3_length = get_bits(&s->gb, 12);
  1905. g->big_values = get_bits(&s->gb, 9);
  1906. g->global_gain = get_bits(&s->gb, 8);
  1907. /* if MS stereo only is selected, we precompute the
  1908. 1/sqrt(2) renormalization factor */
  1909. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1910. MODE_EXT_MS_STEREO)
  1911. g->global_gain -= 2;
  1912. if (s->lsf)
  1913. g->scalefac_compress = get_bits(&s->gb, 9);
  1914. else
  1915. g->scalefac_compress = get_bits(&s->gb, 4);
  1916. blocksplit_flag = get_bits(&s->gb, 1);
  1917. if (blocksplit_flag) {
  1918. g->block_type = get_bits(&s->gb, 2);
  1919. if (g->block_type == 0)
  1920. return -1;
  1921. g->switch_point = get_bits(&s->gb, 1);
  1922. for(i=0;i<2;i++)
  1923. g->table_select[i] = get_bits(&s->gb, 5);
  1924. for(i=0;i<3;i++)
  1925. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1926. /* compute huffman coded region sizes */
  1927. if (g->block_type == 2)
  1928. g->region_size[0] = (36 / 2);
  1929. else {
  1930. if (s->sample_rate_index <= 2)
  1931. g->region_size[0] = (36 / 2);
  1932. else if (s->sample_rate_index != 8)
  1933. g->region_size[0] = (54 / 2);
  1934. else
  1935. g->region_size[0] = (108 / 2);
  1936. }
  1937. g->region_size[1] = (576 / 2);
  1938. } else {
  1939. int region_address1, region_address2, l;
  1940. g->block_type = 0;
  1941. g->switch_point = 0;
  1942. for(i=0;i<3;i++)
  1943. g->table_select[i] = get_bits(&s->gb, 5);
  1944. /* compute huffman coded region sizes */
  1945. region_address1 = get_bits(&s->gb, 4);
  1946. region_address2 = get_bits(&s->gb, 3);
  1947. dprintf("region1=%d region2=%d\n",
  1948. region_address1, region_address2);
  1949. g->region_size[0] =
  1950. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1951. l = region_address1 + region_address2 + 2;
  1952. /* should not overflow */
  1953. if (l > 22)
  1954. l = 22;
  1955. g->region_size[1] =
  1956. band_index_long[s->sample_rate_index][l] >> 1;
  1957. }
  1958. /* convert region offsets to region sizes and truncate
  1959. size to big_values */
  1960. g->region_size[2] = (576 / 2);
  1961. j = 0;
  1962. for(i=0;i<3;i++) {
  1963. k = g->region_size[i];
  1964. if (k > g->big_values)
  1965. k = g->big_values;
  1966. g->region_size[i] = k - j;
  1967. j = k;
  1968. }
  1969. /* compute band indexes */
  1970. if (g->block_type == 2) {
  1971. if (g->switch_point) {
  1972. /* if switched mode, we handle the 36 first samples as
  1973. long blocks. For 8000Hz, we handle the 48 first
  1974. exponents as long blocks (XXX: check this!) */
  1975. if (s->sample_rate_index <= 2)
  1976. g->long_end = 8;
  1977. else if (s->sample_rate_index != 8)
  1978. g->long_end = 6;
  1979. else
  1980. g->long_end = 4; /* 8000 Hz */
  1981. if (s->sample_rate_index != 8)
  1982. g->short_start = 3;
  1983. else
  1984. g->short_start = 2;
  1985. } else {
  1986. g->long_end = 0;
  1987. g->short_start = 0;
  1988. }
  1989. } else {
  1990. g->short_start = 13;
  1991. g->long_end = 22;
  1992. }
  1993. g->preflag = 0;
  1994. if (!s->lsf)
  1995. g->preflag = get_bits(&s->gb, 1);
  1996. g->scalefac_scale = get_bits(&s->gb, 1);
  1997. g->count1table_select = get_bits(&s->gb, 1);
  1998. dprintf("block_type=%d switch_point=%d\n",
  1999. g->block_type, g->switch_point);
  2000. }
  2001. }
  2002. if (!s->adu_mode) {
  2003. /* now we get bits from the main_data_begin offset */
  2004. dprintf("seekback: %d\n", main_data_begin);
  2005. seek_to_maindata(s, main_data_begin);
  2006. }
  2007. for(gr=0;gr<nb_granules;gr++) {
  2008. for(ch=0;ch<s->nb_channels;ch++) {
