You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1141 lines
39KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/internal.h"
  27. #include "libavutil/opt.h"
  28. #include "libavutil/timer.h"
  29. #include "avcodec.h"
  30. #include "blockdsp.h"
  31. #include "dsputil.h"
  32. #include "internal.h"
  33. #include "mpegvideo.h"
  34. #include "dnxhdenc.h"
  35. // The largest value that will not lead to overflow for 10bit samples.
  36. #define DNX10BIT_QMAT_SHIFT 18
  37. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  38. #define LAMBDA_FRAC_BITS 10
  39. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  40. static const AVOption options[] = {
  41. { "nitris_compat", "encode with Avid Nitris compatibility",
  42. offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
  43. { NULL }
  44. };
  45. static const AVClass class = {
  46. "dnxhd",
  47. av_default_item_name,
  48. options,
  49. LIBAVUTIL_VERSION_INT
  50. };
  51. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block,
  52. const uint8_t *pixels,
  53. ptrdiff_t line_size)
  54. {
  55. int i;
  56. for (i = 0; i < 4; i++) {
  57. block[0] = pixels[0];
  58. block[1] = pixels[1];
  59. block[2] = pixels[2];
  60. block[3] = pixels[3];
  61. block[4] = pixels[4];
  62. block[5] = pixels[5];
  63. block[6] = pixels[6];
  64. block[7] = pixels[7];
  65. pixels += line_size;
  66. block += 8;
  67. }
  68. memcpy(block, block - 8, sizeof(*block) * 8);
  69. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  70. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  71. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  72. }
  73. static av_always_inline
  74. void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block,
  75. const uint8_t *pixels,
  76. ptrdiff_t line_size)
  77. {
  78. int i;
  79. block += 32;
  80. for (i = 0; i < 4; i++) {
  81. memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
  82. memcpy(block - (i + 1) * 8, pixels + i * line_size, 8 * sizeof(*block));
  83. }
  84. }
  85. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  86. int n, int qscale, int *overflow)
  87. {
  88. const uint8_t *scantable= ctx->intra_scantable.scantable;
  89. const int *qmat = ctx->q_intra_matrix[qscale];
  90. int last_non_zero = 0;
  91. int i;
  92. ctx->dsp.fdct(block);
  93. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  94. block[0] = (block[0] + 2) >> 2;
  95. for (i = 1; i < 64; ++i) {
  96. int j = scantable[i];
  97. int sign = block[j] >> 31;
  98. int level = (block[j] ^ sign) - sign;
  99. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  100. block[j] = (level ^ sign) - sign;
  101. if (level)
  102. last_non_zero = i;
  103. }
  104. return last_non_zero;
  105. }
  106. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  107. {
  108. int i, j, level, run;
  109. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  110. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes,
  111. max_level * 4 * sizeof(*ctx->vlc_codes), fail);
  112. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,
  113. max_level * 4 * sizeof(*ctx->vlc_bits), fail);
  114. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
  115. 63 * 2, fail);
  116. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
  117. 63, fail);
  118. ctx->vlc_codes += max_level * 2;
  119. ctx->vlc_bits += max_level * 2;
  120. for (level = -max_level; level < max_level; level++) {
  121. for (run = 0; run < 2; run++) {
  122. int index = (level << 1) | run;
  123. int sign, offset = 0, alevel = level;
  124. MASK_ABS(sign, alevel);
  125. if (alevel > 64) {
  126. offset = (alevel - 1) >> 6;
  127. alevel -= offset << 6;
  128. }
  129. for (j = 0; j < 257; j++) {
  130. if (ctx->cid_table->ac_level[j] == alevel &&
  131. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  132. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  133. assert(!ctx->vlc_codes[index]);
  134. if (alevel) {
  135. ctx->vlc_codes[index] =
  136. (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
  137. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
  138. } else {
  139. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  140. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
  141. }
  142. break;
  143. }
  144. }
  145. assert(!alevel || j < 257);
  146. if (offset) {
  147. ctx->vlc_codes[index] =
  148. (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
  149. ctx->vlc_bits[index] += ctx->cid_table->index_bits;
  150. }
  151. }
  152. }
  153. for (i = 0; i < 62; i++) {
  154. int run = ctx->cid_table->run[i];
  155. assert(run < 63);
  156. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  157. ctx->run_bits[run] = ctx->cid_table->run_bits[i];
  158. }
  159. return 0;
  160. fail:
