You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

648 lines
19KB

  1. /*
  2. * ASUS V1/V2 codec
  3. * Copyright (c) 2003 Michael Niedermayer
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  18. */
  19. /**
  20. * @file asv1.c
  21. * ASUS V1/V2 codec.
  22. */
  23. #include "avcodec.h"
  24. #include "dsputil.h"
  25. #include "mpegvideo.h"
  26. //#undef NDEBUG
  27. //#include <assert.h>
  28. #define VLC_BITS 6
  29. #define ASV2_LEVEL_VLC_BITS 10
  30. typedef struct ASV1Context{
  31. AVCodecContext *avctx;
  32. DSPContext dsp;
  33. AVFrame picture;
  34. PutBitContext pb;
  35. GetBitContext gb;
  36. ScanTable scantable;
  37. int inv_qscale;
  38. int mb_width;
  39. int mb_height;
  40. int mb_width2;
  41. int mb_height2;
  42. DECLARE_ALIGNED_8(DCTELEM, block[6][64]);
  43. DECLARE_ALIGNED_8(uint16_t, intra_matrix[64]);
  44. DECLARE_ALIGNED_8(int, q_intra_matrix[64]);
  45. uint8_t *bitstream_buffer;
  46. unsigned int bitstream_buffer_size;
  47. } ASV1Context;
  48. static const uint8_t scantab[64]={
  49. 0x00,0x08,0x01,0x09,0x10,0x18,0x11,0x19,
  50. 0x02,0x0A,0x03,0x0B,0x12,0x1A,0x13,0x1B,
  51. 0x04,0x0C,0x05,0x0D,0x20,0x28,0x21,0x29,
  52. 0x06,0x0E,0x07,0x0F,0x14,0x1C,0x15,0x1D,
  53. 0x22,0x2A,0x23,0x2B,0x30,0x38,0x31,0x39,
  54. 0x16,0x1E,0x17,0x1F,0x24,0x2C,0x25,0x2D,
  55. 0x32,0x3A,0x33,0x3B,0x26,0x2E,0x27,0x2F,
  56. 0x34,0x3C,0x35,0x3D,0x36,0x3E,0x37,0x3F,
  57. };
  58. static const uint8_t ccp_tab[17][2]={
  59. {0x2,2}, {0x7,5}, {0xB,5}, {0x3,5},
  60. {0xD,5}, {0x5,5}, {0x9,5}, {0x1,5},
  61. {0xE,5}, {0x6,5}, {0xA,5}, {0x2,5},
  62. {0xC,5}, {0x4,5}, {0x8,5}, {0x3,2},
  63. {0xF,5}, //EOB
  64. };
  65. static const uint8_t level_tab[7][2]={
  66. {3,4}, {3,3}, {3,2}, {0,3}, {2,2}, {2,3}, {2,4}
  67. };
  68. static const uint8_t dc_ccp_tab[8][2]={
  69. {0x1,2}, {0xD,4}, {0xF,4}, {0xC,4},
  70. {0x5,3}, {0xE,4}, {0x4,3}, {0x0,2},
  71. };
  72. static const uint8_t ac_ccp_tab[16][2]={
  73. {0x00,2}, {0x3B,6}, {0x0A,4}, {0x3A,6},
  74. {0x02,3}, {0x39,6}, {0x3C,6}, {0x38,6},
  75. {0x03,3}, {0x3D,6}, {0x08,4}, {0x1F,5},
  76. {0x09,4}, {0x0B,4}, {0x0D,4}, {0x0C,4},
  77. };
  78. static const uint8_t asv2_level_tab[63][2]={
  79. {0x3F,10},{0x2F,10},{0x37,10},{0x27,10},{0x3B,10},{0x2B,10},{0x33,10},{0x23,10},
  80. {0x3D,10},{0x2D,10},{0x35,10},{0x25,10},{0x39,10},{0x29,10},{0x31,10},{0x21,10},
  81. {0x1F, 8},{0x17, 8},{0x1B, 8},{0x13, 8},{0x1D, 8},{0x15, 8},{0x19, 8},{0x11, 8},
  82. {0x0F, 6},{0x0B, 6},{0x0D, 6},{0x09, 6},
  83. {0x07, 4},{0x05, 4},
  84. {0x03, 2},
  85. {0x00, 5},
  86. {0x02, 2},
  87. {0x04, 4},{0x06, 4},
  88. {0x08, 6},{0x0C, 6},{0x0A, 6},{0x0E, 6},
  89. {0x10, 8},{0x18, 8},{0x14, 8},{0x1C, 8},{0x12, 8},{0x1A, 8},{0x16, 8},{0x1E, 8},