  2009. g = &granules[ch][gr];
  2010. bits_pos = get_bits_count(&s->gb);
  2011. if (!s->lsf) {
  2012. uint8_t *sc;
  2013. int slen, slen1, slen2;
  2014. /* MPEG1 scale factors */
  2015. slen1 = slen_table[0][g->scalefac_compress];
  2016. slen2 = slen_table[1][g->scalefac_compress];
  2017. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2018. if (g->block_type == 2) {
  2019. n = g->switch_point ? 17 : 18;
  2020. j = 0;
  2021. for(i=0;i<n;i++)
  2022. g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
  2023. for(i=0;i<18;i++)
  2024. g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
  2025. for(i=0;i<3;i++)
  2026. g->scale_factors[j++] = 0;
  2027. } else {
  2028. sc = granules[ch][0].scale_factors;
  2029. j = 0;
  2030. for(k=0;k<4;k++) {
  2031. n = (k == 0 ? 6 : 5);
  2032. if ((g->scfsi & (0x8 >> k)) == 0) {
  2033. slen = (k < 2) ? slen1 : slen2;
  2034. for(i=0;i<n;i++)
  2035. g->scale_factors[j++] = get_bitsz(&s->gb, slen);
  2036. } else {
  2037. /* simply copy from last granule */
  2038. for(i=0;i<n;i++) {
  2039. g->scale_factors[j] = sc[j];
  2040. j++;
  2041. }
  2042. }
  2043. }
  2044. g->scale_factors[j++] = 0;
  2045. }
  2046. #if defined(DEBUG)
  2047. {
  2048. dprintf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2049. g->scfsi, gr, ch);
  2050. for(i=0;i<j;i++)
  2051. dprintf(" %d", g->scale_factors[i]);
  2052. dprintf("\n");
  2053. }
  2054. #endif
  2055. } else {
  2056. int tindex, tindex2, slen[4], sl, sf;
  2057. /* LSF scale factors */
  2058. if (g->block_type == 2) {
  2059. tindex = g->switch_point ? 2 : 1;
  2060. } else {
  2061. tindex = 0;
  2062. }
  2063. sf = g->scalefac_compress;
  2064. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2065. /* intensity stereo case */
  2066. sf >>= 1;
  2067. if (sf < 180) {
  2068. lsf_sf_expand(slen, sf, 6, 6, 0);
  2069. tindex2 = 3;
  2070. } else if (sf < 244) {
  2071. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2072. tindex2 = 4;
  2073. } else {
  2074. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2075. tindex2 = 5;
  2076. }
  2077. } else {
  2078. /* normal case */
  2079. if (sf < 400) {
  2080. lsf_sf_expand(slen, sf, 5, 4, 4);
  2081. tindex2 = 0;
  2082. } else if (sf < 500) {
  2083. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2084. tindex2 = 1;
  2085. } else {
  2086. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2087. tindex2 = 2;
  2088. g->preflag = 1;
  2089. }
  2090. }
  2091. j = 0;
  2092. for(k=0;k<4;k++) {
  2093. n = lsf_nsf_table[tindex2][tindex][k];
  2094. sl = slen[k];
  2095. for(i=0;i<n;i++)
  2096. g->scale_factors[j++] = get_bitsz(&s->gb, sl);
  2097. }
  2098. /* XXX: should compute exact size */
  2099. for(;j<40;j++)
  2100. g->scale_factors[j] = 0;
  2101. #if defined(DEBUG)
  2102. {
  2103. dprintf("gr=%d ch=%d scale_factors:\n",
  2104. gr, ch);
  2105. for(i=0;i<40;i++)
  2106. dprintf(" %d", g->scale_factors[i]);
  2107. dprintf("\n");
  2108. }
  2109. #endif
  2110. }
  2111. exponents_from_scale_factors(s, g, exponents);
  2112. /* read Huffman coded residue */
  2113. if (huffman_decode(s, g, exponents,
  2114. bits_pos + g->part2_3_length) < 0)
  2115. return -1;
  2116. #if defined(DEBUG)
  2117. sample_dump(0, g->sb_hybrid, 576);
  2118. #endif
  2119. /* skip extension bits */
  2120. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  2121. if (bits_left < 0) {
  2122. dprintf("bits_left=%d\n", bits_left);
  2123. return -1;
  2124. }
  2125. while (bits_left >= 16) {
  2126. skip_bits(&s->gb, 16);
  2127. bits_left -= 16;
  2128. }
  2129. if (bits_left > 0)