  161. return AVERROR(ENOMEM);
  162. }
  163. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  164. {
  165. // init first elem to 1 to avoid div by 0 in convert_matrix
  166. uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
  167. int qscale, i;
  168. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  169. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  170. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
  171. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  172. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
  173. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  174. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
  175. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  176. fail);
  177. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
  178. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  179. fail);
  180. if (ctx->cid_table->bit_depth == 8) {
  181. for (i = 1; i < 64; i++) {
  182. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  183. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  184. }
  185. ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
  186. weight_matrix, ctx->m.intra_quant_bias, 1,
  187. ctx->m.avctx->qmax, 1);
  188. for (i = 1; i < 64; i++) {
  189. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  190. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  191. }
  192. ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
  193. weight_matrix, ctx->m.intra_quant_bias, 1,
  194. ctx->m.avctx->qmax, 1);
  195. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  196. for (i = 0; i < 64; i++) {
  197. ctx->qmatrix_l[qscale][i] <<= 2;
  198. ctx->qmatrix_c[qscale][i] <<= 2;
  199. ctx->qmatrix_l16[qscale][0][i] <<= 2;
  200. ctx->qmatrix_l16[qscale][1][i] <<= 2;
  201. ctx->qmatrix_c16[qscale][0][i] <<= 2;
  202. ctx->qmatrix_c16[qscale][1][i] <<= 2;
  203. }
  204. }
  205. } else {
  206. // 10-bit
  207. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  208. for (i = 1; i < 64; i++) {
  209. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  210. /* The quantization formula from the VC-3 standard is:
  211. * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
  212. * (qscale * weight_table[i]))
  213. * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  214. * The s factor compensates scaling of DCT coefficients done by
  215. * the DCT routines, and therefore is not present in standard.
  216. * It's 8 for 8-bit samples and 4 for 10-bit ones.
  217. * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  218. * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
  219. * (qscale * weight_table[i])
  220. * For 10-bit samples, p / s == 2 */
  221. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  222. (qscale * luma_weight_table[i]);
  223. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  224. (qscale * chroma_weight_table[i]);
  225. }
  226. }
  227. }
  228. return 0;
  229. fail:
  230. return AVERROR(ENOMEM);
  231. }
  232. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  233. {
  234. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc,
  235. 8160 * ctx->m.avctx->qmax * sizeof(RCEntry), fail);
  236. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  237. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
  238. ctx->m.mb_num * sizeof(RCCMPEntry), fail);
  239. ctx->frame_bits = (ctx->cid_table->coding_unit_size -
  240. 640 - 4 - ctx->min_padding) * 8;
  241. ctx->qscale = 1;
  242. ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
  243. return 0;
  244. fail:
  245. return AVERROR(ENOMEM);
  246. }
  247. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  248. {
  249. DNXHDEncContext *ctx = avctx->priv_data;
  250. int i, index, bit_depth, ret;
  251. switch (avctx->pix_fmt) {
  252. case AV_PIX_FMT_YUV422P:
  253. bit_depth = 8;
  254. break;
  255. case AV_PIX_FMT_YUV422P10:
  256. bit_depth = 10;
  257. break;
  258. default:
  259. av_log(avctx, AV_LOG_ERROR,
  260. "pixel format is incompatible with DNxHD\n");
  261. return AVERROR(EINVAL);
  262. }
  263. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  264. if (!ctx->cid) {
  265. av_log(avctx, AV_LOG_ERROR,
  266. "video parameters incompatible with DNxHD\n");
  267. return AVERROR(EINVAL);
  268. }
  269. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  270. index = ff_dnxhd_get_cid_table(ctx->cid);
  271. ctx->cid_table = &ff_dnxhd_cid_table[index];
  272. ctx->m.avctx = avctx;
  273. ctx->m.mb_intra = 1;
  274. ctx->m.h263_aic = 1;
  275. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  276. ff_blockdsp_init(&ctx->bdsp, avctx);
  277. ff_dsputil_init(&ctx->m.dsp, avctx);
  278. ff_idctdsp_init(&ctx->m.idsp, avctx);
  279. ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