  90. {0x20,10},{0x30,10},{0x28,10},{0x38,10},{0x24,10},{0x34,10},{0x2C,10},{0x3C,10},
  91. {0x22,10},{0x32,10},{0x2A,10},{0x3A,10},{0x26,10},{0x36,10},{0x2E,10},{0x3E,10},
  92. };
  93. static VLC ccp_vlc;
  94. static VLC level_vlc;
  95. static VLC dc_ccp_vlc;
  96. static VLC ac_ccp_vlc;
  97. static VLC asv2_level_vlc;
  98. static void init_vlcs(ASV1Context *a){
  99. static int done = 0;
  100. if (!done) {
  101. done = 1;
  102. init_vlc(&ccp_vlc, VLC_BITS, 17,
  103. &ccp_tab[0][1], 2, 1,
  104. &ccp_tab[0][0], 2, 1, 1);
  105. init_vlc(&dc_ccp_vlc, VLC_BITS, 8,
  106. &dc_ccp_tab[0][1], 2, 1,
  107. &dc_ccp_tab[0][0], 2, 1, 1);
  108. init_vlc(&ac_ccp_vlc, VLC_BITS, 16,
  109. &ac_ccp_tab[0][1], 2, 1,
  110. &ac_ccp_tab[0][0], 2, 1, 1);
  111. init_vlc(&level_vlc, VLC_BITS, 7,
  112. &level_tab[0][1], 2, 1,
  113. &level_tab[0][0], 2, 1, 1);
  114. init_vlc(&asv2_level_vlc, ASV2_LEVEL_VLC_BITS, 63,
  115. &asv2_level_tab[0][1], 2, 1,
  116. &asv2_level_tab[0][0], 2, 1, 1);
  117. }
  118. }
  119. //FIXME write a reversed bitstream reader to avoid the double reverse
  120. static inline int asv2_get_bits(GetBitContext *gb, int n){
  121. return ff_reverse[ get_bits(gb, n) << (8-n) ];
  122. }
  123. static inline void asv2_put_bits(PutBitContext *pb, int n, int v){
  124. put_bits(pb, n, ff_reverse[ v << (8-n) ]);
  125. }
  126. static inline int asv1_get_level(GetBitContext *gb){
  127. int code= get_vlc2(gb, level_vlc.table, VLC_BITS, 1);
  128. if(code==3) return get_sbits(gb, 8);
  129. else return code - 3;
  130. }
  131. static inline int asv2_get_level(GetBitContext *gb){
  132. int code= get_vlc2(gb, asv2_level_vlc.table, ASV2_LEVEL_VLC_BITS, 1);
  133. if(code==31) return (int8_t)asv2_get_bits(gb, 8);
  134. else return code - 31;
  135. }
  136. static inline void asv1_put_level(PutBitContext *pb, int level){
  137. unsigned int index= level + 3;
  138. if(index <= 6) put_bits(pb, level_tab[index][1], level_tab[index][0]);
  139. else{
  140. put_bits(pb, level_tab[3][1], level_tab[3][0]);
  141. put_bits(pb, 8, level&0xFF);
  142. }
  143. }
  144. static inline void asv2_put_level(PutBitContext *pb, int level){
  145. unsigned int index= level + 31;
  146. if(index <= 62) put_bits(pb, asv2_level_tab[index][1], asv2_level_tab[index][0]);
  147. else{
  148. put_bits(pb, asv2_level_tab[31][1], asv2_level_tab[31][0]);
  149. asv2_put_bits(pb, 8, level&0xFF);
  150. }
  151. }
  152. static inline int asv1_decode_block(ASV1Context *a, DCTELEM block[64]){
  153. int i;
  154. block[0]= 8*get_bits(&a->gb, 8);
  155. for(i=0; i<11; i++){
  156. const int ccp= get_vlc2(&a->gb, ccp_vlc.table, VLC_BITS, 1);
  157. if(ccp){
  158. if(ccp == 16) break;
  159. if(ccp < 0 || i>=10){
  160. av_log(a->avctx, AV_LOG_ERROR, "coded coeff pattern damaged\n");