  2130. skip_bits(&s->gb, bits_left);
  2131. } /* ch */
  2132. if (s->nb_channels == 2)
  2133. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2134. for(ch=0;ch<s->nb_channels;ch++) {
  2135. g = &granules[ch][gr];
  2136. reorder_block(s, g);
  2137. #if defined(DEBUG)
  2138. sample_dump(0, g->sb_hybrid, 576);
  2139. #endif
  2140. s->compute_antialias(s, g);
  2141. #if defined(DEBUG)
  2142. sample_dump(1, g->sb_hybrid, 576);
  2143. #endif
  2144. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2145. #if defined(DEBUG)
  2146. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2147. #endif
  2148. }
  2149. } /* gr */
  2150. return nb_granules * 18;
  2151. }
  2152. static int mp_decode_frame(MPADecodeContext *s,
  2153. OUT_INT *samples)
  2154. {
  2155. int i, nb_frames, ch;
  2156. OUT_INT *samples_ptr;
  2157. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2158. (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
  2159. /* skip error protection field */
  2160. if (s->error_protection)
  2161. get_bits(&s->gb, 16);
  2162. dprintf("frame %d:\n", s->frame_count);
  2163. switch(s->layer) {
  2164. case 1:
  2165. nb_frames = mp_decode_layer1(s);
  2166. break;
  2167. case 2:
  2168. nb_frames = mp_decode_layer2(s);
  2169. break;
  2170. case 3:
  2171. default:
  2172. nb_frames = mp_decode_layer3(s);
  2173. break;
  2174. }
  2175. #if defined(DEBUG)
  2176. for(i=0;i<nb_frames;i++) {
  2177. for(ch=0;ch<s->nb_channels;ch++) {
  2178. int j;
  2179. dprintf("%d-%d:", i, ch);
  2180. for(j=0;j<SBLIMIT;j++)
  2181. dprintf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2182. dprintf("\n");
  2183. }
  2184. }
  2185. #endif
  2186. /* apply the synthesis filter */
  2187. for(ch=0;ch<s->nb_channels;ch++) {
  2188. samples_ptr = samples + ch;
  2189. for(i=0;i<nb_frames;i++) {
  2190. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2191. window, &s->dither_state,
  2192. samples_ptr, s->nb_channels,
  2193. s->sb_samples[ch][i]);
  2194. samples_ptr += 32 * s->nb_channels;
  2195. }
  2196. }
  2197. #ifdef DEBUG
  2198. s->frame_count++;
  2199. #endif
  2200. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2201. }
  2202. static int decode_frame(AVCodecContext * avctx,
  2203. void *data, int *data_size,
  2204. uint8_t * buf, int buf_size)
  2205. {
  2206. MPADecodeContext *s = avctx->priv_data;
  2207. uint32_t header;
  2208. uint8_t *buf_ptr;
  2209. int len, out_size;
  2210. OUT_INT *out_samples = data;
  2211. buf_ptr = buf;
  2212. while (buf_size > 0) {
  2213. len = s->inbuf_ptr - s->inbuf;
  2214. if (s->frame_size == 0) {
  2215. /* special case for next header for first frame in free
  2216. format case (XXX: find a simpler method) */
  2217. if (s->free_format_next_header != 0) {
  2218. s->inbuf[0] = s->free_format_next_header >> 24;
  2219. s->inbuf[1] = s->free_format_next_header >> 16;
  2220. s->inbuf[2] = s->free_format_next_header >> 8;
  2221. s->inbuf[3] = s->free_format_next_header;
  2222. s->inbuf_ptr = s->inbuf + 4;
  2223. s->free_format_next_header = 0;
  2224. goto got_header;
  2225. }
  2226. /* no header seen : find one. We need at least HEADER_SIZE
  2227. bytes to parse it */
  2228. len = HEADER_SIZE - len;
  2229. if (len > buf_size)
  2230. len = buf_size;
  2231. if (len > 0) {
  2232. memcpy(s->inbuf_ptr, buf_ptr, len);
  2233. buf_ptr += len;
  2234. buf_size -= len;
  2235. s->inbuf_ptr += len;
  2236. }
  2237. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2238. got_header:
  2239. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2240. (s->inbuf[2] << 8) | s->inbuf[3];