  280. ff_dct_common_init(&ctx->m);
  281. if (!ctx->m.dct_quantize)
  282. ctx->m.dct_quantize = ff_dct_quantize_c;
  283. if (ctx->cid_table->bit_depth == 10) {
  284. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  285. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  286. ctx->block_width_l2 = 4;
  287. } else {
  288. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  289. ctx->block_width_l2 = 3;
  290. }
  291. if (ARCH_X86)
  292. ff_dnxhdenc_init_x86(ctx);
  293. ctx->m.mb_height = (avctx->height + 15) / 16;
  294. ctx->m.mb_width = (avctx->width + 15) / 16;
  295. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  296. ctx->interlaced = 1;
  297. ctx->m.mb_height /= 2;
  298. }
  299. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  300. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  301. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  302. // XXX tune lbias/cbias
  303. if ((ret = dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0)) < 0)
  304. return ret;
  305. /* Avid Nitris hardware decoder requires a minimum amount of padding
  306. * in the coding unit payload */
  307. if (ctx->nitris_compat)
  308. ctx->min_padding = 1600;
  309. if ((ret = dnxhd_init_vlc(ctx)) < 0)
  310. return ret;
  311. if ((ret = dnxhd_init_rc(ctx)) < 0)
  312. return ret;
  313. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
  314. ctx->m.mb_height * sizeof(uint32_t), fail);
  315. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
  316. ctx->m.mb_height * sizeof(uint32_t), fail);
  317. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
  318. ctx->m.mb_num * sizeof(uint16_t), fail);
  319. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
  320. ctx->m.mb_num * sizeof(uint8_t), fail);
  321. avctx->coded_frame = av_frame_alloc();
  322. if (!avctx->coded_frame)
  323. return AVERROR(ENOMEM);
  324. avctx->coded_frame->key_frame = 1;
  325. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  326. if (avctx->thread_count > MAX_THREADS) {
  327. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  328. return AVERROR(EINVAL);
  329. }
  330. ctx->thread[0] = ctx;
  331. for (i = 1; i < avctx->thread_count; i++) {
  332. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  333. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  334. }
  335. return 0;
  336. fail: // for FF_ALLOCZ_OR_GOTO
  337. return AVERROR(ENOMEM);
  338. }
  339. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  340. {
  341. DNXHDEncContext *ctx = avctx->priv_data;
  342. const uint8_t header_prefix[5] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
  343. memset(buf, 0, 640);
  344. memcpy(buf, header_prefix, 5);
  345. buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
  346. buf[6] = 0x80; // crc flag off
  347. buf[7] = 0xa0; // reserved
  348. AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
  349. AV_WB16(buf + 0x1a, avctx->width); // SPL
  350. AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
  351. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  352. buf[0x22] = 0x88 + (ctx->interlaced << 2);
  353. AV_WB32(buf + 0x28, ctx->cid); // CID
  354. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  355. buf[0x5f] = 0x01; // UDL
  356. buf[0x167] = 0x02; // reserved
  357. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  358. buf[0x16d] = ctx->m.mb_height; // Ns
  359. buf[0x16f] = 0x10; // reserved
  360. ctx->msip = buf + 0x170;
  361. return 0;
  362. }
  363. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  364. {
  365. int nbits;
  366. if (diff < 0) {
  367. nbits = av_log2_16bit(-2 * diff);
  368. diff--;
  369. } else {
  370. nbits = av_log2_16bit(2 * diff);
  371. }
  372. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  373. (ctx->cid_table->dc_codes[nbits] << nbits) +
  374. (diff & ((1 << nbits) - 1)));
  375. }
  376. static av_always_inline
  377. void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
  378. int last_index, int n)
  379. {
  380. int last_non_zero = 0;
  381. int slevel, i, j;
  382. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  383. ctx->m.last_dc[n] = block[0];
  384. for (i = 1; i <= last_index; i++) {
  385. j = ctx->m.intra_scantable.permutated[i];
  386. slevel = block[j];
  387. if (slevel) {
  388. int run_level = i - last_non_zero - 1;
  389. int rlevel = (slevel << 1) | !!run_level;
  390. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  391. if (run_level)
  392. put_bits(&ctx->m.pb, ctx->run_bits[run_level],
  393. ctx->run_codes[run_level]);
  394. last_non_zero = i;
  395. }
  396. }
  397. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  398. }
  399. static av_always_inline
  400. void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