  161. return -1;
  162. }
  163. if(ccp&8) block[a->scantable.permutated[4*i+0]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+0])>>4;
  164. if(ccp&4) block[a->scantable.permutated[4*i+1]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+1])>>4;
  165. if(ccp&2) block[a->scantable.permutated[4*i+2]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+2])>>4;
  166. if(ccp&1) block[a->scantable.permutated[4*i+3]]= (asv1_get_level(&a->gb) * a->intra_matrix[4*i+3])>>4;
  167. }
  168. }
  169. return 0;
  170. }
  171. static inline int asv2_decode_block(ASV1Context *a, DCTELEM block[64]){
  172. int i, count, ccp;
  173. count= asv2_get_bits(&a->gb, 4);
  174. block[0]= 8*asv2_get_bits(&a->gb, 8);
  175. ccp= get_vlc2(&a->gb, dc_ccp_vlc.table, VLC_BITS, 1);
  176. if(ccp){
  177. if(ccp&4) block[a->scantable.permutated[1]]= (asv2_get_level(&a->gb) * a->intra_matrix[1])>>4;
  178. if(ccp&2) block[a->scantable.permutated[2]]= (asv2_get_level(&a->gb) * a->intra_matrix[2])>>4;
  179. if(ccp&1) block[a->scantable.permutated[3]]= (asv2_get_level(&a->gb) * a->intra_matrix[3])>>4;
  180. }
  181. for(i=1; i<count+1; i++){
  182. const int ccp= get_vlc2(&a->gb, ac_ccp_vlc.table, VLC_BITS, 1);
  183. if(ccp){
  184. if(ccp&8) block[a->scantable.permutated[4*i+0]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+0])>>4;
  185. if(ccp&4) block[a->scantable.permutated[4*i+1]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+1])>>4;
  186. if(ccp&2) block[a->scantable.permutated[4*i+2]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+2])>>4;
  187. if(ccp&1) block[a->scantable.permutated[4*i+3]]= (asv2_get_level(&a->gb) * a->intra_matrix[4*i+3])>>4;
  188. }
  189. }
  190. return 0;
  191. }
  192. static inline void asv1_encode_block(ASV1Context *a, DCTELEM block[64]){
  193. int i;
  194. int nc_count=0;
  195. put_bits(&a->pb, 8, (block[0] + 32)>>6);
  196. block[0]= 0;
  197. for(i=0; i<10; i++){
  198. const int index= scantab[4*i];
  199. int ccp=0;
  200. if( (block[index + 0] = (block[index + 0]*a->q_intra_matrix[index + 0] + (1<<15))>>16) ) ccp |= 8;
  201. if( (block[index + 8] = (block[index + 8]*a->q_intra_matrix[index + 8] + (1<<15))>>16) ) ccp |= 4;
  202. if( (block[index + 1] = (block[index + 1]*a->q_intra_matrix[index + 1] + (1<<15))>>16) ) ccp |= 2;
  203. if( (block[index + 9] = (block[index + 9]*a->q_intra_matrix[index + 9] + (1<<15))>>16) ) ccp |= 1;
  204. if(ccp){
  205. for(;nc_count; nc_count--)
  206. put_bits(&a->pb, ccp_tab[0][1], ccp_tab[0][0]);
  207. put_bits(&a->pb, ccp_tab[ccp][1], ccp_tab[ccp][0]);
  208. if(ccp&8) asv1_put_level(&a->pb, block[index + 0]);
  209. if(ccp&4) asv1_put_level(&a->pb, block[index + 8]);
  210. if(ccp&2) asv1_put_level(&a->pb, block[index + 1]);