  2241. if (ff_mpa_check_header(header) < 0) {
  2242. /* no sync found : move by one byte (inefficient, but simple!) */
  2243. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2244. s->inbuf_ptr--;
  2245. dprintf("skip %x\n", header);
  2246. /* reset free format frame size to give a chance
  2247. to get a new bitrate */
  2248. s->free_format_frame_size = 0;
  2249. } else {
  2250. if (decode_header(s, header) == 1) {
  2251. /* free format: prepare to compute frame size */
  2252. s->frame_size = -1;
  2253. }
  2254. /* update codec info */
  2255. avctx->sample_rate = s->sample_rate;
  2256. avctx->channels = s->nb_channels;
  2257. avctx->bit_rate = s->bit_rate;
  2258. avctx->sub_id = s->layer;
  2259. switch(s->layer) {
  2260. case 1:
  2261. avctx->frame_size = 384;
  2262. break;
  2263. case 2:
  2264. avctx->frame_size = 1152;
  2265. break;
  2266. case 3:
  2267. if (s->lsf)
  2268. avctx->frame_size = 576;
  2269. else
  2270. avctx->frame_size = 1152;
  2271. break;
  2272. }
  2273. }
  2274. }
  2275. } else if (s->frame_size == -1) {
  2276. /* free format : find next sync to compute frame size */
  2277. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2278. if (len > buf_size)
  2279. len = buf_size;
  2280. if (len == 0) {
  2281. /* frame too long: resync */
  2282. s->frame_size = 0;
  2283. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2284. s->inbuf_ptr--;
  2285. } else {
  2286. uint8_t *p, *pend;
  2287. uint32_t header1;
  2288. int padding;
  2289. memcpy(s->inbuf_ptr, buf_ptr, len);
  2290. /* check for header */
  2291. p = s->inbuf_ptr - 3;
  2292. pend = s->inbuf_ptr + len - 4;
  2293. while (p <= pend) {
  2294. header = (p[0] << 24) | (p[1] << 16) |
  2295. (p[2] << 8) | p[3];
  2296. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2297. (s->inbuf[2] << 8) | s->inbuf[3];
  2298. /* check with high probability that we have a
  2299. valid header */
  2300. if ((header & SAME_HEADER_MASK) ==
  2301. (header1 & SAME_HEADER_MASK)) {
  2302. /* header found: update pointers */
  2303. len = (p + 4) - s->inbuf_ptr;
  2304. buf_ptr += len;
  2305. buf_size -= len;
  2306. s->inbuf_ptr = p;
  2307. /* compute frame size */
  2308. s->free_format_next_header = header;
  2309. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2310. padding = (header1 >> 9) & 1;
  2311. if (s->layer == 1)
  2312. s->free_format_frame_size -= padding * 4;
  2313. else
  2314. s->free_format_frame_size -= padding;
  2315. dprintf("free frame size=%d padding=%d\n",
  2316. s->free_format_frame_size, padding);
  2317. decode_header(s, header1);
  2318. goto next_data;
  2319. }
  2320. p++;
  2321. }
  2322. /* not found: simply increase pointers */
  2323. buf_ptr += len;
  2324. s->inbuf_ptr += len;
  2325. buf_size -= len;
  2326. }
  2327. } else if (len < s->frame_size) {
  2328. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2329. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2330. len = s->frame_size - len;
  2331. if (len > buf_size)
  2332. len = buf_size;
  2333. memcpy(s->inbuf_ptr, buf_ptr, len);
  2334. buf_ptr += len;
  2335. s->inbuf_ptr += len;
  2336. buf_size -= len;
  2337. }
  2338. next_data:
  2339. if (s->frame_size > 0 &&
  2340. (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
  2341. if (avctx->parse_only) {
  2342. /* simply return the frame data */
  2343. *(uint8_t **)data = s->inbuf;
  2344. out_size = s->inbuf_ptr - s->inbuf;
  2345. } else {
  2346. out_size = mp_decode_frame(s, out_samples);
  2347. }
  2348. s->inbuf_ptr = s->inbuf;