  401. int qscale, int last_index)
  402. {
  403. const uint8_t *weight_matrix;
  404. int level;
  405. int i;
  406. weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
  407. : ctx->cid_table->luma_weight;
  408. for (i = 1; i <= last_index; i++) {
  409. int j = ctx->m.intra_scantable.permutated[i];
  410. level = block[j];
  411. if (level) {
  412. if (level < 0) {
  413. level = (1 - 2 * level) * qscale * weight_matrix[i];
  414. if (ctx->cid_table->bit_depth == 10) {
  415. if (weight_matrix[i] != 8)
  416. level += 8;
  417. level >>= 4;
  418. } else {
  419. if (weight_matrix[i] != 32)
  420. level += 32;
  421. level >>= 6;
  422. }
  423. level = -level;
  424. } else {
  425. level = (2 * level + 1) * qscale * weight_matrix[i];
  426. if (ctx->cid_table->bit_depth == 10) {
  427. if (weight_matrix[i] != 8)
  428. level += 8;
  429. level >>= 4;
  430. } else {
  431. if (weight_matrix[i] != 32)
  432. level += 32;
  433. level >>= 6;
  434. }
  435. }
  436. block[j] = level;
  437. }
  438. }
  439. }
  440. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  441. {
  442. int score = 0;
  443. int i;
  444. for (i = 0; i < 64; i++)
  445. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  446. return score;
  447. }
  448. static av_always_inline
  449. int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  450. {
  451. int last_non_zero = 0;
  452. int bits = 0;
  453. int i, j, level;
  454. for (i = 1; i <= last_index; i++) {
  455. j = ctx->m.intra_scantable.permutated[i];
  456. level = block[j];
  457. if (level) {
  458. int run_level = i - last_non_zero - 1;
  459. bits += ctx->vlc_bits[(level << 1) |
  460. !!run_level] + ctx->run_bits[run_level];
  461. last_non_zero = i;
  462. }
  463. }
  464. return bits;
  465. }
  466. static av_always_inline
  467. void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  468. {
  469. const int bs = ctx->block_width_l2;
  470. const int bw = 1 << bs;
  471. const uint8_t *ptr_y = ctx->thread[0]->src[0] +
  472. ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
  473. const uint8_t *ptr_u = ctx->thread[0]->src[1] +
  474. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  475. const uint8_t *ptr_v = ctx->thread[0]->src[2] +
  476. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  477. DSPContext *dsp = &ctx->m.dsp;
  478. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  479. dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  480. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  481. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  482. if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  483. if (ctx->interlaced) {
  484. ctx->get_pixels_8x4_sym(ctx->blocks[4],
  485. ptr_y + ctx->dct_y_offset,
  486. ctx->m.linesize);
  487. ctx->get_pixels_8x4_sym(ctx->blocks[5],
  488. ptr_y + ctx->dct_y_offset + bw,
  489. ctx->m.linesize);
  490. ctx->get_pixels_8x4_sym(ctx->blocks[6],
  491. ptr_u + ctx->dct_uv_offset,
  492. ctx->m.uvlinesize);
  493. ctx->get_pixels_8x4_sym(ctx->blocks[7],
  494. ptr_v + ctx->dct_uv_offset,
  495. ctx->m.uvlinesize);
  496. } else {
  497. ctx->bdsp.clear_block(ctx->blocks[4]);
  498. ctx->bdsp.clear_block(ctx->blocks[5]);
  499. ctx->bdsp.clear_block(ctx->blocks[6]);
  500. ctx->bdsp.clear_block(ctx->blocks[7]);
  501. }
  502. } else {
  503. dsp->get_pixels(ctx->blocks[4],
  504. ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  505. dsp->get_pixels(ctx->blocks[5],
  506. ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  507. dsp->get_pixels(ctx->blocks[6],
  508. ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  509. dsp->get_pixels(ctx->blocks[7],
  510. ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  511. }
  512. }
  513. static av_always_inline
  514. int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  515. {
  516. if (i & 2) {
  517. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  518. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  519. return 1 + (i & 1);
  520. } else {
  521. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  522. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  523. return 0;
  524. }
  525. }
  526. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
  527. int jobnr, int threadnr)
  528. {
  529. DNXHDEncContext *ctx = avctx->priv_data;
  530. int mb_y = jobnr, mb_x;
  531. int qscale = ctx->qscale;
  532. LOCAL_ALIGNED_16(int16_t, block, [64]);
  533. ctx = ctx->thread[threadnr];
  534. ctx->m.last_dc[0] =
  535. ctx->m.last_dc[1] =
  536. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  537. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  538. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  539. int ssd = 0;
  540. int ac_bits = 0;
  541. int dc_bits = 0;
  542. int i;