  211. if(ccp&1) asv1_put_level(&a->pb, block[index + 9]);
  212. }else{
  213. nc_count++;
  214. }
  215. }
  216. put_bits(&a->pb, ccp_tab[16][1], ccp_tab[16][0]);
  217. }
  218. static inline void asv2_encode_block(ASV1Context *a, DCTELEM block[64]){
  219. int i;
  220. int count=0;
  221. for(count=63; count>3; count--){
  222. const int index= scantab[count];
  223. if( (block[index]*a->q_intra_matrix[index] + (1<<15))>>16 )
  224. break;
  225. }
  226. count >>= 2;
  227. asv2_put_bits(&a->pb, 4, count);
  228. asv2_put_bits(&a->pb, 8, (block[0] + 32)>>6);
  229. block[0]= 0;
  230. for(i=0; i<=count; i++){
  231. const int index= scantab[4*i];
  232. int ccp=0;
  233. if( (block[index + 0] = (block[index + 0]*a->q_intra_matrix[index + 0] + (1<<15))>>16) ) ccp |= 8;
  234. if( (block[index + 8] = (block[index + 8]*a->q_intra_matrix[index + 8] + (1<<15))>>16) ) ccp |= 4;
  235. if( (block[index + 1] = (block[index + 1]*a->q_intra_matrix[index + 1] + (1<<15))>>16) ) ccp |= 2;
  236. if( (block[index + 9] = (block[index + 9]*a->q_intra_matrix[index + 9] + (1<<15))>>16) ) ccp |= 1;
  237. assert(i || ccp<8);
  238. if(i) put_bits(&a->pb, ac_ccp_tab[ccp][1], ac_ccp_tab[ccp][0]);
  239. else put_bits(&a->pb, dc_ccp_tab[ccp][1], dc_ccp_tab[ccp][0]);
  240. if(ccp){
  241. if(ccp&8) asv2_put_level(&a->pb, block[index + 0]);
  242. if(ccp&4) asv2_put_level(&a->pb, block[index + 8]);
  243. if(ccp&2) asv2_put_level(&a->pb, block[index + 1]);
  244. if(ccp&1) asv2_put_level(&a->pb, block[index + 9]);
  245. }
  246. }
  247. }
  248. static inline int decode_mb(ASV1Context *a, DCTELEM block[6][64]){
  249. int i;
  250. a->dsp.clear_blocks(block[0]);
  251. if(a->avctx->codec_id == CODEC_ID_ASV1){
  252. for(i=0; i<6; i++){
  253. if( asv1_decode_block(a, block[i]) < 0)
  254. return -1;
  255. }
  256. }else{
  257. for(i=0; i<6; i++){
  258. if( asv2_decode_block(a, block[i]) < 0)
  259. return -1;
  260. }
  261. }
  262. return 0;
  263. }
  264. static inline int encode_mb(ASV1Context *a, DCTELEM block[6][64]){
  265. int i;
  266. if(a->pb.buf_end - a->pb.buf - (put_bits_count(&a->pb)>>3) < 30*16*16*3/2/8){
  267. av_log(a->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  268. return -1;
  269. }
  270. if(a->avctx->codec_id == CODEC_ID_ASV1){
  271. for(i=0; i<6; i++)
  272. asv1_encode_block(a, block[i]);
  273. }else{
  274. for(i=0; i<6; i++)
  275. asv2_encode_block(a, block[i]);
  276. }
  277. return 0;
  278. }
  279. static inline void idct_put(ASV1Context *a, int mb_x, int mb_y){
  280. DCTELEM (*block)[64]= a->block;
  281. int linesize= a->picture.linesize[0];
  282. uint8_t *dest_y = a->picture.data[0] + (mb_y * 16* linesize ) + mb_x * 16;
  283. uint8_t *dest_cb = a->picture.data[1] + (mb_y * 8 * a->picture.linesize[1]) + mb_x * 8;