  2349. s->frame_size = 0;
  2350. if(out_size>=0)
  2351. *data_size = out_size;
  2352. else
  2353. av_log(avctx, AV_LOG_DEBUG, "Error while decoding mpeg audio frame\n"); //FIXME return -1 / but also return the number of bytes consumed
  2354. break;
  2355. }
  2356. }
  2357. return buf_ptr - buf;
  2358. }
  2359. static int decode_frame_adu(AVCodecContext * avctx,
  2360. void *data, int *data_size,
  2361. uint8_t * buf, int buf_size)
  2362. {
  2363. MPADecodeContext *s = avctx->priv_data;
  2364. uint32_t header;
  2365. int len, out_size;
  2366. OUT_INT *out_samples = data;
  2367. len = buf_size;
  2368. // Discard too short frames
  2369. if (buf_size < HEADER_SIZE) {
  2370. *data_size = 0;
  2371. return buf_size;
  2372. }
  2373. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2374. len = MPA_MAX_CODED_FRAME_SIZE;
  2375. memcpy(s->inbuf, buf, len);
  2376. s->inbuf_ptr = s->inbuf + len;
  2377. // Get header and restore sync word
  2378. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2379. (s->inbuf[2] << 8) | s->inbuf[3] | 0xffe00000;
  2380. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2381. *data_size = 0;
  2382. return buf_size;
  2383. }
  2384. decode_header(s, header);
  2385. /* update codec info */
  2386. avctx->sample_rate = s->sample_rate;
  2387. avctx->channels = s->nb_channels;
  2388. avctx->bit_rate = s->bit_rate;
  2389. avctx->sub_id = s->layer;
  2390. avctx->frame_size=s->frame_size = len;
  2391. if (avctx->parse_only) {
  2392. /* simply return the frame data */
  2393. *(uint8_t **)data = s->inbuf;
  2394. out_size = s->inbuf_ptr - s->inbuf;
  2395. } else {
  2396. out_size = mp_decode_frame(s, out_samples);
  2397. }
  2398. *data_size = out_size;
  2399. return buf_size;
  2400. }
  2401. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2402. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2403. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2404. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2405. static int chan_offset[9][5] = {
  2406. {0},
  2407. {0}, // C
  2408. {0}, // FLR
  2409. {2,0}, // C FLR
  2410. {2,0,3}, // C FLR BS
  2411. {4,0,2}, // C FLR BLRS
  2412. {4,0,2,5}, // C FLR BLRS LFE
  2413. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2414. {0,2} // FLR BLRS
  2415. };
  2416. static int decode_init_mp3on4(AVCodecContext * avctx)
  2417. {
  2418. MP3On4DecodeContext *s = avctx->priv_data;
  2419. int i;
  2420. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2421. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2422. return -1;
  2423. }
  2424. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2425. s->frames = mp3Frames[s->chan_cfg];
  2426. if(!s->frames) {
  2427. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2428. return -1;
  2429. }
  2430. avctx->channels = mp3Channels[s->chan_cfg];
  2431. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2432. * We replace avctx->priv_data with the context of the first decoder so that
  2433. * decode_init() does not have to be changed.
  2434. * Other decoders will be inited here copying data from the first context
  2435. */
  2436. // Allocate zeroed memory for the first decoder context
  2437. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2438. // Put decoder context in place to make init_decode() happy
  2439. avctx->priv_data = s->mp3decctx[0];
  2440. decode_init(avctx);
  2441. // Restore mp3on4 context pointer
  2442. avctx->priv_data = s;
  2443. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2444. /* Create a separate codec/context for each frame (first is already ok).