  543. dnxhd_get_blocks(ctx, mb_x, mb_y);
  544. for (i = 0; i < 8; i++) {
  545. int16_t *src_block = ctx->blocks[i];
  546. int overflow, nbits, diff, last_index;
  547. int n = dnxhd_switch_matrix(ctx, i);
  548. memcpy(block, src_block, 64 * sizeof(*block));
  549. last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  550. qscale, &overflow);
  551. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  552. diff = block[0] - ctx->m.last_dc[n];
  553. if (diff < 0)
  554. nbits = av_log2_16bit(-2 * diff);
  555. else
  556. nbits = av_log2_16bit(2 * diff);
  557. assert(nbits < ctx->cid_table->bit_depth + 4);
  558. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  559. ctx->m.last_dc[n] = block[0];
  560. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  561. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  562. ctx->m.idsp.idct(block);
  563. ssd += dnxhd_ssd_block(block, src_block);
  564. }
  565. }
  566. ctx->mb_rc[qscale][mb].ssd = ssd;
  567. ctx->mb_rc[qscale][mb].bits = ac_bits + dc_bits + 12 +
  568. 8 * ctx->vlc_bits[0];
  569. }
  570. return 0;
  571. }
  572. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
  573. int jobnr, int threadnr)
  574. {
  575. DNXHDEncContext *ctx = avctx->priv_data;
  576. int mb_y = jobnr, mb_x;
  577. ctx = ctx->thread[threadnr];
  578. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr],
  579. ctx->slice_size[jobnr]);
  580. ctx->m.last_dc[0] =
  581. ctx->m.last_dc[1] =
  582. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  583. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  584. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  585. int qscale = ctx->mb_qscale[mb];
  586. int i;
  587. put_bits(&ctx->m.pb, 12, qscale << 1);
  588. dnxhd_get_blocks(ctx, mb_x, mb_y);
  589. for (i = 0; i < 8; i++) {
  590. int16_t *block = ctx->blocks[i];
  591. int overflow, n = dnxhd_switch_matrix(ctx, i);
  592. int last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  593. qscale, &overflow);
  594. // START_TIMER;
  595. dnxhd_encode_block(ctx, block, last_index, n);
  596. // STOP_TIMER("encode_block");
  597. }
  598. }
  599. if (put_bits_count(&ctx->m.pb) & 31)
  600. put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
  601. flush_put_bits(&ctx->m.pb);
  602. return 0;
  603. }
  604. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  605. {
  606. int mb_y, mb_x;
  607. int offset = 0;
  608. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  609. int thread_size;
  610. ctx->slice_offs[mb_y] = offset;
  611. ctx->slice_size[mb_y] = 0;
  612. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  613. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  614. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  615. }
  616. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
  617. ctx->slice_size[mb_y] >>= 3;
  618. thread_size = ctx->slice_size[mb_y];
  619. offset += thread_size;
  620. }
  621. }
  622. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
  623. int jobnr, int threadnr)
  624. {
  625. DNXHDEncContext *ctx = avctx->priv_data;
  626. int mb_y = jobnr, mb_x, x, y;
  627. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  628. ((avctx->height >> ctx->interlaced) & 0xF);
  629. ctx = ctx->thread[threadnr];
  630. if (ctx->cid_table->bit_depth == 8) {
  631. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
  632. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  633. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  634. int sum;
  635. int varc;
  636. if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
  637. sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
  638. varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
  639. } else {
  640. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  641. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  642. sum = varc = 0;
  643. for (y = 0; y < bh; y++) {
  644. for (x = 0; x < bw; x++) {
  645. uint8_t val = pix[x + y * ctx->m.linesize];
  646. sum += val;
  647. varc += val * val;
  648. }
  649. }
  650. }
  651. varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
  652. ctx->mb_cmp[mb].value = varc;
  653. ctx->mb_cmp[mb].mb = mb;
  654. }
  655. } else { // 10-bit
  656. int const linesize = ctx->m.linesize >> 1;
  657. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  658. uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
  659. ((mb_y << 4) * linesize) + (mb_x << 4);
  660. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  661. int sum = 0;
  662. int sqsum = 0;
  663. int mean, sqmean;
  664. int i, j;
  665. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  666. for (i = 0; i < 16; ++i) {
  667. for (j = 0; j < 16; ++j) {
  668. // Turn 16-bit pixels into 10-bit ones.