  284. uint8_t *dest_cr = a->picture.data[2] + (mb_y * 8 * a->picture.linesize[2]) + mb_x * 8;
  285. a->dsp.idct_put(dest_y , linesize, block[0]);
  286. a->dsp.idct_put(dest_y + 8, linesize, block[1]);
  287. a->dsp.idct_put(dest_y + 8*linesize , linesize, block[2]);
  288. a->dsp.idct_put(dest_y + 8*linesize + 8, linesize, block[3]);
  289. if(!(a->avctx->flags&CODEC_FLAG_GRAY)){
  290. a->dsp.idct_put(dest_cb, a->picture.linesize[1], block[4]);
  291. a->dsp.idct_put(dest_cr, a->picture.linesize[2], block[5]);
  292. }
  293. }
  294. static inline void dct_get(ASV1Context *a, int mb_x, int mb_y){
  295. DCTELEM (*block)[64]= a->block;
  296. int linesize= a->picture.linesize[0];
  297. int i;
  298. uint8_t *ptr_y = a->picture.data[0] + (mb_y * 16* linesize ) + mb_x * 16;
  299. uint8_t *ptr_cb = a->picture.data[1] + (mb_y * 8 * a->picture.linesize[1]) + mb_x * 8;
  300. uint8_t *ptr_cr = a->picture.data[2] + (mb_y * 8 * a->picture.linesize[2]) + mb_x * 8;
  301. a->dsp.get_pixels(block[0], ptr_y , linesize);
  302. a->dsp.get_pixels(block[1], ptr_y + 8, linesize);
  303. a->dsp.get_pixels(block[2], ptr_y + 8*linesize , linesize);
  304. a->dsp.get_pixels(block[3], ptr_y + 8*linesize + 8, linesize);
  305. for(i=0; i<4; i++)
  306. a->dsp.fdct(block[i]);
  307. if(!(a->avctx->flags&CODEC_FLAG_GRAY)){
  308. a->dsp.get_pixels(block[4], ptr_cb, a->picture.linesize[1]);
  309. a->dsp.get_pixels(block[5], ptr_cr, a->picture.linesize[2]);
  310. for(i=4; i<6; i++)
  311. a->dsp.fdct(block[i]);
  312. }
  313. }
  314. static int decode_frame(AVCodecContext *avctx,
  315. void *data, int *data_size,
  316. uint8_t *buf, int buf_size)
  317. {
  318. ASV1Context * const a = avctx->priv_data;
  319. AVFrame *picture = data;
  320. AVFrame * const p= (AVFrame*)&a->picture;
  321. int mb_x, mb_y;
  322. if(p->data[0])
  323. avctx->release_buffer(avctx, p);
  324. p->reference= 0;
  325. if(avctx->get_buffer(avctx, p) < 0){
  326. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  327. return -1;
  328. }
  329. p->pict_type= I_TYPE;
  330. p->key_frame= 1;
  331. a->bitstream_buffer= av_fast_realloc(a->bitstream_buffer, &a->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  332. if(avctx->codec_id == CODEC_ID_ASV1)
  333. a->dsp.bswap_buf((uint32_t*)a->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  334. else{
  335. int i;
  336. for(i=0; i<buf_size; i++)
  337. a->bitstream_buffer[i]= ff_reverse[ buf[i] ];
  338. }
  339. init_get_bits(&a->gb, a->bitstream_buffer, buf_size*8);
  340. for(mb_y=0; mb_y<a->mb_height2; mb_y++){
  341. for(mb_x=0; mb_x<a->mb_width2; mb_x++){
  342. if( decode_mb(a, a->block) <0)
  343. return -1;
  344. idct_put(a, mb_x, mb_y);
  345. }
  346. }
  347. if(a->mb_width2 != a->mb_width){
  348. mb_x= a->mb_width2;