  2445. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2446. */
  2447. for (i = 1; i < s->frames; i++) {
  2448. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2449. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2450. s->mp3decctx[i]->inbuf = &s->mp3decctx[i]->inbuf1[0][BACKSTEP_SIZE];
  2451. s->mp3decctx[i]->inbuf_ptr = s->mp3decctx[i]->inbuf;
  2452. s->mp3decctx[i]->adu_mode = 1;
  2453. }
  2454. return 0;
  2455. }
  2456. static int decode_close_mp3on4(AVCodecContext * avctx)
  2457. {
  2458. MP3On4DecodeContext *s = avctx->priv_data;
  2459. int i;
  2460. for (i = 0; i < s->frames; i++)
  2461. if (s->mp3decctx[i])
  2462. av_free(s->mp3decctx[i]);
  2463. return 0;
  2464. }
  2465. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2466. void *data, int *data_size,
  2467. uint8_t * buf, int buf_size)
  2468. {
  2469. MP3On4DecodeContext *s = avctx->priv_data;
  2470. MPADecodeContext *m;
  2471. int len, out_size = 0;
  2472. uint32_t header;
  2473. OUT_INT *out_samples = data;
  2474. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2475. OUT_INT *outptr, *bp;
  2476. int fsize;
  2477. unsigned char *start2 = buf, *start;
  2478. int fr, i, j, n;
  2479. int off = avctx->channels;
  2480. int *coff = chan_offset[s->chan_cfg];
  2481. len = buf_size;
  2482. // Discard too short frames
  2483. if (buf_size < HEADER_SIZE) {
  2484. *data_size = 0;
  2485. return buf_size;
  2486. }
  2487. // If only one decoder interleave is not needed
  2488. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2489. for (fr = 0; fr < s->frames; fr++) {
  2490. start = start2;
  2491. fsize = (start[0] << 4) | (start[1] >> 4);
  2492. start2 += fsize;
  2493. if (fsize > len)
  2494. fsize = len;
  2495. len -= fsize;
  2496. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2497. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2498. m = s->mp3decctx[fr];
  2499. assert (m != NULL);
  2500. /* copy original to new */
  2501. m->inbuf_ptr = m->inbuf + fsize;
  2502. memcpy(m->inbuf, start, fsize);
  2503. // Get header
  2504. header = (m->inbuf[0] << 24) | (m->inbuf[1] << 16) |
  2505. (m->inbuf[2] << 8) | m->inbuf[3] | 0xfff00000;
  2506. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2507. *data_size = 0;
  2508. return buf_size;
  2509. }
  2510. decode_header(m, header);
  2511. mp_decode_frame(m, decoded_buf);
  2512. n = MPA_FRAME_SIZE * m->nb_channels;
  2513. out_size += n * sizeof(OUT_INT);
  2514. if(s->frames > 1) {
  2515. /* interleave output data */
  2516. bp = out_samples + coff[fr];
  2517. if(m->nb_channels == 1) {
  2518. for(j = 0; j < n; j++) {
  2519. *bp = decoded_buf[j];
  2520. bp += off;
  2521. }
  2522. } else {
  2523. for(j = 0; j < n; j++) {
  2524. bp[0] = decoded_buf[j++];
  2525. bp[1] = decoded_buf[j];
  2526. bp += off;
  2527. }
  2528. }
  2529. }
  2530. }
  2531. /* update codec info */
  2532. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2533. avctx->frame_size= buf_size;
  2534. avctx->bit_rate = 0;
  2535. for (i = 0; i < s->frames; i++)
  2536. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2537. *data_size = out_size;
  2538. return buf_size;
  2539. }
  2540. AVCodec mp2_decoder =
  2541. {
  2542. "mp2",
  2543. CODEC_TYPE_AUDIO,
  2544. CODEC_ID_MP2,
  2545. sizeof(MPADecodeContext),
  2546. decode_init,
  2547. NULL,
  2548. NULL,
  2549. decode_frame,
  2550. CODEC_CAP_PARSE_ONLY,
  2551. };
  2552. AVCodec mp3_decoder =
  2553. {
  2554. "mp3",
  2555. CODEC_TYPE_AUDIO,
  2556. CODEC_ID_MP3,
  2557. sizeof(MPADecodeContext),
  2558. decode_init,
  2559. NULL,
  2560. NULL,
  2561. decode_frame,
  2562. CODEC_CAP_PARSE_ONLY,
  2563. };
  2564. AVCodec mp3adu_decoder =
  2565. {
  2566. "mp3adu",
  2567. CODEC_TYPE_AUDIO,
  2568. CODEC_ID_MP3ADU,
  2569. sizeof(MPADecodeContext),
  2570. decode_init,
  2571. NULL,
  2572. NULL,
  2573. decode_frame_adu,
  2574. CODEC_CAP_PARSE_ONLY,
  2575. };
  2576. AVCodec mp3on4_decoder =
  2577. {
  2578. "mp3on4",
  2579. CODEC_TYPE_AUDIO,
  2580. CODEC_ID_MP3ON4,
  2581. sizeof(MP3On4DecodeContext),
  2582. decode_init_mp3on4,
  2583. NULL,
  2584. decode_close_mp3on4,
  2585. decode_frame_mp3on4,
  2586. 0
  2587. };