  669. int const sample = (unsigned) pix[j] >> 6;
  670. sum += sample;
  671. sqsum += sample * sample;
  672. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  673. }
  674. pix += linesize;
  675. }
  676. mean = sum >> 8; // 16*16 == 2^8
  677. sqmean = sqsum >> 8;
  678. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  679. ctx->mb_cmp[mb].mb = mb;
  680. }
  681. }
  682. return 0;
  683. }
  684. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  685. {
  686. int lambda, up_step, down_step;
  687. int last_lower = INT_MAX, last_higher = 0;
  688. int x, y, q;
  689. for (q = 1; q < avctx->qmax; q++) {
  690. ctx->qscale = q;
  691. avctx->execute2(avctx, dnxhd_calc_bits_thread,
  692. NULL, NULL, ctx->m.mb_height);
  693. }
  694. up_step = down_step = 2 << LAMBDA_FRAC_BITS;
  695. lambda = ctx->lambda;
  696. for (;;) {
  697. int bits = 0;
  698. int end = 0;
  699. if (lambda == last_higher) {
  700. lambda++;
  701. end = 1; // need to set final qscales/bits
  702. }
  703. for (y = 0; y < ctx->m.mb_height; y++) {
  704. for (x = 0; x < ctx->m.mb_width; x++) {
  705. unsigned min = UINT_MAX;
  706. int qscale = 1;
  707. int mb = y * ctx->m.mb_width + x;
  708. for (q = 1; q < avctx->qmax; q++) {
  709. unsigned score = ctx->mb_rc[q][mb].bits * lambda +
  710. ((unsigned) ctx->mb_rc[q][mb].ssd << LAMBDA_FRAC_BITS);
  711. if (score < min) {
  712. min = score;
  713. qscale = q;
  714. }
  715. }
  716. bits += ctx->mb_rc[qscale][mb].bits;
  717. ctx->mb_qscale[mb] = qscale;
  718. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  719. }
  720. bits = (bits + 31) & ~31; // padding
  721. if (bits > ctx->frame_bits)
  722. break;
  723. }
  724. // av_dlog(ctx->m.avctx,
  725. // "lambda %d, up %u, down %u, bits %d, frame %d\n",
  726. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  727. if (end) {
  728. if (bits > ctx->frame_bits)
  729. return AVERROR(EINVAL);
  730. break;
  731. }
  732. if (bits < ctx->frame_bits) {
  733. last_lower = FFMIN(lambda, last_lower);
  734. if (last_higher != 0)
  735. lambda = (lambda+last_higher)>>1;
  736. else
  737. lambda -= down_step;
  738. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  739. up_step = 1<<LAMBDA_FRAC_BITS;
  740. lambda = FFMAX(1, lambda);
  741. if (lambda == last_lower)
  742. break;
  743. } else {
  744. last_higher = FFMAX(lambda, last_higher);
  745. if (last_lower != INT_MAX)
  746. lambda = (lambda+last_lower)>>1;
  747. else if ((int64_t)lambda + up_step > INT_MAX)
  748. return AVERROR(EINVAL);
  749. else
  750. lambda += up_step;
  751. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  752. down_step = 1<<LAMBDA_FRAC_BITS;
  753. }
  754. }
  755. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  756. ctx->lambda = lambda;
  757. return 0;
  758. }
  759. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  760. {
  761. int bits = 0;
  762. int up_step = 1;
  763. int down_step = 1;
  764. int last_higher = 0;
  765. int last_lower = INT_MAX;
  766. int qscale;
  767. int x, y;
  768. qscale = ctx->qscale;
  769. for (;;) {
  770. bits = 0;
  771. ctx->qscale = qscale;
  772. // XXX avoid recalculating bits
  773. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
  774. NULL, NULL, ctx->m.mb_height);
  775. for (y = 0; y < ctx->m.mb_height; y++) {
  776. for (x = 0; x < ctx->m.mb_width; x++)
  777. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  778. bits = (bits+31)&~31; // padding
  779. if (bits > ctx->frame_bits)
  780. break;
  781. }
  782. // av_dlog(ctx->m.avctx,
  783. // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  784. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits,
  785. // last_higher, last_lower);
  786. if (bits < ctx->frame_bits) {
  787. if (qscale == 1)
  788. return 1;
  789. if (last_higher == qscale - 1) {
  790. qscale = last_higher;
  791. break;
  792. }