  349. for(mb_y=0; mb_y<a->mb_height2; mb_y++){
  350. if( decode_mb(a, a->block) <0)
  351. return -1;
  352. idct_put(a, mb_x, mb_y);
  353. }
  354. }
  355. if(a->mb_height2 != a->mb_height){
  356. mb_y= a->mb_height2;
  357. for(mb_x=0; mb_x<a->mb_width; mb_x++){
  358. if( decode_mb(a, a->block) <0)
  359. return -1;
  360. idct_put(a, mb_x, mb_y);
  361. }
  362. }
  363. #if 0
  364. int i;
  365. printf("%d %d\n", 8*buf_size, get_bits_count(&a->gb));
  366. for(i=get_bits_count(&a->gb); i<8*buf_size; i++){
  367. printf("%d", get_bits1(&a->gb));
  368. }
  369. for(i=0; i<s->avctx->extradata_size; i++){
  370. printf("%c\n", ((uint8_t*)s->avctx->extradata)[i]);
  371. }
  372. #endif
  373. *picture= *(AVFrame*)&a->picture;
  374. *data_size = sizeof(AVPicture);
  375. emms_c();
  376. return (get_bits_count(&a->gb)+31)/32*4;
  377. }
  378. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  379. ASV1Context * const a = avctx->priv_data;
  380. AVFrame *pict = data;
  381. AVFrame * const p= (AVFrame*)&a->picture;
  382. int size;
  383. int mb_x, mb_y;
  384. init_put_bits(&a->pb, buf, buf_size);
  385. *p = *pict;
  386. p->pict_type= I_TYPE;
  387. p->key_frame= 1;
  388. for(mb_y=0; mb_y<a->mb_height2; mb_y++){
  389. for(mb_x=0; mb_x<a->mb_width2; mb_x++){
  390. dct_get(a, mb_x, mb_y);
  391. encode_mb(a, a->block);
  392. }
  393. }
  394. if(a->mb_width2 != a->mb_width){
  395. mb_x= a->mb_width2;
  396. for(mb_y=0; mb_y<a->mb_height2; mb_y++){
  397. dct_get(a, mb_x, mb_y);
  398. encode_mb(a, a->block);
  399. }
  400. }
  401. if(a->mb_height2 != a->mb_height){
  402. mb_y= a->mb_height2;
  403. for(mb_x=0; mb_x<a->mb_width; mb_x++){
  404. dct_get(a, mb_x, mb_y);
  405. encode_mb(a, a->block);
  406. }
  407. }
  408. emms_c();
  409. align_put_bits(&a->pb);
  410. while(put_bits_count(&a->pb)&31)
  411. put_bits(&a->pb, 8, 0);
  412. size= put_bits_count(&a->pb)/32;
  413. if(avctx->codec_id == CODEC_ID_ASV1)
  414. a->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  415. else{
  416. int i;
  417. for(i=0; i<4*size; i++)
  418. buf[i]= ff_reverse[ buf[i] ];
  419. }
  420. return size*4;
  421. }
  422. static void common_init(AVCodecContext *avctx){
  423. ASV1Context * const a = avctx->priv_data;
  424. dsputil_init(&a->dsp, avctx);
  425. a->mb_width = (avctx->width + 15) / 16;
  426. a->mb_height = (avctx->height + 15) / 16;
  427. a->mb_width2 = (avctx->width + 0) / 16;
  428. a->mb_height2 = (avctx->height + 0) / 16;
  429. avctx->coded_frame= (AVFrame*)&a->picture;
  430. a->avctx= avctx;
  431. }
  432. static int decode_init(AVCodecContext *avctx){
  433. ASV1Context * const a = avctx->priv_data;
  434. AVFrame *p= (AVFrame*)&a->picture;
  435. int i;
  436. const int scale= avctx->codec_id == CODEC_ID_ASV1 ? 1 : 2;