  793. last_lower = FFMIN(qscale, last_lower);
  794. if (last_higher != 0)
  795. qscale = (qscale + last_higher) >> 1;
  796. else
  797. qscale -= down_step++;
  798. if (qscale < 1)
  799. qscale = 1;
  800. up_step = 1;
  801. } else {
  802. if (last_lower == qscale + 1)
  803. break;
  804. last_higher = FFMAX(qscale, last_higher);
  805. if (last_lower != INT_MAX)
  806. qscale = (qscale + last_lower) >> 1;
  807. else
  808. qscale += up_step++;
  809. down_step = 1;
  810. if (qscale >= ctx->m.avctx->qmax)
  811. return AVERROR(EINVAL);
  812. }
  813. }
  814. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  815. ctx->qscale = qscale;
  816. return 0;
  817. }
  818. #define BUCKET_BITS 8
  819. #define RADIX_PASSES 4
  820. #define NBUCKETS (1 << BUCKET_BITS)
  821. static inline int get_bucket(int value, int shift)
  822. {
  823. value >>= shift;
  824. value &= NBUCKETS - 1;
  825. return NBUCKETS - 1 - value;
  826. }
  827. static void radix_count(const RCCMPEntry *data, int size,
  828. int buckets[RADIX_PASSES][NBUCKETS])
  829. {
  830. int i, j;
  831. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  832. for (i = 0; i < size; i++) {
  833. int v = data[i].value;
  834. for (j = 0; j < RADIX_PASSES; j++) {
  835. buckets[j][get_bucket(v, 0)]++;
  836. v >>= BUCKET_BITS;
  837. }
  838. assert(!v);
  839. }
  840. for (j = 0; j < RADIX_PASSES; j++) {
  841. int offset = size;
  842. for (i = NBUCKETS - 1; i >= 0; i--)
  843. buckets[j][i] = offset -= buckets[j][i];
  844. assert(!buckets[j][0]);
  845. }
  846. }
  847. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
  848. int size, int buckets[NBUCKETS], int pass)
  849. {
  850. int shift = pass * BUCKET_BITS;
  851. int i;
  852. for (i = 0; i < size; i++) {
  853. int v = get_bucket(data[i].value, shift);
  854. int pos = buckets[v]++;
  855. dst[pos] = data[i];
  856. }
  857. }
  858. static void radix_sort(RCCMPEntry *data, int size)
  859. {
  860. int buckets[RADIX_PASSES][NBUCKETS];
  861. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  862. radix_count(data, size, buckets);
  863. radix_sort_pass(tmp, data, size, buckets[0], 0);
  864. radix_sort_pass(data, tmp, size, buckets[1], 1);
  865. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  866. radix_sort_pass(tmp, data, size, buckets[2], 2);
  867. radix_sort_pass(data, tmp, size, buckets[3], 3);
  868. }
  869. av_free(tmp);
  870. }
  871. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  872. {
  873. int max_bits = 0;
  874. int ret, x, y;
  875. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  876. return ret;
  877. for (y = 0; y < ctx->m.mb_height; y++) {
  878. for (x = 0; x < ctx->m.mb_width; x++) {
  879. int mb = y * ctx->m.mb_width + x;
  880. int delta_bits;
  881. ctx->mb_qscale[mb] = ctx->qscale;
  882. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  883. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  884. if (!RC_VARIANCE) {
  885. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits -
  886. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  887. ctx->mb_cmp[mb].mb = mb;
  888. ctx->mb_cmp[mb].value =
  889. delta_bits ? ((ctx->mb_rc[ctx->qscale][mb].ssd -
  890. ctx->mb_rc[ctx->qscale + 1][mb].ssd) * 100) /
  891. delta_bits
  892. : INT_MIN; // avoid increasing qscale
  893. }
  894. }
  895. max_bits += 31; // worst padding
  896. }
  897. if (!ret) {
  898. if (RC_VARIANCE)
  899. avctx->execute2(avctx, dnxhd_mb_var_thread,
  900. NULL, NULL, ctx->m.mb_height);
  901. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  902. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  903. int mb = ctx->mb_cmp[x].mb;
  904. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits -
  905. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  906. ctx->mb_qscale[mb] = ctx->qscale + 1;
  907. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale + 1][mb].bits;
  908. }
  909. }
  910. return 0;
  911. }
  912. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  913. {
  914. int i;
  915. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  916. ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
  917. ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
  918. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  919. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  920. }
  921. ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
  922. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  923. }
  924. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  925. const AVFrame *frame, int *got_packet)
  926. {
  927. DNXHDEncContext *ctx = avctx->priv_data;
  928. int first_field = 1;
  929. int offset, i, ret;
  930. uint8_t *buf;
  931. if ((ret = ff_alloc_packet(pkt, ctx->cid_table->frame_size)) < 0) {
  932. av_log(avctx, AV_LOG_ERROR,
  933. "output buffer is too small to compress picture\n");
  934. return ret;
  935. }
  936. buf = pkt->data;
  937. dnxhd_load_picture(ctx, frame);
  938. encode_coding_unit:
  939. for (i = 0; i < 3; i++) {
  940. ctx->src[i] = frame->data[i];
  941. if (ctx->interlaced && ctx->cur_field)
  942. ctx->src[i] += frame->linesize[i];
  943. }
  944. dnxhd_write_header(avctx, buf);
  945. if (avctx->mb_decision == FF_MB_DECISION_RD)
  946. ret = dnxhd_encode_rdo(avctx, ctx);
  947. else
  948. ret = dnxhd_encode_fast(avctx, ctx);
  949. if (ret < 0) {
  950. av_log(avctx, AV_LOG_ERROR,
  951. "picture could not fit ratecontrol constraints, increase qmax\n");
  952. return ret;
  953. }
  954. dnxhd_setup_threads_slices(ctx);
  955. offset = 0;
  956. for (i = 0; i < ctx->m.mb_height; i++) {
  957. AV_WB32(ctx->msip + i * 4, offset);
  958. offset += ctx->slice_size[i];
  959. assert(!(ctx->slice_size[i] & 3));
  960. }
  961. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  962. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  963. memset(buf + 640 + offset, 0,
  964. ctx->cid_table->coding_unit_size - 4 - offset - 640);
  965. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  966. if (ctx->interlaced && first_field) {
  967. first_field = 0;
  968. ctx->cur_field ^= 1;
  969. buf += ctx->cid_table->coding_unit_size;
  970. goto encode_coding_unit;
  971. }
  972. avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
  973. pkt->flags |= AV_PKT_FLAG_KEY;
  974. *got_packet = 1;
  975. return 0;
  976. }
  977. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  978. {
  979. DNXHDEncContext *ctx = avctx->priv_data;
  980. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  981. int i;
  982. av_free(ctx->vlc_codes - max_level * 2);
  983. av_free(ctx->vlc_bits - max_level * 2);
  984. av_freep(&ctx->run_codes);
  985. av_freep(&ctx->run_bits);
  986. av_freep(&ctx->mb_bits);
  987. av_freep(&ctx->mb_qscale);
  988. av_freep(&ctx->mb_rc);
  989. av_freep(&ctx->mb_cmp);
  990. av_freep(&ctx->slice_size);
  991. av_freep(&ctx->slice_offs);
  992. av_freep(&ctx->qmatrix_c);
  993. av_freep(&ctx->qmatrix_l);
  994. av_freep(&ctx->qmatrix_c16);
  995. av_freep(&ctx->qmatrix_l16);
  996. for (i = 1; i < avctx->thread_count; i++)
  997. av_freep(&ctx->thread[i]);
  998. av_frame_free(&avctx->coded_frame);
  999. return 0;
  1000. }
  1001. AVCodec ff_dnxhd_encoder = {
  1002. .name = "dnxhd",
  1003. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  1004. .type = AVMEDIA_TYPE_VIDEO,
  1005. .id = AV_CODEC_ID_DNXHD,
  1006. .priv_data_size = sizeof(DNXHDEncContext),
  1007. .init = dnxhd_encode_init,
  1008. .encode2 = dnxhd_encode_picture,
  1009. .close = dnxhd_encode_end,
  1010. .capabilities = CODEC_CAP_SLICE_THREADS,
  1011. .pix_fmts = (const enum AVPixelFormat[]) {
  1012. AV_PIX_FMT_YUV422P,
  1013. AV_PIX_FMT_YUV422P10,
  1014. AV_PIX_FMT_NONE
  1015. },
  1016. .priv_class = &class,
  1017. };