  437. common_init(avctx);
  438. init_vlcs(a);
  439. ff_init_scantable(a->dsp.idct_permutation, &a->scantable, scantab);
  440. avctx->pix_fmt= PIX_FMT_YUV420P;
  441. a->inv_qscale= ((uint8_t*)avctx->extradata)[0];
  442. if(a->inv_qscale == 0){
  443. av_log(avctx, AV_LOG_ERROR, "illegal qscale 0\n");
  444. if(avctx->codec_id == CODEC_ID_ASV1)
  445. a->inv_qscale= 6;
  446. else
  447. a->inv_qscale= 10;
  448. }
  449. for(i=0; i<64; i++){
  450. int index= scantab[i];
  451. a->intra_matrix[i]= 64*scale*ff_mpeg1_default_intra_matrix[index] / a->inv_qscale;
  452. }
  453. p->qstride= a->mb_width;
  454. p->qscale_table= av_malloc( p->qstride * a->mb_height);
  455. p->quality= (32*scale + a->inv_qscale/2)/a->inv_qscale;
  456. memset(p->qscale_table, p->quality, p->qstride*a->mb_height);
  457. return 0;
  458. }
  459. static int encode_init(AVCodecContext *avctx){
  460. ASV1Context * const a = avctx->priv_data;
  461. int i;
  462. const int scale= avctx->codec_id == CODEC_ID_ASV1 ? 1 : 2;
  463. common_init(avctx);
  464. if(avctx->global_quality == 0) avctx->global_quality= 4*FF_QUALITY_SCALE;
  465. a->inv_qscale= (32*scale*FF_QUALITY_SCALE + avctx->global_quality/2) / avctx->global_quality;
  466. avctx->extradata= av_mallocz(8);
  467. avctx->extradata_size=8;
  468. ((uint32_t*)avctx->extradata)[0]= le2me_32(a->inv_qscale);
  469. ((uint32_t*)avctx->extradata)[1]= le2me_32(ff_get_fourcc("ASUS"));
  470. for(i=0; i<64; i++){
  471. int q= 32*scale*ff_mpeg1_default_intra_matrix[i];
  472. a->q_intra_matrix[i]= ((a->inv_qscale<<16) + q/2) / q;
  473. }
  474. return 0;
  475. }
  476. static int decode_end(AVCodecContext *avctx){
  477. ASV1Context * const a = avctx->priv_data;
  478. av_freep(&a->bitstream_buffer);
  479. av_freep(&a->picture.qscale_table);
  480. a->bitstream_buffer_size=0;
  481. return 0;
  482. }
  483. AVCodec asv1_decoder = {
  484. "asv1",
  485. CODEC_TYPE_VIDEO,
  486. CODEC_ID_ASV1,
  487. sizeof(ASV1Context),
  488. decode_init,
  489. NULL,
  490. decode_end,
  491. decode_frame,
  492. CODEC_CAP_DR1,
  493. };
  494. AVCodec asv2_decoder = {
  495. "asv2",
  496. CODEC_TYPE_VIDEO,
  497. CODEC_ID_ASV2,
  498. sizeof(ASV1Context),
  499. decode_init,
  500. NULL,
  501. decode_end,
  502. decode_frame,
  503. CODEC_CAP_DR1,
  504. };
  505. #ifdef CONFIG_ENCODERS
  506. AVCodec asv1_encoder = {
  507. "asv1",
  508. CODEC_TYPE_VIDEO,
  509. CODEC_ID_ASV1,
  510. sizeof(ASV1Context),
  511. encode_init,
  512. encode_frame,
  513. //encode_end,
  514. };
  515. AVCodec asv2_encoder = {
  516. "asv2",
  517. CODEC_TYPE_VIDEO,
  518. CODEC_ID_ASV2,
  519. sizeof(ASV1Context),
  520. encode_init,
  521. encode_frame,
  522. //encode_end,
  523. };
  524. #endif //CONFIG_ENCODERS